Total Complexity | 51 |
Total Lines | 1585 |
Duplicated Lines | 12.74 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.DSM_cts_ind often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
2 | Currently, there are differences in the aggregated and individual DSM time |
||
3 | series. These are caused by the truncation of the values at zero. |
||
4 | |||
5 | The sum of the individual time series is a more accurate value than the |
||
6 | aggregated time series used so far and should replace it in the future. Since |
||
7 | the deviations are relatively small, a tolerance is currently accepted in the |
||
8 | sanity checks. See [#1120](https://github.com/openego/eGon-data/issues/1120) |
||
9 | for updates. |
||
10 | """ |
||
11 | from sqlalchemy import ARRAY, Column, Float, Integer, String |
||
12 | from sqlalchemy.ext.declarative import declarative_base |
||
13 | import geopandas as gpd |
||
14 | import numpy as np |
||
15 | import pandas as pd |
||
16 | |||
17 | from egon.data import config, db |
||
18 | from egon.data.datasets import Dataset |
||
19 | from egon.data.datasets.electricity_demand.temporal import calc_load_curve |
||
20 | from egon.data.datasets.industry.temporal import identify_bus |
||
21 | |||
22 | # CONSTANTS |
||
23 | # TODO: move to datasets.yml |
||
24 | CON = db.engine() |
||
25 | |||
26 | # CTS |
||
27 | CTS_COOL_VENT_AC_SHARE = 0.22 |
||
28 | |||
29 | S_FLEX_CTS = 0.5 |
||
30 | S_UTIL_CTS = 0.67 |
||
31 | S_INC_CTS = 1 |
||
32 | S_DEC_CTS = 0 |
||
33 | DELTA_T_CTS = 1 |
||
34 | |||
35 | # industry |
||
36 | IND_VENT_COOL_SHARE = 0.039 |
||
37 | IND_VENT_SHARE = 0.017 |
||
38 | |||
39 | # OSM |
||
40 | S_FLEX_OSM = 0.5 |
||
41 | S_UTIL_OSM = 0.73 |
||
42 | S_INC_OSM = 0.9 |
||
43 | S_DEC_OSM = 0.5 |
||
44 | DELTA_T_OSM = 1 |
||
45 | |||
46 | # paper |
||
47 | S_FLEX_PAPER = 0.15 |
||
48 | S_UTIL_PAPER = 0.86 |
||
49 | S_INC_PAPER = 0.95 |
||
50 | S_DEC_PAPER = 0 |
||
51 | DELTA_T_PAPER = 3 |
||
52 | |||
53 | # recycled paper |
||
54 | S_FLEX_RECYCLED_PAPER = 0.7 |
||
55 | S_UTIL_RECYCLED_PAPER = 0.85 |
||
56 | S_INC_RECYCLED_PAPER = 0.95 |
||
57 | S_DEC_RECYCLED_PAPER = 0 |
||
58 | DELTA_T_RECYCLED_PAPER = 3 |
||
59 | |||
60 | # pulp |
||
61 | S_FLEX_PULP = 0.7 |
||
62 | S_UTIL_PULP = 0.83 |
||
63 | S_INC_PULP = 0.95 |
||
64 | S_DEC_PULP = 0 |
||
65 | DELTA_T_PULP = 2 |
||
66 | |||
67 | # cement |
||
68 | S_FLEX_CEMENT = 0.61 |
||
69 | S_UTIL_CEMENT = 0.65 |
||
70 | S_INC_CEMENT = 0.95 |
||
71 | S_DEC_CEMENT = 0 |
||
72 | DELTA_T_CEMENT = 4 |
||
73 | |||
74 | # wz 23 |
||
75 | WZ = 23 |
||
76 | |||
77 | S_FLEX_WZ = 0.5 |
||
78 | S_UTIL_WZ = 0.8 |
||
79 | S_INC_WZ = 1 |
||
80 | S_DEC_WZ = 0.5 |
||
81 | DELTA_T_WZ = 1 |
||
82 | |||
83 | Base = declarative_base() |
||
84 | |||
85 | |||
86 | class DsmPotential(Dataset): |
||
87 | def __init__(self, dependencies): |
||
88 | super().__init__( |
||
89 | name="DsmPotential", |
||
90 | version="0.0.5", |
||
91 | dependencies=dependencies, |
||
92 | tasks=(dsm_cts_ind_processing), |
||
93 | ) |
||
94 | |||
95 | |||
96 | # Datasets |
||
97 | View Code Duplication | class EgonEtragoElectricityCtsDsmTimeseries(Base): |
|
|
|||
98 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
99 | "cts_loadcurves_dsm" |
||
100 | ] |
||
101 | |||
102 | __tablename__ = target["table"] |
||
103 | __table_args__ = {"schema": target["schema"]} |
||
104 | |||
105 | bus = Column(Integer, primary_key=True, index=True) |
||
106 | scn_name = Column(String, primary_key=True, index=True) |
||
107 | p_set = Column(ARRAY(Float)) |
||
108 | p_max = Column(ARRAY(Float)) |
||
109 | p_min = Column(ARRAY(Float)) |
||
110 | e_max = Column(ARRAY(Float)) |
||
111 | e_min = Column(ARRAY(Float)) |
||
112 | |||
113 | |||
114 | View Code Duplication | class EgonOsmIndLoadCurvesIndividualDsmTimeseries(Base): |
|
115 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
116 | "ind_osm_loadcurves_individual_dsm" |
||
117 | ] |
||
118 | |||
119 | __tablename__ = target["table"] |
||
120 | __table_args__ = {"schema": target["schema"]} |
||
121 | |||
122 | osm_id = Column(Integer, primary_key=True, index=True) |
||
123 | scn_name = Column(String, primary_key=True, index=True) |
||
124 | bus = Column(Integer) |
||
125 | p_set = Column(ARRAY(Float)) |
||
126 | p_max = Column(ARRAY(Float)) |
||
127 | p_min = Column(ARRAY(Float)) |
||
128 | e_max = Column(ARRAY(Float)) |
||
129 | e_min = Column(ARRAY(Float)) |
||
130 | |||
131 | |||
132 | View Code Duplication | class EgonDemandregioSitesIndElectricityDsmTimeseries(Base): |
|
133 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
134 | "demandregio_ind_sites_dsm" |
||
135 | ] |
||
136 | |||
137 | __tablename__ = target["table"] |
||
138 | __table_args__ = {"schema": target["schema"]} |
||
139 | |||
140 | industrial_sites_id = Column(Integer, primary_key=True, index=True) |
||
141 | scn_name = Column(String, primary_key=True, index=True) |
||
142 | bus = Column(Integer) |
||
143 | application = Column(String) |
||
144 | p_set = Column(ARRAY(Float)) |
||
145 | p_max = Column(ARRAY(Float)) |
||
146 | p_min = Column(ARRAY(Float)) |
||
147 | e_max = Column(ARRAY(Float)) |
||
148 | e_min = Column(ARRAY(Float)) |
||
149 | |||
150 | |||
151 | View Code Duplication | class EgonSitesIndLoadCurvesIndividualDsmTimeseries(Base): |
|
152 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
153 | "ind_sites_loadcurves_individual" |
||
154 | ] |
||
155 | |||
156 | __tablename__ = target["table"] |
||
157 | __table_args__ = {"schema": target["schema"]} |
||
158 | |||
159 | site_id = Column(Integer, primary_key=True, index=True) |
||
160 | scn_name = Column(String, primary_key=True, index=True) |
||
161 | bus = Column(Integer) |
||
162 | p_set = Column(ARRAY(Float)) |
||
163 | p_max = Column(ARRAY(Float)) |
||
164 | p_min = Column(ARRAY(Float)) |
||
165 | e_max = Column(ARRAY(Float)) |
||
166 | e_min = Column(ARRAY(Float)) |
||
167 | |||
168 | |||
169 | # Code |
||
170 | def cts_data_import(cts_cool_vent_ac_share): |
||
171 | """ |
||
172 | Import CTS data necessary to identify DSM-potential. |
||
173 | |||
174 | ---------- |
||
175 | cts_share: float |
||
176 | Share of cooling, ventilation and AC in CTS demand |
||
177 | """ |
||
178 | |||
179 | # import load data |
||
180 | |||
181 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
182 | "cts_loadcurves" |
||
183 | ] |
||
184 | |||
185 | ts = db.select_dataframe( |
||
186 | f"""SELECT bus_id, scn_name, p_set FROM |
||
187 | {sources['schema']}.{sources['table']}""" |
||
188 | ) |
||
189 | |||
190 | # identify relevant columns and prepare df to be returned |
||
191 | |||
192 | dsm = pd.DataFrame(index=ts.index) |
||
193 | |||
194 | dsm["bus"] = ts["bus_id"].copy() |
||
195 | dsm["scn_name"] = ts["scn_name"].copy() |
||
196 | dsm["p_set"] = ts["p_set"].copy() |
||
197 | |||
198 | # calculate share of timeseries for air conditioning, cooling and |
||
199 | # ventilation out of CTS-data |
||
200 | |||
201 | timeseries = dsm["p_set"].copy() |
||
202 | |||
203 | for index, liste in timeseries.items(): |
