|
1
|
|
|
# |
|
2
|
|
|
# Copyright 2013 Quantopian, Inc. |
|
3
|
|
|
# |
|
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
5
|
|
|
# you may not use this file except in compliance with the License. |
|
6
|
|
|
# You may obtain a copy of the License at |
|
7
|
|
|
# |
|
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
9
|
|
|
# |
|
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
13
|
|
|
# See the License for the specific language governing permissions and |
|
14
|
|
|
# limitations under the License. |
|
15
|
|
|
|
|
16
|
|
|
import functools |
|
17
|
|
|
|
|
18
|
|
|
import logbook |
|
19
|
|
|
import math |
|
20
|
|
|
import numpy as np |
|
21
|
|
|
import numpy.linalg as la |
|
22
|
|
|
|
|
23
|
|
|
from six import iteritems |
|
24
|
|
|
|
|
25
|
|
|
import pandas as pd |
|
26
|
|
|
|
|
27
|
|
|
from . import risk |
|
28
|
|
|
from . risk import ( |
|
29
|
|
|
alpha, |
|
30
|
|
|
check_entry, |
|
31
|
|
|
downside_risk, |
|
32
|
|
|
information_ratio, |
|
33
|
|
|
sharpe_ratio, |
|
34
|
|
|
sortino_ratio, |
|
35
|
|
|
) |
|
36
|
|
|
|
|
37
|
|
|
from zipline.utils.serialization_utils import ( |
|
38
|
|
|
VERSION_LABEL |
|
39
|
|
|
) |
|
40
|
|
|
|
|
41
|
|
|
log = logbook.Logger('Risk Period') |
|
42
|
|
|
|
|
43
|
|
|
choose_treasury = functools.partial(risk.choose_treasury, |
|
44
|
|
|
risk.select_treasury_duration) |
|
45
|
|
|
|
|
46
|
|
|
|
|
47
|
|
|
class RiskMetricsPeriod(object): |
|
48
|
|
|
def __init__(self, start_date, end_date, returns, env, |
|
49
|
|
|
benchmark_returns=None, algorithm_leverages=None): |
|
50
|
|
|
|
|
51
|
|
|
self.env = env |
|
52
|
|
|
treasury_curves = env.treasury_curves |
|
53
|
|
|
if treasury_curves.index[-1] >= start_date: |
|
54
|
|
|
mask = ((treasury_curves.index >= start_date) & |
|
55
|
|
|
(treasury_curves.index <= end_date)) |
|
56
|
|
|
|
|
57
|
|
|
self.treasury_curves = treasury_curves[mask] |
|
58
|
|
|
else: |
|
59
|
|
|
# our test is beyond the treasury curve history |
|
60
|
|
|
# so we'll use the last available treasury curve |
|
61
|
|
|
self.treasury_curves = treasury_curves[-1:] |
|
62
|
|
|
|
|
63
|
|
|
self.start_date = start_date |
|
64
|
|
|
self.end_date = end_date |
|
65
|
|
|
|
|
66
|
|
|
if benchmark_returns is None: |
|
67
|
|
|
br = env.benchmark_returns |
|
68
|
|
|
benchmark_returns = br[(br.index >= returns.index[0]) & |
|
69
|
|
|
(br.index <= returns.index[-1])] |
|
70
|
|
|
|
|
71
|
|
|
self.algorithm_returns = self.mask_returns_to_period(returns, |
|
72
|
|
|
env) |
|
73
|
|
|
self.benchmark_returns = self.mask_returns_to_period(benchmark_returns, |
|
74
|
|
|
env) |
|
75
|
|
|
self.algorithm_leverages = algorithm_leverages |
|
76
|
|
|
|
|
77
|
|
|
self.calculate_metrics() |
|
78
|
|
|
|
|
79
|
|
|
def calculate_metrics(self): |
|
80
|
|
|
|
|
81
|
|
|
self.benchmark_period_returns = \ |
|
82
|
|
|
self.calculate_period_returns(self.benchmark_returns) |
|
83
|
|
|
|
|
84
|
|
|
self.algorithm_period_returns = \ |
|
85
|
|
|
self.calculate_period_returns(self.algorithm_returns) |
|
86
|
|
|
|
|
87
|
|
|
if not self.algorithm_returns.index.equals( |
|
88
|
|
|
self.benchmark_returns.index |
|
89
|
|
|
): |
|
90
|
|
|
message = "Mismatch between benchmark_returns ({bm_count}) and \ |
|
91
|
|
|
algorithm_returns ({algo_count}) in range {start} : {end}" |
|
92
|
|
|
message = message.format( |
|
93
|
|
|
bm_count=len(self.benchmark_returns), |
