Total Complexity | 40 |
Total Lines | 299 |
Duplicated Lines | 0 % |
Complex classes like zipline.finance.risk.RiskMetricsPeriod often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # |
||
47 | class RiskMetricsPeriod(object): |
||
48 | def __init__(self, start_date, end_date, returns, env, |
||
49 | benchmark_returns=None, algorithm_leverages=None): |
||
50 | |||
51 | self.env = env |
||
52 | treasury_curves = env.treasury_curves |
||
53 | if treasury_curves.index[-1] >= start_date: |
||
54 | mask = ((treasury_curves.index >= start_date) & |
||
55 | (treasury_curves.index <= end_date)) |
||
56 | |||
57 | self.treasury_curves = treasury_curves[mask] |
||
58 | else: |
||
59 | # our test is beyond the treasury curve history |
||
60 | # so we'll use the last available treasury curve |
||
61 | self.treasury_curves = treasury_curves[-1:] |
||
62 | |||
63 | self.start_date = start_date |
||
64 | self.end_date = end_date |
||
65 | |||
66 | if benchmark_returns is None: |
||
67 | br = env.benchmark_returns |
||
68 | benchmark_returns = br[(br.index >= returns.index[0]) & |
||
69 | (br.index <= returns.index[-1])] |
||
70 | |||
71 | self.algorithm_returns = self.mask_returns_to_period(returns, |
||
72 | env) |
||
73 | self.benchmark_returns = self.mask_returns_to_period(benchmark_returns, |
||
74 | env) |
||
75 | self.algorithm_leverages = algorithm_leverages |
||
76 | |||
77 | self.calculate_metrics() |
||
78 | |||
79 | def calculate_metrics(self): |
||
80 | |||
81 | self.benchmark_period_returns = \ |
||
82 | self.calculate_period_returns(self.benchmark_returns) |
||
83 | |||
84 | self.algorithm_period_returns = \ |
||
85 | self.calculate_period_returns(self.algorithm_returns) |
||
86 | |||
87 | if not self.algorithm_returns.index.equals( |
||
88 | self.benchmark_returns.index |
||
89 | ): |
||
90 | message = "Mismatch between benchmark_returns ({bm_count}) and \ |
||
91 | algorithm_returns ({algo_count}) in range {start} : {end}" |
||
92 | message = message.format( |
||
93 | bm_count=len(self.benchmark_returns), |
||
94 | algo_count=len(self.algorithm_returns), |
||
95 | start=self.start_date, |
||
96 | end=self.end_date |
||
97 | ) |
||
98 | raise Exception(message) |
||
99 | |||
100 | self.num_trading_days = len(self.benchmark_returns) |
||
101 | self.trading_day_counts = pd.stats.moments.rolling_count( |
||
102 | self.algorithm_returns, self.num_trading_days) |
||
103 | |||
104 | self.mean_algorithm_returns = \ |
||
105 | self.algorithm_returns.cumsum() / self.trading_day_counts |
||
106 | |||
107 | self.benchmark_volatility = self.calculate_volatility( |
||
108 | self.benchmark_returns) |
||
109 | self.algorithm_volatility = self.calculate_volatility( |
||
110 | self.algorithm_returns) |
||
111 | self.treasury_period_return = choose_treasury( |
||
112 | self.treasury_curves, |
||
113 | self.start_date, |
||
114 | self.end_date, |
||
115 | self.env, |
||
116 | ) |
||
117 | self.sharpe = self.calculate_sharpe() |
||
118 | # The consumer currently expects a 0.0 value for sharpe in period, |
||
119 | # this differs from cumulative which was np.nan. |
||
120 | # When factoring out the sharpe_ratio, the different return types |
||
121 | # were collapsed into `np.nan`. |
||
122 | # TODO: Either fix consumer to accept `np.nan` or make the |
||
123 | # `sharpe_ratio` return type configurable. |
||
124 | # In the meantime, convert nan values to 0.0 |
||
125 | if pd.isnull(self.sharpe): |
||
126 | self.sharpe = 0.0 |
||
127 | self.sortino = self.calculate_sortino() |
||
128 | self.information = self.calculate_information() |
||
129 | self.beta, self.algorithm_covariance, self.benchmark_variance, \ |
||
130 | self.condition_number, self.eigen_values = self.calculate_beta() |
||
131 | self.alpha = self.calculate_alpha() |
||