||
204 | share = [float(item) * cts_cool_vent_ac_share for item in liste] |
||
205 | timeseries.loc[index] = share |
||
206 | |||
207 | dsm["p_set"] = timeseries.copy() |
||
208 | |||
209 | return dsm |
||
210 | |||
211 | |||
212 | View Code Duplication | def ind_osm_data_import(ind_vent_cool_share): |
|
213 | """ |
||
214 | Import industry data per osm-area necessary to identify DSM-potential. |
||
215 | ---------- |
||
216 | ind_share: float |
||
217 | Share of considered application in industry demand |
||
218 | """ |
||
219 | |||
220 | # import load data |
||
221 | |||
222 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
223 | "ind_osm_loadcurves" |
||
224 | ] |
||
225 | |||
226 | dsm = db.select_dataframe( |
||
227 | f""" |
||
228 | SELECT bus, scn_name, p_set FROM |
||
229 | {sources['schema']}.{sources['table']} |
||
230 | """ |
||
231 | ) |
||
232 | |||
233 | # calculate share of timeseries for cooling and ventilation out of |
||
234 | # industry-data |
||
235 | |||
236 | timeseries = dsm["p_set"].copy() |
||
237 | |||
238 | for index, liste in timeseries.items(): |
||
239 | share = [float(item) * ind_vent_cool_share for item in liste] |
||
240 | |||
241 | timeseries.loc[index] = share |
||
242 | |||
243 | dsm["p_set"] = timeseries.copy() |
||
244 | |||
245 | return dsm |
||
246 | |||
247 | |||
248 | View Code Duplication | def ind_osm_data_import_individual(ind_vent_cool_share): |
|
249 | """ |
||
250 | Import industry data per osm-area necessary to identify DSM-potential. |
||
251 | ---------- |
||
252 | ind_share: float |
||
253 | Share of considered application in industry demand |
||
254 | """ |
||
255 | |||
256 | # import load data |
||
257 | |||
258 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
259 | "ind_osm_loadcurves_individual" |
||
260 | ] |
||
261 | |||
262 | dsm = db.select_dataframe( |
||
263 | f""" |
||
264 | SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
||
265 | {sources['schema']}.{sources['table']} |
||
266 | """ |
||
267 | ) |
||
268 | |||
269 | # calculate share of timeseries for cooling and ventilation out of |
||
270 | # industry-data |
||
271 | |||
272 | timeseries = dsm["p_set"].copy() |
||
273 | |||
274 | for index, liste in timeseries.items(): |
||
275 | share = [float(item) * ind_vent_cool_share for item in liste] |
||
276 | |||
277 | timeseries.loc[index] = share |
||
278 | |||
279 | dsm["p_set"] = timeseries.copy() |
||
280 | |||
281 | return dsm |
||
282 | |||
283 | |||
284 | View Code Duplication | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
285 | """ |
||
286 | Import industry sites necessary to identify DSM-potential. |
||
287 | ---------- |
||
288 | ind_vent_share: float |
||
289 | Share of considered application in industry demand |
||
290 | wz: int |
||
291 | Wirtschaftszweig to be considered within industry sites |
||
292 | """ |
||
293 | |||
294 | # import load data |
||
295 | |||
296 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
297 | "ind_sites_loadcurves" |
||
298 | ] |
||
299 | |||
300 | dsm = db.select_dataframe( |
||
301 | f""" |
||
302 | SELECT bus, scn_name, p_set FROM |
||
303 | {sources['schema']}.{sources['table']} |
||
304 | WHERE wz = {wz} |
||
305 | """ |
||
306 | ) |
||
307 | |||
308 | # calculate share of timeseries for ventilation |
||
309 | |||
310 | timeseries = dsm["p_set"].copy() |
||
311 | |||
312 | for index, liste in timeseries.items(): |
||
313 | share = [float(item) * ind_vent_share for item in liste] |
||
314 | timeseries.loc[index] = share |
||
315 | |||
316 | dsm["p_set"] = timeseries.copy() |
||
317 | |||
318 | return dsm |
||
319 | |||
320 | |||
321 | View Code Duplication | def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
322 | """ |
||
323 | Import industry sites necessary to identify DSM-potential. |
||
324 | ---------- |
||
325 | ind_vent_share: float |
||
326 | Share of considered application in industry demand |
||
327 | wz: int |
||
328 | Wirtschaftszweig to be considered within industry sites |
||
329 | """ |
||
330 | |||
331 | # import load data |
||
332 | |||
333 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
334 | "ind_sites_loadcurves_individual" |
||
335 | ] |
||
336 | |||
337 | dsm = db.select_dataframe( |
||
338 | f""" |
||
339 | SELECT site_id, bus_id as bus, scn_name, p_set FROM |
||
340 | {sources['schema']}.{sources['table']} |
||
341 | WHERE wz = {wz} |
||
342 | """ |
||
343 | ) |
||
344 | |||
345 | # calculate share of timeseries for ventilation |
||
346 | |||
347 | timeseries = dsm["p_set"].copy() |
||
348 | |||
349 | for index, liste in timeseries.items(): |
||
350 | share = [float(item) * ind_vent_share for item in liste] |
||
351 | timeseries.loc[index] = share |
||
352 | |||
353 | dsm["p_set"] = timeseries.copy() |
||
354 | |||
355 | return dsm |
||
356 | |||
357 | |||
358 | def calc_ind_site_timeseries(scenario): |
||
359 | # calculate timeseries per site |
||
360 | # -> using code from egon.data.datasets.industry.temporal: |
||
361 | # calc_load_curves_ind_sites |
||
362 | |||
363 | # select demands per industrial site including the subsector information |
||
364 | source1 = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
365 | "demandregio_ind_sites" |
||
366 | ] |
||
367 | |||
368 | demands_ind_sites = db.select_dataframe( |
||
369 | f"""SELECT industrial_sites_id, wz, demand |
||
370 | FROM {source1['schema']}.{source1['table']} |
||
371 | WHERE scenario = '{scenario}' |
||
372 | AND demand > 0 |
||
373 | """ |
||
374 | ).set_index(["industrial_sites_id"]) |
||
375 | |||
376 | # select industrial sites as demand_areas from database |
||
377 | source2 = config.datasets()["DSM_CTS_industry"]["sources"]["ind_sites"] |
||
378 | |||
379 | demand_area = db.select_geodataframe( |
||
380 | f"""SELECT id, geom, subsector FROM |
||
381 | {source2['schema']}.{source2['table']}""", |
||
382 | index_col="id", |
||
383 | geom_col="geom", |
||
384 | epsg=3035, |
||
385 | ) |
||
386 | |||
387 | # replace entries to bring it in line with demandregio's subsector |
||
388 | # definitions |
||
389 | demands_ind_sites.replace(1718, 17, inplace=True) |
||
390 | share_wz_sites = demands_ind_sites.copy() |
||
391 | |||
392 | # create additional df on wz_share per industrial site, which is always set |
||
393 | # to one as the industrial demand per site is subsector specific |
||
394 | share_wz_sites.demand = 1 |
||
395 | share_wz_sites.reset_index(inplace=True) |
||
396 | |||
397 | share_transpose = pd.DataFrame( |
||
398 | index=share_wz_sites.industrial_sites_id.unique(), |
||
399 | columns=share_wz_sites.wz.unique(), |
||
400 | ) |
||
401 | share_transpose.index.rename("industrial_sites_id", inplace=True) |
||
402 | for wz in share_transpose.columns: |
||
403 | share_transpose[wz] = ( |
||
404 | share_wz_sites[share_wz_sites.wz == wz] |
||
405 | .set_index("industrial_sites_id") |
||
406 | .demand |
||
407 | ) |
||
408 | |||
409 | # calculate load curves |
||
410 | load_curves = calc_load_curve(share_transpose, demands_ind_sites["demand"]) |
||
411 | |||