|
94
|
|
|
algo_count=len(self.algorithm_returns), |
|
95
|
|
|
start=self.start_date, |
|
96
|
|
|
end=self.end_date |
|
97
|
|
|
) |
|
98
|
|
|
raise Exception(message) |
|
99
|
|
|
|
|
100
|
|
|
self.num_trading_days = len(self.benchmark_returns) |
|
101
|
|
|
self.trading_day_counts = pd.stats.moments.rolling_count( |
|
102
|
|
|
self.algorithm_returns, self.num_trading_days) |
|
103
|
|
|
|
|
104
|
|
|
self.mean_algorithm_returns = \ |
|
105
|
|
|
self.algorithm_returns.cumsum() / self.trading_day_counts |
|
106
|
|
|
|
|
107
|
|
|
self.benchmark_volatility = self.calculate_volatility( |
|
108
|
|
|
self.benchmark_returns) |
|
109
|
|
|
self.algorithm_volatility = self.calculate_volatility( |
|
110
|
|
|
self.algorithm_returns) |
|
111
|
|
|
self.treasury_period_return = choose_treasury( |
|
112
|
|
|
self.treasury_curves, |
|
113
|
|
|
self.start_date, |
|
114
|
|
|
self.end_date, |
|
115
|
|
|
self.env, |
|
116
|
|
|
) |
|
117
|
|
|
self.sharpe = self.calculate_sharpe() |
|
118
|
|
|
# The consumer currently expects a 0.0 value for sharpe in period, |
|
119
|
|
|
# this differs from cumulative which was np.nan. |
|
120
|
|
|
# When factoring out the sharpe_ratio, the different return types |
|
121
|
|
|
# were collapsed into `np.nan`. |
|
122
|
|
|
# TODO: Either fix consumer to accept `np.nan` or make the |
|
123
|
|
|
# `sharpe_ratio` return type configurable. |
|
124
|
|
|
# In the meantime, convert nan values to 0.0 |
|
125
|
|
|
if pd.isnull(self.sharpe): |
|
126
|
|
|
self.sharpe = 0.0 |
|
127
|
|
|
self.sortino = self.calculate_sortino() |
|
128
|
|
|
self.information = self.calculate_information() |
|
129
|
|
|
self.beta, self.algorithm_covariance, self.benchmark_variance, \ |
|
130
|
|
|
self.condition_number, self.eigen_values = self.calculate_beta() |
|
131
|
|
|
self.alpha = self.calculate_alpha() |
|
132
|
|
|
self.excess_return = self.algorithm_period_returns - \ |
|
133
|
|
|
self.treasury_period_return |
|
134
|
|
|
self.max_drawdown = self.calculate_max_drawdown() |
|
135
|
|
|
self.max_leverage = self.calculate_max_leverage() |
|
136
|
|
|
|
|
137
|
|
|
def to_dict(self): |
|
138
|
|
|
""" |
|
139
|
|
|
Creates a dictionary representing the state of the risk report. |
|
140
|
|
|
Returns a dict object of the form: |
|
141
|
|
|
""" |
|
142
|
|
|
period_label = self.end_date.strftime("%Y-%m") |
|
143
|
|
|
rval = { |
|
144
|
|
|
'trading_days': self.num_trading_days, |
|
145
|
|
|
'benchmark_volatility': self.benchmark_volatility, |
|
146
|
|
|
'algo_volatility': self.algorithm_volatility, |
|
147
|
|
|
'treasury_period_return': self.treasury_period_return, |
|
148
|
|
|
'algorithm_period_return': self.algorithm_period_returns, |
|
149
|
|
|
'benchmark_period_return': self.benchmark_period_returns, |
|
150
|
|
|
'sharpe': self.sharpe, |
|
151
|
|
|
'sortino': self.sortino, |
|
152
|
|
|
'information': self.information, |
|
153
|
|
|
'beta': self.beta, |
|
154
|
|
|
'alpha': self.alpha, |
|
155
|
|
|
'excess_return': self.excess_return, |
|
156
|
|
|
'max_drawdown': self.max_drawdown, |
|
157
|
|
|
'max_leverage': self.max_leverage, |
|
158
|
|
|
'period_label': period_label |
|
159
|
|
|
} |
|
160
|
|
|
|
|
161
|
|
|
return {k: None if check_entry(k, v) else v |
|
162
|
|
|
for k, v in iteritems(rval)} |
|
163
|
|
|
|
|
164
|
|
|
def __repr__(self): |
|
165
|
|
|
statements = [] |
|