132 | self.excess_return = self.algorithm_period_returns - \ |
||
133 | self.treasury_period_return |
||
134 | self.max_drawdown = self.calculate_max_drawdown() |
||
135 | self.max_leverage = self.calculate_max_leverage() |
||
136 | |||
137 | def to_dict(self): |
||
138 | """ |
||
139 | Creates a dictionary representing the state of the risk report. |
||
140 | Returns a dict object of the form: |
||
141 | """ |
||
142 | period_label = self.end_date.strftime("%Y-%m") |
||
143 | rval = { |
||
144 | 'trading_days': self.num_trading_days, |
||
145 | 'benchmark_volatility': self.benchmark_volatility, |
||
146 | 'algo_volatility': self.algorithm_volatility, |
||
147 | 'treasury_period_return': self.treasury_period_return, |
||
148 | 'algorithm_period_return': self.algorithm_period_returns, |
||
149 | 'benchmark_period_return': self.benchmark_period_returns, |
||
150 | 'sharpe': self.sharpe, |
||
151 | 'sortino': self.sortino, |
||
152 | 'information': self.information, |
||
153 | 'beta': self.beta, |
||
154 | 'alpha': self.alpha, |
||
155 | 'excess_return': self.excess_return, |
||
156 | 'max_drawdown': self.max_drawdown, |
||
157 | 'max_leverage': self.max_leverage, |
||
158 | 'period_label': period_label |
||
159 | } |
||
160 | |||
161 | return {k: None if check_entry(k, v) else v |
||
162 | for k, v in iteritems(rval)} |
||
163 | |||
164 | def __repr__(self): |
||
165 | statements = [] |
||
166 | metrics = [ |
||
167 | "algorithm_period_returns", |
||
168 | "benchmark_period_returns", |
||
169 | "excess_return", |
||
170 | "num_trading_days", |
||
171 | "benchmark_volatility", |
||
172 | "algorithm_volatility", |
||
173 | "sharpe", |
||
174 | "sortino", |
||
175 | "information", |
||
176 | "algorithm_covariance", |
||
177 | "benchmark_variance", |
||
178 | "beta", |
||
179 | "alpha", |
||
180 | "max_drawdown", |
||
181 | "max_leverage", |
||
182 | "algorithm_returns", |
||
183 | "benchmark_returns", |
||
184 | "condition_number", |
||
185 | "eigen_values" |
||
186 | ] |
||
187 | |||
188 | for metric in metrics: |
||
189 | value = getattr(self, metric) |
||
190 | statements.append("{m}:{v}".format(m=metric, v=value)) |
||
191 | |||
192 | return '\n'.join(statements) |
||
193 | |||
194 | def mask_returns_to_period(self, daily_returns, env): |
||
195 | if isinstance(daily_returns, list): |
||
196 | returns = pd.Series([x.returns for x in daily_returns], |
||
197 | index=[x.date for x in daily_returns]) |
||
198 | else: # otherwise we're receiving an index already |
||
199 | returns = daily_returns |
||
200 | |||
201 | trade_days = env.trading_days |
||
202 | trade_day_mask = returns.index.normalize().isin(trade_days) |
||
203 | |||
204 | mask = ((returns.index >= self.start_date) & |
||
205 | (returns.index <= self.end_date) & trade_day_mask) |
||
206 | |||
207 | returns = returns[mask] |
||
208 | return returns |
||
209 | |||
210 | def calculate_period_returns(self, returns): |
||
211 | period_returns = (1. + returns).prod() - 1 |
||
212 | return period_returns |
||
213 | |||
214 | def calculate_volatility(self, daily_returns): |
||
215 | return np.std(daily_returns, ddof=1) * math.sqrt(self.num_trading_days) |
||
216 | |||
217 | def calculate_sharpe(self): |
||
218 | """ |
||
219 | http://en.wikipedia.org/wiki/Sharpe_ratio |
||
220 | """ |
||
221 | return sharpe_ratio(self.algorithm_volatility, |
||
222 | self.algorithm_period_returns, |
||
223 | self.treasury_period_return) |
||
224 | |||
225 | def calculate_sortino(self): |
||
226 | """ |
||
227 | http://en.wikipedia.org/wiki/Sortino_ratio |
||
228 | """ |
||
229 | mar = downside_risk(self.algorithm_returns, |
||
230 | self.mean_algorithm_returns, |
||
231 | self.num_trading_days) |
||
232 | # Hold on to downside risk for debugging purposes. |
||
233 | self.downside_risk = mar |
||