412 | # identify bus per industrial site |
||
413 | curves_bus = identify_bus(load_curves, demand_area) |
||
414 | curves_bus.index = curves_bus["id"].astype(int) |
||
415 | |||
416 | # initialize dataframe to be returned |
||
417 | |||
418 | ts = pd.DataFrame( |
||
419 | data=curves_bus["bus_id"], index=curves_bus["id"].astype(int) |
||
420 | ) |
||
421 | ts["scenario_name"] = scenario |
||
422 | curves_bus.drop({"id", "bus_id", "geom"}, axis=1, inplace=True) |
||
423 | ts["p_set"] = curves_bus.values.tolist() |
||
424 | |||
425 | # add subsector to relate to Schmidt's tables afterwards |
||
426 | ts["application"] = demand_area["subsector"] |
||
427 | |||
428 | return ts |
||
429 | |||
430 | |||
431 | def relate_to_schmidt_sites(dsm): |
||
432 | # import industrial sites by Schmidt |
||
433 | |||
434 | source = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
435 | "ind_sites_schmidt" |
||
436 | ] |
||
437 | |||
438 | schmidt = db.select_dataframe( |
||
439 | f"""SELECT application, geom FROM |
||
440 | {source['schema']}.{source['table']}""" |
||
441 | ) |
||
442 | |||
443 | # relate calculated timeseries (dsm) to Schmidt's industrial sites |
||
444 | |||
445 | applications = np.unique(schmidt["application"]) |
||
446 | dsm = pd.DataFrame(dsm[dsm["application"].isin(applications)]) |
||
447 | |||
448 | # initialize dataframe to be returned |
||
449 | |||
450 | dsm.rename( |
||
451 | columns={"scenario_name": "scn_name", "bus_id": "bus"}, |
||
452 | inplace=True, |
||
453 | ) |
||
454 | |||
455 | return dsm |
||
456 | |||
457 | |||
458 | def ind_sites_data_import(): |
||
459 | """ |
||
460 | Import industry sites data necessary to identify DSM-potential. |
||
461 | """ |
||
462 | # calculate timeseries per site |
||
463 | |||
464 | # scenario eGon2035 |
||
465 | dsm_2035 = calc_ind_site_timeseries("eGon2035") |
||
466 | dsm_2035.reset_index(inplace=True) |
||
467 | # scenario eGon100RE |
||
468 | dsm_100 = calc_ind_site_timeseries("eGon100RE") |
||
469 | dsm_100.reset_index(inplace=True) |
||
470 | # bring df for both scenarios together |
||
471 | dsm_100.index = range(len(dsm_2035), (len(dsm_2035) + len((dsm_100)))) |
||
472 | dsm = dsm_2035.append(dsm_100) |
||
473 | |||
474 | # relate calculated timeseries to Schmidt's industrial sites |
||
475 | |||
476 | dsm = relate_to_schmidt_sites(dsm) |
||
477 | |||
478 | return dsm[["application", "id", "bus", "scn_name", "p_set"]] |
||
479 | |||
480 | |||
481 | def calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm): |
||
482 | """ |
||
483 | Calculate DSM-potential per bus using the methods by Heitkoetter et. al.: |
||
484 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
485 | Parameters |
||
486 | ---------- |
||
487 | s_flex: float |
||
488 | Feasability factor to account for socio-technical restrictions |
||
489 | s_util: float |
||
490 | Average annual utilisation rate |
||
491 | s_inc: float |
||
492 | Shiftable share of installed capacity up to which load can be |
||
493 | increased considering technical limitations |
||
494 | s_dec: float |
||
495 | Shiftable share of installed capacity up to which load can be |
||
496 | decreased considering technical limitations |
||
497 | delta_t: int |
||
498 | Maximum shift duration in hours |
||
499 | dsm: DataFrame |
||
500 | List of existing buses with DSM-potential including timeseries of |
||
501 | loads |
||
502 | """ |
||
503 | |||
504 | # copy relevant timeseries |
||
505 | timeseries = dsm["p_set"].copy() |
||
506 | |||
507 | # calculate scheduled load L(t) |
||
508 | |||
509 | scheduled_load = timeseries.copy() |
||
510 | |||
511 | for index, liste in scheduled_load.items(): |
||
512 | share = [item * s_flex for item in liste] |
||
513 | scheduled_load.loc[index] = share |
||
514 | |||
515 | # calculate maximum capacity Lambda |
||
516 | |||
517 | # calculate energy annual requirement |
||
518 | energy_annual = pd.Series(index=timeseries.index, dtype=float) |
||
519 | for index, liste in timeseries.items(): |
||
520 | energy_annual.loc[index] = sum(liste) |
||
521 | |||
522 | # calculate Lambda |
||
523 | lam = (energy_annual * s_flex) / (8760 * s_util) |
||
524 | |||
525 | # calculation of P_max and P_min |
||
526 | |||
527 | # P_max |
||
528 | p_max = scheduled_load.copy() |
||
529 | for index, liste in scheduled_load.items(): |
||
530 | lamb = lam.loc[index] |
||
531 | p_max.loc[index] = [max(0, lamb * s_inc - item) for item in liste] |
||
532 | |||
533 | # P_min |
||
534 | p_min = scheduled_load.copy() |
||
535 | for index, liste in scheduled_load.items(): |
||
536 | lamb = lam.loc[index] |
||
537 | p_min.loc[index] = [min(0, -(item - lamb * s_dec)) for item in liste] |
||
538 | |||
539 | # calculation of E_max and E_min |
||
540 | |||
541 | e_max = scheduled_load.copy() |
||
542 | e_min = scheduled_load.copy() |
||
543 | |||
544 | for index, liste in scheduled_load.items(): |
||
545 | emin = [] |
||
546 | emax = [] |
||
547 | for i in range(len(liste)): |
||
548 | if i + delta_t > len(liste): |
||
549 | emax.append( |
||
550 | (sum(liste[i:]) + sum(liste[: delta_t - (len(liste) - i)])) |
||
551 | ) |
||
552 | else: |
||
553 | emax.append(sum(liste[i : i + delta_t])) |
||
554 | if i - delta_t < 0: |
||
555 | emin.append( |
||
556 | ( |
||
557 | -1 |
||
558 | * ( |
||
559 | ( |
||
560 | sum(liste[:i]) |
||
561 | + sum(liste[len(liste) - delta_t + i :]) |
||
562 | ) |
||
563 | ) |
||
564 | ) |
||
565 | ) |
||
566 | else: |
||
567 | emin.append(-1 * sum(liste[i - delta_t : i])) |
||
568 | e_max.loc[index] = emax |
||
569 | e_min.loc[index] = emin |
||
570 | |||
571 | return p_max, p_min, e_max, e_min |
||
572 | |||
573 | |||
574 | def create_dsm_components( |
||
575 | con, p_max, p_min, e_max, e_min, dsm, export_aggregated=True |
||
576 | ): |
||
577 | """ |
||
578 | Create components representing DSM. |
||
579 | Parameters |
||
580 | ---------- |
||
581 | con : |
||
582 | Connection to database |
||
583 | p_max: DataFrame |
||
584 | Timeseries identifying maximum load increase |
||
585 | p_min: DataFrame |
||
586 | Timeseries identifying maximum load decrease |
||
587 | e_max: DataFrame |
||
588 | Timeseries identifying maximum energy amount to be preponed |
||
589 | e_min: DataFrame |
||
590 | Timeseries identifying maximum energy amount to be postponed |
||
591 | dsm: DataFrame |
||
592 | List of existing buses with DSM-potential including timeseries of loads |
||
593 | """ |
||
594 | if not export_aggregated: |
||
595 | # calculate P_nom and P per unit |
||
596 | p_nom = pd.Series(index=p_max.index, dtype=float) |
||
597 | for index, row in p_max.items(): |
||
598 | nom = max(max(row), abs(min(p_min.loc[index]))) |
||
599 | p_nom.loc[index] = nom |
||
600 | new = [element / nom for element in row] |
||
601 | p_max.loc[index] = new |
||
602 | new = [element / nom for element in p_min.loc[index]] |
||
603 | p_min.loc[index] = new |
||
604 | |||
605 | # calculate E_nom and E per unit |
||
606 | e_nom = pd.Series(index=p_min.index, dtype=float) |
||
607 | for index, row in e_max.items(): |
||
