@@ 248-282 (lines=35) @@ | ||
245 | return dsm |
|
246 | ||
247 | ||
248 | def ind_osm_data_import_individual(ind_vent_cool_share): |
|
249 | """ |
|
250 | Import industry data per osm-area necessary to identify DSM-potential. |
|
251 | ---------- |
|
252 | ind_share: float |
|
253 | Share of considered application in industry demand |
|
254 | """ |
|
255 | ||
256 | # import load data |
|
257 | ||
258 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
259 | "ind_osm_loadcurves_individual" |
|
260 | ] |
|
261 | ||
262 | dsm = db.select_dataframe( |
|
263 | f""" |
|
264 | SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
|
265 | {sources['schema']}.{sources['table']} |
|
266 | """ |
|
267 | ) |
|
268 | ||
269 | # calculate share of timeseries for cooling and ventilation out of |
|
270 | # industry-data |
|
271 | ||
272 | timeseries = dsm["p_set"].copy() |
|
273 | ||
274 | for index, liste in timeseries.items(): |
|
275 | share = [float(item) * ind_vent_cool_share for item in liste] |
|
276 | ||
277 | timeseries.loc[index] = share |
|
278 | ||
279 | dsm["p_set"] = timeseries.copy() |
|
280 | ||
281 | return dsm |
|
282 | ||
283 | ||
284 | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
285 | """ |
|
@@ 212-243 (lines=32) @@ | ||
209 | return dsm |
|
210 | ||
211 | ||
212 | def ind_osm_data_import(ind_vent_cool_share): |
|
213 | """ |
|
214 | Import industry data per osm-area necessary to identify DSM-potential. |
|
215 | ---------- |
|
216 | ind_share: float |
|
217 | Share of considered application in industry demand |
|
218 | """ |
|
219 | ||
220 | # import load data |
|
221 | ||
222 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
223 | "ind_osm_loadcurves" |
|
224 | ] |
|
225 | ||
226 | dsm = db.select_dataframe( |
|
227 | f""" |
|
228 | SELECT bus, scn_name, p_set FROM |
|
229 | {sources['schema']}.{sources['table']} |
|
230 | """ |
|
231 | ) |
|
232 | ||
233 | # calculate share of timeseries for cooling and ventilation out of |
|
234 | # industry-data |
|
235 | ||
236 | timeseries = dsm["p_set"].copy() |
|
237 | ||
238 | for index, liste in timeseries.items(): |
|
239 | share = [float(item) * ind_vent_cool_share for item in liste] |
|
240 | ||
241 | timeseries.loc[index] = share |
|
242 | ||
243 | dsm["p_set"] = timeseries.copy() |
|
244 | ||
245 | return dsm |
|
246 |