@@ 321-356 (lines=36) @@ | ||
318 | return dsm |
|
319 | ||
320 | ||
321 | def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
322 | """ |
|
323 | Import industry sites necessary to identify DSM-potential. |
|
324 | ---------- |
|
325 | ind_vent_share: float |
|
326 | Share of considered application in industry demand |
|
327 | wz: int |
|
328 | Wirtschaftszweig to be considered within industry sites |
|
329 | """ |
|
330 | ||
331 | # import load data |
|
332 | ||
333 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
334 | "ind_sites_loadcurves_individual" |
|
335 | ] |
|
336 | ||
337 | dsm = db.select_dataframe( |
|
338 | f""" |
|
339 | SELECT site_id, bus_id as bus, scn_name, p_set FROM |
|
340 | {sources['schema']}.{sources['table']} |
|
341 | WHERE wz = {wz} |
|
342 | """ |
|
343 | ) |
|
344 | ||
345 | # calculate share of timeseries for ventilation |
|
346 | ||
347 | timeseries = dsm["p_set"].copy() |
|
348 | ||
349 | for index, liste in timeseries.items(): |
|
350 | share = [float(item) * ind_vent_share for item in liste] |
|
351 | timeseries.loc[index] = share |
|
352 | ||
353 | dsm["p_set"] = timeseries.copy() |
|
354 | ||
355 | return dsm |
|
356 | ||
357 | ||
358 | def calc_ind_site_timeseries(scenario): |
|
359 | # calculate timeseries per site |
|
@@ 284-318 (lines=35) @@ | ||
281 | return dsm |
|
282 | ||
283 | ||
284 | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
285 | """ |
|
286 | Import industry sites necessary to identify DSM-potential. |
|
287 | ---------- |
|
288 | ind_vent_share: float |
|
289 | Share of considered application in industry demand |
|
290 | wz: int |
|
291 | Wirtschaftszweig to be considered within industry sites |
|
292 | """ |
|
293 | ||
294 | # import load data |
|
295 | ||
296 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
297 | "ind_sites_loadcurves" |
|
298 | ] |
|
299 | ||
300 | dsm = db.select_dataframe( |
|
301 | f""" |
|
302 | SELECT bus, scn_name, p_set FROM |
|
303 | {sources['schema']}.{sources['table']} |
|
304 | WHERE wz = {wz} |
|
305 | """ |
|
306 | ) |
|
307 | ||
308 | # calculate share of timeseries for ventilation |
|
309 | ||
310 | timeseries = dsm["p_set"].copy() |
|
311 | ||
312 | for index, liste in timeseries.items(): |
|
313 | share = [float(item) * ind_vent_share for item in liste] |
|
314 | timeseries.loc[index] = share |
|
315 | ||
316 | dsm["p_set"] = timeseries.copy() |
|
317 | ||
318 | return dsm |
|
319 | ||
320 | ||
321 | def ind_sites_vent_data_import_individual(ind_vent_share, wz): |