608 | nom = max(max(row), abs(min(e_min.loc[index]))) |
||
609 | e_nom.loc[index] = nom |
||
610 | new = [element / nom for element in row] |
||
611 | e_max.loc[index] = new |
||
612 | new = [element / nom for element in e_min.loc[index]] |
||
613 | e_min.loc[index] = new |
||
614 | |||
615 | # add DSM-buses to "original" buses |
||
616 | dsm_buses = gpd.GeoDataFrame(index=dsm.index) |
||
617 | dsm_buses["original_bus"] = dsm["bus"].copy() |
||
618 | dsm_buses["scn_name"] = dsm["scn_name"].copy() |
||
619 | |||
620 | # get original buses and add copy of relevant information |
||
621 | target1 = config.datasets()["DSM_CTS_industry"]["targets"]["bus"] |
||
622 | original_buses = db.select_geodataframe( |
||
623 | f"""SELECT bus_id, v_nom, scn_name, x, y, geom FROM |
||
624 | {target1['schema']}.{target1['table']}""", |
||
625 | geom_col="geom", |
||
626 | epsg=4326, |
||
627 | ) |
||
628 | |||
629 | # copy relevant information from original buses to DSM-buses |
||
630 | dsm_buses["index"] = dsm_buses.index |
||
631 | originals = original_buses[ |
||
632 | original_buses["bus_id"].isin(np.unique(dsm_buses["original_bus"])) |
||
633 | ] |
||
634 | dsm_buses = originals.merge( |
||
635 | dsm_buses, |
||
636 | left_on=["bus_id", "scn_name"], |
||
637 | right_on=["original_bus", "scn_name"], |
||
638 | ) |
||
639 | dsm_buses.index = dsm_buses["index"] |
||
640 | dsm_buses.drop(["bus_id", "index"], axis=1, inplace=True) |
||
641 | |||
642 | # new bus_ids for DSM-buses |
||
643 | max_id = original_buses["bus_id"].max() |
||
644 | if np.isnan(max_id): |
||
645 | max_id = 0 |
||
646 | dsm_id = max_id + 1 |
||
647 | bus_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
648 | |||
649 | # Get number of DSM buses for both scenarios |
||
650 | rows_per_scenario = ( |
||
651 | dsm_buses.groupby("scn_name").count().original_bus.to_dict() |
||
652 | ) |
||
653 | |||
654 | # Assignment of DSM ids |
||
655 | bus_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
656 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
657 | ) |
||
658 | |||
659 | bus_id.iloc[ |
||
660 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
661 | "eGon2035", 0 |
||
662 | ) |
||
663 | + rows_per_scenario.get("eGon100RE", 0) |
||
664 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
665 | |||
666 | dsm_buses["bus_id"] = bus_id |
||
667 | |||
668 | # add links from "orignal" buses to DSM-buses |
||
669 | |||
670 | dsm_links = pd.DataFrame(index=dsm_buses.index) |
||
671 | dsm_links["original_bus"] = dsm_buses["original_bus"].copy() |
||
672 | dsm_links["dsm_bus"] = dsm_buses["bus_id"].copy() |
||
673 | dsm_links["scn_name"] = dsm_buses["scn_name"].copy() |
||
674 | |||
675 | # set link_id |
||
676 | target2 = config.datasets()["DSM_CTS_industry"]["targets"]["link"] |
||
677 | sql = f"""SELECT link_id FROM {target2['schema']}.{target2['table']}""" |
||
678 | max_id = pd.read_sql_query(sql, con) |
||
679 | max_id = max_id["link_id"].max() |
||
680 | if np.isnan(max_id): |
||
681 | max_id = 0 |
||
682 | dsm_id = max_id + 1 |
||
683 | link_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
684 | |||
685 | # Assignment of link ids |
||
686 | link_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
687 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
688 | ) |
||
689 | |||
690 | link_id.iloc[ |
||
691 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
692 | "eGon2035", 0 |
||
693 | ) |
||
694 | + rows_per_scenario.get("eGon100RE", 0) |
||
695 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
696 | |||
697 | dsm_links["link_id"] = link_id |
||
698 | |||
699 | # add calculated timeseries to df to be returned |
||
700 | if not export_aggregated: |
||
701 | dsm_links["p_nom"] = p_nom |
||
702 | dsm_links["p_min"] = p_min |
||
703 | dsm_links["p_max"] = p_max |
||
704 | |||
705 | # add DSM-stores |
||
706 | |||
707 | dsm_stores = pd.DataFrame(index=dsm_buses.index) |
||
708 | dsm_stores["bus"] = dsm_buses["bus_id"].copy() |
||
709 | dsm_stores["scn_name"] = dsm_buses["scn_name"].copy() |
||
710 | dsm_stores["original_bus"] = dsm_buses["original_bus"].copy() |
||
711 | |||
712 | # set store_id |
||
713 | target3 = config.datasets()["DSM_CTS_industry"]["targets"]["store"] |
||
714 | sql = f"""SELECT store_id FROM {target3['schema']}.{target3['table']}""" |
||
715 | max_id = pd.read_sql_query(sql, con) |
||
716 | max_id = max_id["store_id"].max() |
||
717 | if np.isnan(max_id): |
||
718 | max_id = 0 |
||
719 | dsm_id = max_id + 1 |
||
720 | store_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
721 | |||
722 | # Assignment of store ids |
||
723 | store_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
724 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
725 | ) |
||
726 | |||
727 | store_id.iloc[ |
||
728 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
729 | "eGon2035", 0 |
||
730 | ) |
||
731 | + rows_per_scenario.get("eGon100RE", 0) |
||
732 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
733 | |||
734 | dsm_stores["store_id"] = store_id |
||
735 | |||
736 | # add calculated timeseries to df to be returned |
||
737 | if not export_aggregated: |
||
738 | dsm_stores["e_nom"] = e_nom |
||
739 | dsm_stores["e_min"] = e_min |
||
740 | dsm_stores["e_max"] = e_max |
||
741 | |||
742 | return dsm_buses, dsm_links, dsm_stores |
||
743 | |||
744 | |||
745 | def aggregate_components(df_dsm_buses, df_dsm_links, df_dsm_stores): |
||
746 | # aggregate buses |
||
747 | |||
748 | grouper = [df_dsm_buses.original_bus, df_dsm_buses.scn_name] |
||
749 | |||
750 | df_dsm_buses = df_dsm_buses.groupby(grouper).first() |
||
751 | |||
752 | df_dsm_buses.reset_index(inplace=True) |
||
753 | df_dsm_buses.sort_values("scn_name", inplace=True) |
||
754 | |||
755 | # aggregate links |
||
756 | |||
757 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: np.array(x)) |
||
758 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: np.array(x)) |
||
759 | |||
760 | grouper = [df_dsm_links.original_bus, df_dsm_links.scn_name] |
||
761 | |||
762 | p_max = df_dsm_links.groupby(grouper)["p_max"].apply(np.sum) |
||
763 | p_min = df_dsm_links.groupby(grouper)["p_min"].apply(np.sum) |
||
764 | |||
765 | df_dsm_links = df_dsm_links.groupby(grouper).first() |
||
766 | df_dsm_links.p_max = p_max |
||
767 | df_dsm_links.p_min = p_min |
||
768 | |||
769 | df_dsm_links.reset_index(inplace=True) |
||
770 | df_dsm_links.sort_values("scn_name", inplace=True) |
||
771 | |||
772 | # calculate P_nom and P per unit |
||
773 | for index, row in df_dsm_links.iterrows(): |
||
774 | nom = max(max(row.p_max), abs(min(row.p_min))) |
||
775 | df_dsm_links.at[index, "p_nom"] = nom |
||
776 | |||
777 | df_dsm_links["p_max"] = df_dsm_links["p_max"] / df_dsm_links["p_nom"] |
||
778 | df_dsm_links["p_min"] = df_dsm_links["p_min"] / df_dsm_links["p_nom"] |
||
779 | |||
780 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: list(x)) |
||
781 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: list(x)) |
||
782 | |||
783 | # aggregate stores |
||
784 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply( |