166
|
|
|
metrics = [ |
|
167
|
|
|
"algorithm_period_returns", |
|
168
|
|
|
"benchmark_period_returns", |
|
169
|
|
|
"excess_return", |
|
170
|
|
|
"num_trading_days", |
|
171
|
|
|
"benchmark_volatility", |
|
172
|
|
|
"algorithm_volatility", |
|
173
|
|
|
"sharpe", |
|
174
|
|
|
"sortino", |
|
175
|
|
|
"information", |
|
176
|
|
|
"algorithm_covariance", |
|
177
|
|
|
"benchmark_variance", |
|
178
|
|
|
"beta", |
|
179
|
|
|
"alpha", |
|
180
|
|
|
"max_drawdown", |
|
181
|
|
|
"max_leverage", |
|
182
|
|
|
"algorithm_returns", |
|
183
|
|
|
"benchmark_returns", |
|
184
|
|
|
"condition_number", |
|
185
|
|
|
"eigen_values" |
|
186
|
|
|
] |
|
187
|
|
|
|
|
188
|
|
|
for metric in metrics: |
|
189
|
|
|
value = getattr(self, metric) |
|
190
|
|
|
statements.append("{m}:{v}".format(m=metric, v=value)) |
|
191
|
|
|
|
|
192
|
|
|
return '\n'.join(statements) |
|
193
|
|
|
|
|
194
|
|
|
def mask_returns_to_period(self, daily_returns, env): |
|
195
|
|
|
if isinstance(daily_returns, list): |
|
196
|
|
|
returns = pd.Series([x.returns for x in daily_returns], |
|
197
|
|
|
index=[x.date for x in daily_returns]) |
|
198
|
|
|
else: # otherwise we're receiving an index already |
|
199
|
|
|
returns = daily_returns |
|
200
|
|
|
|
|
201
|
|
|
trade_days = env.trading_days |
|
202
|
|
|
trade_day_mask = returns.index.normalize().isin(trade_days) |
|
203
|
|
|
|
|
204
|
|
|
mask = ((returns.index >= self.start_date) & |
|
205
|
|
|
(returns.index <= self.end_date) & trade_day_mask) |
|
206
|
|
|
|
|
207
|
|
|
returns = returns[mask] |
|
208
|
|
|
return returns |
|
209
|
|
|
|
|
210
|
|
|
def calculate_period_returns(self, returns): |
|
211
|
|
|
period_returns = (1. + returns).prod() - 1 |
|
212
|
|
|
return period_returns |
|
213
|
|
|
|
|
214
|
|
|
def calculate_volatility(self, daily_returns): |
|
215
|
|
|
return np.std(daily_returns, ddof=1) * math.sqrt(self.num_trading_days) |
|
216
|
|
|
|
|
217
|
|
|
def calculate_sharpe(self): |
|
218
|
|
|
""" |
|
219
|
|
|
http://en.wikipedia.org/wiki/Sharpe_ratio |
|
220
|
|
|
""" |
|
221
|
|
|
return sharpe_ratio(self.algorithm_volatility, |
|
222
|
|
|
self.algorithm_period_returns, |
|
223
|
|
|
self.treasury_period_return) |
|
224
|
|
|
|
|
225
|
|
|
def calculate_sortino(self): |
|
226
|
|
|
""" |
|
227
|
|
|
http://en.wikipedia.org/wiki/Sortino_ratio |
|
228
|
|
|
""" |
|
229
|
|
|
mar = downside_risk(self.algorithm_returns, |
|
230
|
|
|
self.mean_algorithm_returns, |
|
231
|
|
|
self.num_trading_days) |
|
232
|
|
|
# Hold on to downside risk for debugging purposes. |
|
233
|
|
|
self.downside_risk = mar |
|
234
|
|
|
return sortino_ratio(self.algorithm_period_returns, |
|
235
|
|
|
self.treasury_period_return, |
|
236
|
|
|
mar) |
|
237
|
|
|
|
|
238
|
|
|
def calculate_information(self): |
|
239
|
|
|
""" |
|
240
|
|
|
http://en.wikipedia.org/wiki/Information_ratio |
|
241
|
|
|
""" |
|
242
|
|
|
return information_ratio(self.algorithm_returns, |
|
243
|
|
|
self.benchmark_returns) |
|
244
|
|
|
|
|
245
|
|
|
def calculate_beta(self): |
|
246
|
|
|
""" |
|
247
|
|
|
|
|
248
|
|
|
.. math:: |
|
249
|
|
|
|
|
250
|
|
|
\\beta_a = \\frac{\mathrm{Cov}(r_a,r_p)}{\mathrm{Var}(r_p)} |
|
251
|
|
|
|
|
252
|
|
|
http://en.wikipedia.org/wiki/Beta_(finance) |
|
253
|
|
|
""" |
|
254
|
|
|
# it doesn't make much sense to calculate beta for less than two days, |
|
255
|
|
|