234 | return sortino_ratio(self.algorithm_period_returns, |
||
235 | self.treasury_period_return, |
||
236 | mar) |
||
237 | |||
238 | def calculate_information(self): |
||
239 | """ |
||
240 | http://en.wikipedia.org/wiki/Information_ratio |
||
241 | """ |
||
242 | return information_ratio(self.algorithm_returns, |
||
243 | self.benchmark_returns) |
||
244 | |||
245 | def calculate_beta(self): |
||
246 | """ |
||
247 | |||
248 | .. math:: |
||
249 | |||
250 | \\beta_a = \\frac{\mathrm{Cov}(r_a,r_p)}{\mathrm{Var}(r_p)} |
||
251 | |||
252 | http://en.wikipedia.org/wiki/Beta_(finance) |
||
253 | """ |
||
254 | # it doesn't make much sense to calculate beta for less than two days, |
||
255 | # so return nan. |
||
256 | if len(self.algorithm_returns) < 2: |
||
257 | return np.nan, np.nan, np.nan, np.nan, [] |
||
258 | |||
259 | returns_matrix = np.vstack([self.algorithm_returns, |
||
260 | self.benchmark_returns]) |
||
261 | C = np.cov(returns_matrix, ddof=1) |
||
262 | |||
263 | # If there are missing benchmark values, then we can't calculate the |
||
264 | # beta. |
||
265 | if not np.isfinite(C).all(): |
||
266 | return np.nan, np.nan, np.nan, np.nan, [] |
||
267 | |||
268 | eigen_values = la.eigvals(C) |
||
269 | condition_number = max(eigen_values) / min(eigen_values) |
||
270 | algorithm_covariance = C[0][1] |
||
271 | benchmark_variance = C[1][1] |
||
272 | beta = algorithm_covariance / benchmark_variance |
||
273 | |||
274 | return ( |
||
275 | beta, |
||
276 | algorithm_covariance, |
||
277 | benchmark_variance, |
||
278 | condition_number, |
||
279 | eigen_values |
||
280 | ) |
||
281 | |||
282 | def calculate_alpha(self): |
||
283 | """ |
||
284 | http://en.wikipedia.org/wiki/Alpha_(investment) |
||
285 | """ |
||
286 | return alpha(self.algorithm_period_returns, |
||
287 | self.treasury_period_return, |
||
288 | self.benchmark_period_returns, |
||
289 | self.beta) |
||
290 | |||
291 | def calculate_max_drawdown(self): |
||
292 | compounded_returns = [] |
||
293 | cur_return = 0.0 |
||
294 | for r in self.algorithm_returns: |
||
295 | try: |
||
296 | cur_return += math.log(1.0 + r) |
||
297 | # this is a guard for a single day returning -100%, if returns are |
||
298 | # greater than -1.0 it will throw an error because you cannot take |
||
299 | # the log of a negative number |
||
300 | except ValueError: |
||
301 | log.debug("{cur} return, zeroing the returns".format( |
||
302 | cur=cur_return)) |
||
303 | cur_return = 0.0 |
||
304 | compounded_returns.append(cur_return) |
||
305 | |||
306 | cur_max = None |
||
307 | max_drawdown = None |
||
308 | for cur in compounded_returns: |
||
309 | if cur_max is None or cur > cur_max: |
||
310 | cur_max = cur |
||
311 | |||
312 | drawdown = (cur - cur_max) |
||
313 | if max_drawdown is None or drawdown < max_drawdown: |
||
314 | max_drawdown = drawdown |
||
315 | |||
316 | if max_drawdown is None: |
||
317 | return 0.0 |
||
318 | |||
319 | return 1.0 - math.exp(max_drawdown) |
||
320 | |||
321 | def calculate_max_leverage(self): |
||
322 | if self.algorithm_leverages is None: |
||
323 | return 0.0 |
||
324 | else: |
||
325 | return max(self.algorithm_leverages) |
||
326 | |||
327 | def __getstate__(self): |
||
328 | state_dict = {k: v for k, v in iteritems(self.__dict__) |
||
329 | if not k.startswith('_')} |
||
330 | |||
331 | STATE_VERSION = 3 |
||
332 | state_dict[VERSION_LABEL] = STATE_VERSION |
||
333 | |||
334 | return state_dict |
||
335 | |||
336 | def __setstate__(self, state): |
||
337 | |||
338 | OLDEST_SUPPORTED_STATE = 3 |
||
339 | version = state.pop(VERSION_LABEL) |
||
340 | |||
341 | if version < OLDEST_SUPPORTED_STATE: |
||
342 | raise BaseException("RiskMetricsPeriod saved state \ |
||
343 | is too old.") |
||
344 | |||
345 | self.__dict__.update(state) |
||
346 |