||
785 | lambda x: np.array(x) |
||
786 | ) |
||
787 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply( |
||
788 | lambda x: np.array(x) |
||
789 | ) |
||
790 | |||
791 | grouper = [df_dsm_stores.original_bus, df_dsm_stores.scn_name] |
||
792 | |||
793 | e_max = df_dsm_stores.groupby(grouper)["e_max"].apply(np.sum) |
||
794 | e_min = df_dsm_stores.groupby(grouper)["e_min"].apply(np.sum) |
||
795 | |||
796 | df_dsm_stores = df_dsm_stores.groupby(grouper).first() |
||
797 | df_dsm_stores.e_max = e_max |
||
798 | df_dsm_stores.e_min = e_min |
||
799 | |||
800 | df_dsm_stores.reset_index(inplace=True) |
||
801 | df_dsm_stores.sort_values("scn_name", inplace=True) |
||
802 | |||
803 | # calculate E_nom and E per unit |
||
804 | for index, row in df_dsm_stores.iterrows(): |
||
805 | nom = max(max(row.e_max), abs(min(row.e_min))) |
||
806 | df_dsm_stores.at[index, "e_nom"] = nom |
||
807 | |||
808 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"] / df_dsm_stores["e_nom"] |
||
809 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"] / df_dsm_stores["e_nom"] |
||
810 | |||
811 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply(lambda x: list(x)) |
||
812 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply(lambda x: list(x)) |
||
813 | |||
814 | # select new bus_ids for aggregated buses and add to links and stores |
||
815 | bus_id = db.next_etrago_id("Bus") + df_dsm_buses.index |
||
816 | |||
817 | df_dsm_buses["bus_id"] = bus_id |
||
818 | df_dsm_links["dsm_bus"] = bus_id |
||
819 | df_dsm_stores["bus"] = bus_id |
||
820 | |||
821 | # select new link_ids for aggregated links |
||
822 | link_id = db.next_etrago_id("Link") + df_dsm_links.index |
||
823 | |||
824 | df_dsm_links["link_id"] = link_id |
||
825 | |||
826 | # select new store_ids to aggregated stores |
||
827 | |||
828 | store_id = db.next_etrago_id("Store") + df_dsm_stores.index |
||
829 | |||
830 | df_dsm_stores["store_id"] = store_id |
||
831 | |||
832 | return df_dsm_buses, df_dsm_links, df_dsm_stores |
||
833 | |||
834 | |||
835 | def data_export(dsm_buses, dsm_links, dsm_stores, carrier): |
||
836 | """ |
||
837 | Export new components to database. |
||
838 | |||
839 | Parameters |
||
840 | ---------- |
||
841 | dsm_buses: DataFrame |
||
842 | Buses representing locations of DSM-potential |
||
843 | dsm_links: DataFrame |
||
844 | Links connecting DSM-buses and DSM-stores |
||
845 | dsm_stores: DataFrame |
||
846 | Stores representing DSM-potential |
||
847 | carrier: str |
||
848 | Remark to be filled in column 'carrier' identifying DSM-potential |
||
849 | """ |
||
850 | |||
851 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
852 | |||
853 | # dsm_buses |
||
854 | |||
855 | insert_buses = gpd.GeoDataFrame( |
||
856 | index=dsm_buses.index, |
||
857 | data=dsm_buses["geom"], |
||
858 | geometry="geom", |
||
859 | crs=dsm_buses.crs, |
||
860 | ) |
||
861 | insert_buses["scn_name"] = dsm_buses["scn_name"] |
||
862 | insert_buses["bus_id"] = dsm_buses["bus_id"] |
||
863 | insert_buses["v_nom"] = dsm_buses["v_nom"] |
||
864 | insert_buses["carrier"] = carrier |
||
865 | insert_buses["x"] = dsm_buses["x"] |
||
866 | insert_buses["y"] = dsm_buses["y"] |
||
867 | |||
868 | # insert into database |
||
869 | insert_buses.to_postgis( |
||
870 | targets["bus"]["table"], |
||
871 | con=db.engine(), |
||
872 | schema=targets["bus"]["schema"], |
||
873 | if_exists="append", |
||
874 | index=False, |
||
875 | dtype={"geom": "geometry"}, |
||
876 | ) |
||
877 | |||
878 | # dsm_links |
||
879 | |||
880 | insert_links = pd.DataFrame(index=dsm_links.index) |
||
881 | insert_links["scn_name"] = dsm_links["scn_name"] |
||
882 | insert_links["link_id"] = dsm_links["link_id"] |
||
883 | insert_links["bus0"] = dsm_links["original_bus"] |
||
884 | insert_links["bus1"] = dsm_links["dsm_bus"] |
||
885 | insert_links["carrier"] = carrier |
||
886 | insert_links["p_nom"] = dsm_links["p_nom"] |
||
887 | |||
888 | # insert into database |
||
889 | insert_links.to_sql( |
||
890 | targets["link"]["table"], |
||
891 | con=db.engine(), |
||
892 | schema=targets["link"]["schema"], |
||
893 | if_exists="append", |
||
894 | index=False, |
||
895 | ) |
||
896 | |||
897 | insert_links_timeseries = pd.DataFrame(index=dsm_links.index) |
||
898 | insert_links_timeseries["scn_name"] = dsm_links["scn_name"] |
||
899 | insert_links_timeseries["link_id"] = dsm_links["link_id"] |
||
900 | insert_links_timeseries["p_min_pu"] = dsm_links["p_min"] |
||
901 | insert_links_timeseries["p_max_pu"] = dsm_links["p_max"] |
||
902 | insert_links_timeseries["temp_id"] = 1 |
||
903 | |||
904 | # insert into database |
||
905 | insert_links_timeseries.to_sql( |
||
906 | targets["link_timeseries"]["table"], |
||
907 | con=db.engine(), |
||
908 | schema=targets["link_timeseries"]["schema"], |
||
909 | if_exists="append", |
||
910 | index=False, |
||
911 | ) |
||
912 | |||
913 | # dsm_stores |
||
914 | |||
915 | insert_stores = pd.DataFrame(index=dsm_stores.index) |
||
916 | insert_stores["scn_name"] = dsm_stores["scn_name"] |
||
917 | insert_stores["store_id"] = dsm_stores["store_id"] |
||
918 | insert_stores["bus"] = dsm_stores["bus"] |
||
919 | insert_stores["carrier"] = carrier |
||
920 | insert_stores["e_nom"] = dsm_stores["e_nom"] |
||
921 | |||
922 | # insert into database |
||
923 | insert_stores.to_sql( |
||
924 | targets["store"]["table"], |
||
925 | con=db.engine(), |
||
926 | schema=targets["store"]["schema"], |
||
927 | if_exists="append", |
||
928 | index=False, |
||
929 | ) |
||
930 | |||
931 | insert_stores_timeseries = pd.DataFrame(index=dsm_stores.index) |
||
932 | insert_stores_timeseries["scn_name"] = dsm_stores["scn_name"] |
||
933 | insert_stores_timeseries["store_id"] = dsm_stores["store_id"] |
||
934 | insert_stores_timeseries["e_min_pu"] = dsm_stores["e_min"] |
||
935 | insert_stores_timeseries["e_max_pu"] = dsm_stores["e_max"] |
||
936 | insert_stores_timeseries["temp_id"] = 1 |
||
937 | |||
938 | # insert into database |
||
939 | insert_stores_timeseries.to_sql( |
||
940 | targets["store_timeseries"]["table"], |
||
941 | con=db.engine(), |
||
942 | schema=targets["store_timeseries"]["schema"], |
||
943 | if_exists="append", |
||
944 | index=False, |
||
945 | ) |
||
946 | |||
947 | |||
948 | def delete_dsm_entries(carrier): |
||
949 | """ |
||
950 | Deletes DSM-components from database if they already exist before creating |
||
951 | new ones. |
||
952 | |||
953 | Parameters |
||
954 | ---------- |
||
955 | carrier: str |
||
956 | Remark in column 'carrier' identifying DSM-potential |
||
957 | """ |
||
958 | |||
959 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
960 | |||
961 | # buses |
||
962 | |||
963 | sql = f""" |
||
964 | DELETE FROM {targets["bus"]["schema"]}.{targets["bus"]["table"]} b |
||
965 | WHERE (b.carrier LIKE '{carrier}'); |
||
966 | """ |
||
967 | db.execute_sql(sql) |
||
968 | |||
969 | # links |
||
970 | |||
971 | sql = f""" |
||
972 | DELETE FROM {targets["link_timeseries"]["schema"]}. |
||