# so return nan. |
|
256
|
|
|
if len(self.algorithm_returns) < 2: |
|
257
|
|
|
return np.nan, np.nan, np.nan, np.nan, [] |
|
258
|
|
|
|
|
259
|
|
|
returns_matrix = np.vstack([self.algorithm_returns, |
|
260
|
|
|
self.benchmark_returns]) |
|
261
|
|
|
C = np.cov(returns_matrix, ddof=1) |
|
262
|
|
|
|
|
263
|
|
|
# If there are missing benchmark values, then we can't calculate the |
|
264
|
|
|
# beta. |
|
265
|
|
|
if not np.isfinite(C).all(): |
|
266
|
|
|
return np.nan, np.nan, np.nan, np.nan, [] |
|
267
|
|
|
|
|
268
|
|
|
eigen_values = la.eigvals(C) |
|
269
|
|
|
condition_number = max(eigen_values) / min(eigen_values) |
|
270
|
|
|
algorithm_covariance = C[0][1] |
|
271
|
|
|
benchmark_variance = C[1][1] |
|
272
|
|
|
beta = algorithm_covariance / benchmark_variance |
|
273
|
|
|
|
|
274
|
|
|
return ( |
|
275
|
|
|
beta, |
|
276
|
|
|
algorithm_covariance, |
|
277
|
|
|
benchmark_variance, |
|
278
|
|
|
condition_number, |
|
279
|
|
|
eigen_values |
|
280
|
|
|
) |
|
281
|
|
|
|
|
282
|
|
|
def calculate_alpha(self): |
|
283
|
|
|
""" |
|
284
|
|
|
http://en.wikipedia.org/wiki/Alpha_(investment) |
|
285
|
|
|
""" |
|
286
|
|
|
return alpha(self.algorithm_period_returns, |
|
287
|
|
|
self.treasury_period_return, |
|
288
|
|
|
self.benchmark_period_returns, |
|
289
|
|
|
self.beta) |
|
290
|
|
|
|
|
291
|
|
|
def calculate_max_drawdown(self): |
|
292
|
|
|
compounded_returns = [] |
|
293
|
|
|
cur_return = 0.0 |
|
294
|
|
|
for r in self.algorithm_returns: |
|
295
|
|
|
try: |
|
296
|
|
|
cur_return += math.log(1.0 + r) |
|
297
|
|
|
# this is a guard for a single day returning -100%, if returns are |
|
298
|
|
|
# greater than -1.0 it will throw an error because you cannot take |
|
299
|
|
|
# the log of a negative number |
|
300
|
|
|
except ValueError: |
|
301
|
|
|
log.debug("{cur} return, zeroing the returns".format( |
|
302
|
|
|
cur=cur_return)) |
|
303
|
|
|
cur_return = 0.0 |
|
304
|
|
|
compounded_returns.append(cur_return) |
|
305
|
|
|
|
|
306
|
|
|
cur_max = None |
|
307
|
|
|
max_drawdown = None |
|
308
|
|
|
for cur in compounded_returns: |
|
309
|
|
|
if cur_max is None or cur > cur_max: |
|
310
|
|
|
cur_max = cur |
|
311
|
|
|
|
|
312
|
|
|
drawdown = (cur - cur_max) |
|
313
|
|
|
if max_drawdown is None or drawdown < max_drawdown: |
|
314
|
|
|
max_drawdown = drawdown |
|
315
|
|
|
|
|
316
|
|
|
if max_drawdown is None: |
|
317
|
|
|
return 0.0 |
|
318
|
|
|
|
|
319
|
|
|
return 1.0 - math.exp(max_drawdown) |
|
320
|
|
|
|
|
321
|
|
|
def calculate_max_leverage(self): |
|
322
|
|
|
if self.algorithm_leverages is None: |
|
323
|
|
|
return 0.0 |
|
324
|
|
|
else: |
|
325
|
|
|
return max(self.algorithm_leverages) |
|
326
|
|
|
|
|
327
|
|
|
def __getstate__(self): |
|
328
|
|
|
state_dict = {k: v for k, v in iteritems(self.__dict__) |
|
329
|
|
|
if not k.startswith('_')} |
|
330
|
|
|
|
|
331
|
|
|
STATE_VERSION = 3 |
|
332
|
|
|
state_dict[VERSION_LABEL] = STATE_VERSION |
|
333
|
|
|
|
|
334
|
|
|
return state_dict |
|
335
|
|
|
|
|
336
|
|
|
def __setstate__(self, state): |
|
337
|
|
|
|
|
338
|
|
|
OLDEST_SUPPORTED_STATE = 3 |
|
339
|
|
|
version = state.pop(VERSION_LABEL) |
|
340
|
|
|
|
|
341
|
|
|
if version < OLDEST_SUPPORTED_STATE: |
|
342
|
|
|
raise BaseException("RiskMetricsPeriod saved state \ |
|
343
|
|
|
is too old.") |
|
344
|
|
|
|
|
345
|
|
|
self.__dict__.update(state) |
|
346
|
|
|
|