Code Duplication    Length = 32-35 lines in 2 locations

src/egon/data/datasets/DSM_cts_ind.py 2 locations

@@ 248-282 (lines=35) @@
245
    return dsm
246
247
248
def ind_osm_data_import_individual(ind_vent_cool_share):
249
    """
250
    Import industry data per osm-area necessary to identify DSM-potential.
251
        ----------
252
    ind_share: float
253
        Share of considered application in industry demand
254
    """
255
256
    # import load data
257
258
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
259
        "ind_osm_loadcurves_individual"
260
    ]
261
262
    dsm = db.select_dataframe(
263
        f"""
264
        SELECT osm_id, bus_id as bus, scn_name, p_set FROM
265
        {sources['schema']}.{sources['table']}
266
        """
267
    )
268
269
    # calculate share of timeseries for cooling and ventilation out of
270
    # industry-data
271
272
    timeseries = dsm["p_set"].copy()
273
274
    for index, liste in timeseries.items():
275
        share = [float(item) * ind_vent_cool_share for item in liste]
276
277
        timeseries.loc[index] = share
278
279
    dsm["p_set"] = timeseries.copy()
280
281
    return dsm
282
283
284
def ind_sites_vent_data_import(ind_vent_share, wz):
285
    """
@@ 212-243 (lines=32) @@
209
    return dsm
210
211
212
def ind_osm_data_import(ind_vent_cool_share):
213
    """
214
    Import industry data per osm-area necessary to identify DSM-potential.
215
        ----------
216
    ind_share: float
217
        Share of considered application in industry demand
218
    """
219
220
    # import load data
221
222
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
223
        "ind_osm_loadcurves"
224
    ]
225
226
    dsm = db.select_dataframe(
227
        f"""
228
        SELECT bus, scn_name, p_set FROM
229
        {sources['schema']}.{sources['table']}
230
        """
231
    )
232
233
    # calculate share of timeseries for cooling and ventilation out of
234
    # industry-data
235
236
    timeseries = dsm["p_set"].copy()
237
238
    for index, liste in timeseries.items():
239
        share = [float(item) * ind_vent_cool_share for item in liste]
240
241
        timeseries.loc[index] = share
242
243
    dsm["p_set"] = timeseries.copy()
244
245
    return dsm
246