973 | {targets["link_timeseries"]["table"]} t |
||
974 | WHERE t.link_id IN |
||
975 | ( |
||
976 | SELECT l.link_id FROM {targets["link"]["schema"]}. |
||
977 | {targets["link"]["table"]} l |
||
978 | WHERE l.carrier LIKE '{carrier}' |
||
979 | ); |
||
980 | """ |
||
981 | |||
982 | db.execute_sql(sql) |
||
983 | |||
984 | sql = f""" |
||
985 | DELETE FROM {targets["link"]["schema"]}. |
||
986 | {targets["link"]["table"]} l |
||
987 | WHERE (l.carrier LIKE '{carrier}'); |
||
988 | """ |
||
989 | |||
990 | db.execute_sql(sql) |
||
991 | |||
992 | # stores |
||
993 | |||
994 | sql = f""" |
||
995 | DELETE FROM {targets["store_timeseries"]["schema"]}. |
||
996 | {targets["store_timeseries"]["table"]} t |
||
997 | WHERE t.store_id IN |
||
998 | ( |
||
999 | SELECT s.store_id FROM {targets["store"]["schema"]}. |
||
1000 | {targets["store"]["table"]} s |
||
1001 | WHERE s.carrier LIKE '{carrier}' |
||
1002 | ); |
||
1003 | """ |
||
1004 | |||
1005 | db.execute_sql(sql) |
||
1006 | |||
1007 | sql = f""" |
||
1008 | DELETE FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s |
||
1009 | WHERE (s.carrier LIKE '{carrier}'); |
||
1010 | """ |
||
1011 | |||
1012 | db.execute_sql(sql) |
||
1013 | |||
1014 | |||
1015 | def dsm_cts_ind( |
||
1016 | con=db.engine(), |
||
1017 | cts_cool_vent_ac_share=0.22, |
||
1018 | ind_vent_cool_share=0.039, |
||
1019 | ind_vent_share=0.017, |
||
1020 | ): |
||
1021 | """ |
||
1022 | Execute methodology to create and implement components for DSM considering |
||
1023 | a) CTS per osm-area: combined potentials of cooling, ventilation and air |
||
1024 | conditioning |
||
1025 | b) Industry per osm-are: combined potentials of cooling and ventilation |
||
1026 | c) Industrial Sites: potentials of ventilation in sites of |
||
1027 | "Wirtschaftszweig" (WZ) 23 |
||
1028 | d) Industrial Sites: potentials of sites specified by subsectors |
||
1029 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
||
1030 | Paper, Recycled Paper, Pulp, Cement |
||
1031 | |||
1032 | Modelled using the methods by Heitkoetter et. al.: |
||
1033 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
1034 | |||
1035 | Parameters |
||
1036 | ---------- |
||
1037 | con : |
||
1038 | Connection to database |
||
1039 | cts_cool_vent_ac_share: float |
||
1040 | Share of cooling, ventilation and AC in CTS demand |
||
1041 | ind_vent_cool_share: float |
||
1042 | Share of cooling and ventilation in industry demand |
||
1043 | ind_vent_share: float |
||
1044 | Share of ventilation in industry demand in sites of WZ 23 |
||
1045 | |||
1046 | """ |
||
1047 | |||
1048 | # CTS per osm-area: cooling, ventilation and air conditioning |
||
1049 | |||
1050 | print(" ") |
||
1051 | print("CTS per osm-area: cooling, ventilation and air conditioning") |
||
1052 | print(" ") |
||
1053 | |||
1054 | dsm = cts_data_import(cts_cool_vent_ac_share) |
||
1055 | |||
1056 | # calculate combined potentials of cooling, ventilation and air |
||
1057 | # conditioning in CTS using combined parameters by Heitkoetter et. al. |
||
1058 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1059 | s_flex=S_FLEX_CTS, |
||
1060 | s_util=S_UTIL_CTS, |
||
1061 | s_inc=S_INC_CTS, |
||
1062 | s_dec=S_DEC_CTS, |
||
1063 | delta_t=DELTA_T_CTS, |
||
1064 | dsm=dsm, |
||
1065 | ) |
||
1066 | |||
1067 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1068 | con, p_max, p_min, e_max, e_min, dsm |
||
1069 | ) |
||
1070 | |||
1071 | df_dsm_buses = dsm_buses.copy() |
||
1072 | df_dsm_links = dsm_links.copy() |
||
1073 | df_dsm_stores = dsm_stores.copy() |
||
1074 | |||
1075 | # industry per osm-area: cooling and ventilation |
||
1076 | |||
1077 | print(" ") |
||
1078 | print("industry per osm-area: cooling and ventilation") |
||
1079 | print(" ") |
||
1080 | |||
1081 | dsm = ind_osm_data_import(ind_vent_cool_share) |
||
1082 | |||
1083 | # calculate combined potentials of cooling and ventilation in industrial |
||
1084 | # sector using combined parameters by Heitkoetter et. al. |
||
1085 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1086 | s_flex=S_FLEX_OSM, |
||
1087 | s_util=S_UTIL_OSM, |
||
1088 | s_inc=S_INC_OSM, |
||
1089 | s_dec=S_DEC_OSM, |
||
1090 | delta_t=DELTA_T_OSM, |
||
1091 | dsm=dsm, |
||
1092 | ) |
||
1093 | |||
1094 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1095 | con, p_max, p_min, e_max, e_min, dsm |
||
1096 | ) |
||
1097 | |||
1098 | df_dsm_buses = gpd.GeoDataFrame( |
||
1099 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1100 | crs="EPSG:4326", |
||
1101 | ) |
||
1102 | df_dsm_links = pd.DataFrame( |
||
1103 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1104 | ) |
||
1105 | df_dsm_stores = pd.DataFrame( |
||
1106 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1107 | ) |
||
1108 | |||
1109 | # industry sites |
||
1110 | |||
1111 | # industry sites: different applications |
||
1112 | |||
1113 | dsm = ind_sites_data_import() |
||
1114 | |||
1115 | print(" ") |
||
1116 | print("industry sites: paper") |
||
1117 | print(" ") |
||
1118 | |||
1119 | dsm_paper = gpd.GeoDataFrame( |
||
1120 | dsm[ |
||
1121 | dsm["application"].isin( |
||
1122 | [ |
||
1123 | "Graphic Paper", |
||
1124 | "Packing Paper and Board", |
||
1125 | "Hygiene Paper", |
||
1126 | "Technical/Special Paper and Board", |
||
1127 | ] |
||
1128 | ) |
||
1129 | ] |
||
1130 | ) |
||
1131 | |||
1132 | # calculate potentials of industrial sites with paper-applications |
||
1133 | # using parameters by Heitkoetter et al. |
||
1134 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1135 | s_flex=S_FLEX_PAPER, |
||
1136 | s_util=S_UTIL_PAPER, |
||
1137 | s_inc=S_INC_PAPER, |
||
1138 | s_dec=S_DEC_PAPER, |
||
1139 | delta_t=DELTA_T_PAPER, |
||
1140 | dsm=dsm_paper, |
||
1141 | ) |
||
1142 | |||
1143 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1144 | con, p_max, p_min, e_max, e_min, dsm_paper |
||
1145 | ) |
||
1146 | |||
1147 | df_dsm_buses = gpd.GeoDataFrame( |
||
1148 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1149 | crs="EPSG:4326", |
||
1150 | ) |
||
1151 | df_dsm_links = pd.DataFrame( |
||
1152 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1153 | ) |
||
1154 | df_dsm_stores = pd.DataFrame( |
||
1155 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1156 | ) |
||
1157 | |||
1158 | print(" ") |
||
1159 | print("industry sites: recycled paper") |
||
1160 | print(" ") |
||
1161 | |||
1162 | # calculate potentials of industrial sites with recycled paper-applications |
||
1163 | # using parameters by Heitkoetter et. al. |
||
1164 | dsm_recycled_paper = gpd.GeoDataFrame( |
||
1165 | dsm[dsm["application"] == "Recycled Paper"] |
||
1166 | ) |
||
1167 | |||
1168 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1169 | s_flex=S_FLEX_RECYCLED_PAPER, |
||
1170 | s_util=S_UTIL_RECYCLED_PAPER, |
||
1171 | s_inc=S_INC_RECYCLED_PAPER, |
||
1172 | s_dec=S_DEC_RECYCLED_PAPER, |
||
1173 | delta_t=DELTA_T_RECYCLED_PAPER, |
||
1174 | dsm=dsm_recycled_paper, |
||
1175 | ) |
||
1176 | |||
1177 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1178 | con, p_max, p_min, e_max, e_min, dsm_recycled_paper |
||
1179 | ) |
||
1180 | |||
1181 | df_dsm_buses = gpd.GeoDataFrame( |
||
1182 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1183 | crs="EPSG:4326", |
||
1184 | ) |
||
1185 | df_dsm_links = pd.DataFrame( |
||
1186 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1187 | ) |
||
1188 | df_dsm_stores = pd.DataFrame( |
||
1189 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1190 | ) |
||
1191 | |||
1192 | print(" ") |
||
1193 | print("industry sites: pulp") |
||
1194 | print(" ") |
||
1195 | |||
1196 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
||
1197 | |||
1198 | # calculate potentials of industrial sites with pulp-applications |
||
1199 | # using parameters by Heitkoetter et al. |
||
1200 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1201 | s_flex=S_FLEX_PULP, |
||
1202 | s_util=S_UTIL_PULP, |
||
1203 | s_inc=S_INC_PULP, |
||
1204 | s_dec=S_DEC_PULP, |
||
1205 | delta_t=DELTA_T_PULP, |
||
1206 | dsm=dsm_pulp, |
||
1207 | ) |
||
1208 | |||
1209 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1210 | con, p_max, p_min, e_max, e_min, dsm_pulp |
||
1211 | ) |
||
1212 | |||
1213 | df_dsm_buses = gpd.GeoDataFrame( |
||
1214 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1215 | crs="EPSG:4326", |
||
1216 | ) |
||
1217 | df_dsm_links = pd.DataFrame( |
||
1218 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1219 | ) |
||
1220 | df_dsm_stores = pd.DataFrame( |
||
1221 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1222 | ) |
||
1223 | |||
1224 | # industry sites: cement |
||
1225 | |||
1226 | print(" ") |
||
1227 | print("industry sites: cement") |
||
1228 | print(" ") |
||
1229 | |||
1230 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
||
1231 | |||
1232 | # calculate potentials of industrial sites with cement-applications |
||
1233 | # using parameters by Heitkoetter et al. |
||
1234 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1235 | s_flex=S_FLEX_CEMENT, |
||
1236 | s_util=S_UTIL_CEMENT, |
||
1237 | s_inc=S_INC_CEMENT, |
||
1238 | s_dec=S_DEC_CEMENT, |
||
1239 | delta_t=DELTA_T_CEMENT, |
||
1240 | dsm=dsm_cement, |
||
1241 | ) |
||
1242 | |||
1243 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1244 | con, p_max, p_min, e_max, e_min, dsm_cement |
||
1245 | ) |
||
1246 | |||
1247 | df_dsm_buses = gpd.GeoDataFrame( |
||
1248 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1249 | crs="EPSG:4326", |
||
1250 | ) |
||
1251 | df_dsm_links = pd.DataFrame( |
||
1252 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1253 | ) |
||
1254 | df_dsm_stores = pd.DataFrame( |
||
1255 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1256 | ) |
||
1257 | |||
1258 | # industry sites: ventilation in WZ23 |
||
1259 | |||
1260 | print(" ") |
||
1261 | print("industry sites: ventilation in WZ23") |
||
1262 | print(" ") |
||
1263 | |||
1264 | dsm = ind_sites_vent_data_import(ind_vent_share, wz=WZ) |
||
1265 | |||
1266 | # drop entries of Cement Mills whose DSM-potentials have already been |
||
1267 | # modelled |
||
1268 | cement = np.unique(dsm_cement["bus"].values) |
||
1269 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
||
1270 | dsm.drop(index_names, inplace=True) |
||
1271 | |||
1272 | # calculate potentials of ventialtion in industrial sites of WZ 23 |
||
1273 | # using parameters by Heitkoetter et al. |
||
1274 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1275 | s_flex=S_FLEX_WZ, |
||
1276 | s_util=S_UTIL_WZ, |
||
1277 | s_inc=S_INC_WZ, |
||
1278 | s_dec=S_DEC_WZ, |
||
1279 | delta_t=DELTA_T_WZ, |
||
1280 | dsm=dsm, |
||
1281 | ) |
||
1282 | |||
1283 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1284 | con, p_max, p_min, e_max, e_min, dsm |
||
1285 | ) |
||
1286 | |||
1287 | df_dsm_buses = gpd.GeoDataFrame( |
||
1288 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1289 | crs="EPSG:4326", |
||
1290 | ) |
||
1291 | df_dsm_links = pd.DataFrame( |
||
1292 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1293 | ) |
||
1294 | df_dsm_stores = pd.DataFrame( |
||
1295 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1296 | ) |
||
1297 | |||
1298 | # aggregate DSM components per substation |
||
1299 | dsm_buses, dsm_links, dsm_stores = aggregate_components( |
||
1300 | df_dsm_buses, df_dsm_links, df_dsm_stores |
||
1301 | ) |
||
1302 | |||
1303 | # export aggregated DSM components to database |
||
1304 | |||
1305 | delete_dsm_entries("dsm-cts") |
||
1306 | delete_dsm_entries("dsm-ind-osm") |
||
1307 | delete_dsm_entries("dsm-ind-sites") |
||
1308 | delete_dsm_entries("dsm") |
||
1309 | |||
1310 | data_export(dsm_buses, dsm_links, dsm_stores, carrier="dsm") |
||
1311 | |||
1312 | |||
1313 | def create_table(df, table, engine=CON): |
||
1314 | """Create table""" |
||
1315 | table.__table__.drop(bind=engine, checkfirst=True) |
||
1316 | table.__table__.create(bind=engine, checkfirst=True) |
||
1317 | |||
1318 | df.to_sql( |
||
1319 | name=table.__table__.name, |
||
1320 | schema=table.__table__.schema, |
||
1321 | con=engine, |
||
1322 | if_exists="append", |
||
1323 | index=False, |
||
1324 | ) |
||
1325 | |||
1326 | |||
1327 | def div_list(lst: list, div: float): |
||
1328 | return [v / div for v in lst] |
||
1329 | |||
1330 | |||
1331 | def dsm_cts_ind_individual( |
||
1332 | cts_cool_vent_ac_share=CTS_COOL_VENT_AC_SHARE, |
||
1333 | ind_vent_cool_share=IND_VENT_COOL_SHARE, |
||
1334 | ind_vent_share=IND_VENT_SHARE, |
||
1335 | ): |
||
1336 | """ |
||
1337 | Execute methodology to create and implement components for DSM considering |
||
1338 | a) CTS per osm-area: combined potentials of cooling, ventilation and air |
||
1339 | conditioning |
||
1340 | b) Industry per osm-are: combined potentials of cooling and ventilation |
||
1341 | c) Industrial Sites: potentials of ventilation in sites of |
||
1342 | "Wirtschaftszweig" (WZ) 23 |
||
1343 | d) Industrial Sites: potentials of sites specified by subsectors |
||
1344 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
||
1345 | Paper, Recycled Paper, Pulp, Cement |
||
1346 | |||
1347 | Modelled using the methods by Heitkoetter et. al.: |
||
1348 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
1349 | |||
1350 | Parameters |
||
1351 | ---------- |
||
1352 | cts_cool_vent_ac_share: float |
||
1353 | Share of cooling, ventilation and AC in CTS demand |
||
1354 | ind_vent_cool_share: float |
||
1355 | Share of cooling and ventilation in industry demand |
||
1356 | ind_vent_share: float |
||
1357 | Share of ventilation in industry demand in sites of WZ 23 |
||
1358 | |||
1359 | """ |
||
1360 | |||
1361 | # CTS per osm-area: cooling, ventilation and air conditioning |
||
1362 | |||
1363 | print(" ") |
||
1364 | print("CTS per osm-area: cooling, ventilation and air conditioning") |
||
1365 | print(" ") |
||
1366 | |||
1367 | dsm = cts_data_import(cts_cool_vent_ac_share) |
||
1368 | |||
1369 | # calculate combined potentials of cooling, ventilation and air |
||
1370 | # conditioning in CTS using combined parameters by Heitkoetter et. al. |
||
1371 | vals = calculate_potentials( |
||
1372 | s_flex=S_FLEX_CTS, |
||
1373 | s_util=S_UTIL_CTS, |
||
1374 | s_inc=S_INC_CTS, |
||
1375 | s_dec=S_DEC_CTS, |
||
1376 | delta_t=DELTA_T_CTS, |
||
1377 | dsm=dsm, |
||
1378 | ) |
||
1379 | |||
1380 | dsm = dsm.assign( |
||
1381 | p_set=dsm.p_set.apply(div_list, div=cts_cool_vent_ac_share) |
||
1382 | ) |
||
1383 | |||
1384 | base_columns = [ |
||
1385 | "bus", |
||
1386 | "scn_name", |
||
1387 | "p_set", |
||
1388 | "p_max", |
||
1389 | "p_min", |
||
1390 | "e_max", |
||
1391 | "e_min", |
||
1392 | ] |
||
1393 | |||
1394 | cts_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
1395 | cts_df.columns = base_columns |
||
1396 | |||
1397 | print(" ") |
||
1398 | print("industry per osm-area: cooling and ventilation") |
||
1399 | print(" ") |
||
1400 | |||
1401 | dsm = ind_osm_data_import_individual(ind_vent_cool_share) |
||
1402 | |||
1403 | # calculate combined potentials of cooling and ventilation in industrial |
||
1404 | # sector using combined parameters by Heitkoetter et al. |
||
1405 | vals = calculate_potentials( |
||
1406 | s_flex=S_FLEX_OSM, |
||
1407 | s_util=S_UTIL_OSM, |
||
1408 | s_inc=S_INC_OSM, |
||
1409 | s_dec=S_DEC_OSM, |
||
1410 | delta_t=DELTA_T_OSM, |
||
1411 | dsm=dsm, |
||
1412 | ) |
||
1413 | |||
1414 | dsm = dsm.assign(p_set=dsm.p_set.apply(div_list, div=ind_vent_cool_share)) |
||
1415 | |||
1416 | columns = ["osm_id"] + base_columns |
||
1417 | |||
1418 | osm_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
1419 | osm_df.columns = columns |
||
1420 | |||
1421 | # industry sites |
||
1422 | |||
1423 | # industry sites: different applications |
||
1424 | |||
1425 | dsm = ind_sites_data_import() |
||
1426 | |||
1427 | print(" ") |
||
1428 | print("industry sites: paper") |
||
1429 | print(" ") |
||
1430 | |||
1431 | dsm_paper = gpd.GeoDataFrame( |
||
1432 | dsm[ |
||
1433 | dsm["application"].isin( |
||
1434 | [ |
||
1435 | "Graphic Paper", |
||
1436 | "Packing Paper and Board", |
||
1437 | "Hygiene Paper", |
||
1438 | "Technical/Special Paper and Board", |
||
1439 | ] |
||
1440 | ) |
||
1441 | ] |
||
1442 | ) |
||
1443 | |||
1444 | # calculate potentials of industrial sites with paper-applications |
||
1445 | # using parameters by Heitkoetter et al. |
||
1446 | vals = calculate_potentials( |
||
1447 | s_flex=S_FLEX_PAPER, |
||
1448 | s_util=S_UTIL_PAPER, |
||
1449 | s_inc=S_INC_PAPER, |
||
1450 | s_dec=S_DEC_PAPER, |
||
1451 | delta_t=DELTA_T_PAPER, |
||
1452 | dsm=dsm_paper, |
||
1453 | ) |
||
1454 | |||
1455 | columns = ["application", "industrial_sites_id"] + base_columns |
||
1456 | |||
1457 | paper_df = pd.concat([dsm_paper, *vals], axis=1, ignore_index=True) |
||
1458 | paper_df.columns = columns |
||
1459 | |||
1460 | print(" ") |
||
1461 | print("industry sites: recycled paper") |
||
1462 | print(" ") |
||
1463 | |||
1464 | # calculate potentials of industrial sites with recycled paper-applications |
||
1465 | # using parameters by Heitkoetter et. al. |
||
1466 | dsm_recycled_paper = gpd.GeoDataFrame( |
||
1467 | dsm[dsm["application"] == "Recycled Paper"] |
||
1468 | ) |
||
1469 | |||
1470 | vals = calculate_potentials( |
||
1471 | s_flex=S_FLEX_RECYCLED_PAPER, |
||
1472 | s_util=S_UTIL_RECYCLED_PAPER, |
||
1473 | s_inc=S_INC_RECYCLED_PAPER, |
||
1474 | s_dec=S_DEC_RECYCLED_PAPER, |
||
1475 | delta_t=DELTA_T_RECYCLED_PAPER, |
||
1476 | dsm=dsm_recycled_paper, |
||
1477 | ) |
||
1478 | |||
1479 | recycled_paper_df = pd.concat( |
||
1480 | [dsm_recycled_paper, *vals], axis=1, ignore_index=True |
||
1481 | ) |
||
1482 | recycled_paper_df.columns = columns |
||
1483 | |||
1484 | print(" ") |
||
1485 | print("industry sites: pulp") |
||
1486 | print(" ") |
||
1487 | |||
1488 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
||
1489 | |||
1490 | # calculate potentials of industrial sites with pulp-applications |
||
1491 | # using parameters by Heitkoetter et al. |
||
1492 | vals = calculate_potentials( |
||
1493 | s_flex=S_FLEX_PULP, |
||
1494 | s_util=S_UTIL_PULP, |
||
1495 | s_inc=S_INC_PULP, |
||
1496 | s_dec=S_DEC_PULP, |
||
1497 | delta_t=DELTA_T_PULP, |
||
1498 | dsm=dsm_pulp, |
||
1499 | ) |
||
1500 | |||
1501 | pulp_df = pd.concat([dsm_pulp, *vals], axis=1, ignore_index=True) |
||
1502 | pulp_df.columns = columns |
||
1503 | |||
1504 | # industry sites: cement |
||
1505 | |||
1506 | print(" ") |
||
1507 | print("industry sites: cement") |
||
1508 | print(" ") |
||
1509 | |||
1510 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
||
1511 | |||
1512 | # calculate potentials of industrial sites with cement-applications |
||
1513 | # using parameters by Heitkoetter et al. |
||
1514 | vals = calculate_potentials( |
||
1515 | s_flex=S_FLEX_CEMENT, |
||
1516 | s_util=S_UTIL_CEMENT, |
||
1517 | s_inc=S_INC_CEMENT, |
||
1518 | s_dec=S_DEC_CEMENT, |
||
1519 | delta_t=DELTA_T_CEMENT, |
||
1520 | dsm=dsm_cement, |
||
1521 | ) |
||
1522 | |||
1523 | cement_df = pd.concat([dsm_cement, *vals], axis=1, ignore_index=True) |
||
1524 | cement_df.columns = columns |
||
1525 | |||
1526 | ind_df = pd.concat( |
||
1527 | [paper_df, recycled_paper_df, pulp_df, cement_df], ignore_index=True |
||
1528 | ) |
||
1529 | |||
1530 | # industry sites: ventilation in WZ23 |
||
1531 | |||
1532 | print(" ") |
||
1533 | print("industry sites: ventilation in WZ23") |
||
1534 | print(" ") |
||
1535 | |||
1536 | dsm = ind_sites_vent_data_import_individual(ind_vent_share, wz=WZ) |
||
1537 | |||
1538 | # drop entries of Cement Mills whose DSM-potentials have already been |
||
1539 | # modelled |
||
1540 | cement = np.unique(dsm_cement["bus"].values) |
||
1541 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
||
1542 | dsm.drop(index_names, inplace=True) |
||
1543 | |||
1544 | # calculate potentials of ventialtion in industrial sites of WZ 23 |
||
1545 | # using parameters by Heitkoetter et al. |
||
1546 | vals = calculate_potentials( |
||
1547 | s_flex=S_FLEX_WZ, |
||
1548 | s_util=S_UTIL_WZ, |
||
1549 | s_inc=S_INC_WZ, |
||
1550 | s_dec=S_DEC_WZ, |
||
1551 | delta_t=DELTA_T_WZ, |
||
1552 | dsm=dsm, |
||
1553 | ) |
||
1554 | |||
1555 | columns = ["site_id"] + base_columns |
||
1556 | |||
1557 | ind_sites_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
1558 | ind_sites_df.columns = columns |
||
1559 | |||
1560 | # create tables |
||
1561 | create_table( |
||
1562 | df=cts_df, table=EgonEtragoElectricityCtsDsmTimeseries, engine=CON |
||
1563 | ) |
||
1564 | create_table( |
||
1565 | df=osm_df, |
||
1566 | table=EgonOsmIndLoadCurvesIndividualDsmTimeseries, |
||
1567 | engine=CON, |
||
1568 | ) |
||
1569 | create_table( |
||
1570 | df=ind_df, |
||
1571 | table=EgonDemandregioSitesIndElectricityDsmTimeseries, |
||
1572 | engine=CON, |
||
1573 | ) |
||
1574 | create_table( |
||
1575 | df=ind_sites_df, |
||
1576 | table=EgonSitesIndLoadCurvesIndividualDsmTimeseries, |
||
1577 | engine=CON, |
||
1578 | ) |
||
1579 | |||
1580 | |||
1581 | def dsm_cts_ind_processing(): |
||
1582 | dsm_cts_ind() |
||
1583 | |||
1584 | dsm_cts_ind_individual() |
||
1585 |