Total Complexity | 130 |
Total Lines | 2384 |
Duplicated Lines | 2.64 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.pypsaeur often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with importing data from |
||
2 | the pysa-eur-sec scenario parameter creation |
||
3 | """ |
||
4 | |||
5 | from pathlib import Path |
||
6 | from urllib.request import urlretrieve |
||
7 | import json |
||
8 | import shutil |
||
9 | |||
10 | from shapely.geometry import LineString |
||
11 | import geopandas as gpd |
||
12 | import importlib_resources as resources |
||
13 | import numpy as np |
||
14 | import pandas as pd |
||
15 | import pypsa |
||
16 | import requests |
||
17 | import yaml |
||
18 | |||
19 | from egon.data import __path__, config, db, logger |
||
20 | from egon.data.datasets import Dataset |
||
21 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
22 | from egon.data.datasets.scenario_parameters.parameters import ( |
||
23 | annualize_capital_costs, |
||
24 | ) |
||
25 | import egon.data.config |
||
26 | import egon.data.subprocess as subproc |
||
27 | |||
28 | |||
29 | class PreparePypsaEur(Dataset): |
||
30 | def __init__(self, dependencies): |
||
31 | super().__init__( |
||
32 | name="PreparePypsaEur", |
||
33 | version="0.0.42", |
||
34 | dependencies=dependencies, |
||
35 | tasks=( |
||
36 | download, |
||
37 | prepare_network, |
||
38 | ), |
||
39 | ) |
||
40 | |||
41 | |||
42 | class RunPypsaEur(Dataset): |
||
43 | def __init__(self, dependencies): |
||
44 | super().__init__( |
||
45 | name="SolvePypsaEur", |
||
46 | version="0.0.42", |
||
47 | dependencies=dependencies, |
||
48 | tasks=( |
||
49 | prepare_network_2, |
||
50 | execute, |
||
51 | solve_network, |
||
52 | clean_database, |
||
53 | electrical_neighbours_egon100, |
||
54 | h2_neighbours_egon2035, |
||
55 | # Dropped until we decided how we deal with the H2 grid |
||
56 | # overwrite_H2_pipeline_share, |
||
57 | ), |
||
58 | ) |
||
59 | |||
60 | def countries_list(): |
||
61 | return [ |
||
62 | "DE", |
||
63 | "AT", |
||
64 | "CH", |
||
65 | "CZ", |
||
66 | "PL", |
||
67 | "SE", |
||
68 | "NO", |
||
69 | "DK", |
||
70 | "GB", |
||
71 | "NL", |
||
72 | "BE", |
||
73 | "FR", |
||
74 | "LU", |
||
75 | ] |
||
76 | |||
77 | |||
78 | def h2_neighbours_egon2035(): |
||
79 | """ |
||
80 | This function load the pypsa_eur network for eGon2035, processes the H2 |
||
81 | buses and insert them into the grid.egon_etrago_bus table. |
||
82 | |||
83 | Returns |
||
84 | ------- |
||
85 | None. |
||
86 | |||
87 | """ |
||
88 | if "eGon2035" in config.settings()["egon-data"]["--scenarios"]: |
||
89 | # Delete buses from previous executions |
||
90 | db.execute_sql( |
||
91 | """ |
||
92 | DELETE FROM grid.egon_etrago_bus WHERE carrier = 'H2' |
||
93 | AND scn_name = 'eGon2035' |
||
94 | AND country <> 'DE' |
||
95 | """ |
||
96 | ) |
||
97 | |||
98 | # Load calculated network for eGon2035 |
||
99 | n = read_network(planning_horizon=2035) |
||
100 | |||
101 | # Filter only H2 buses in selected foreign countries |
||
102 | h2_bus = n.buses[(n.buses.country != "DE") & (n.buses.carrier == "H2")] |
||
103 | wanted_countries = countries_list() |
||
104 | h2_bus = h2_bus[ |
||
105 | (h2_bus.country.isin(wanted_countries)) |
||
106 | & (~h2_bus.index.str.contains("FR6")) |
||
107 | ] |
||
108 | |||
109 | # Add geometry column |
||
110 | h2_bus = ( |
||
111 | gpd.GeoDataFrame( |
||
112 | h2_bus, geometry=gpd.points_from_xy(h2_bus.x, h2_bus.y) |
||
113 | ) |
||
114 | .rename_geometry("geom") |
||
115 | .set_crs(4326) |
||
116 | ) |
||
117 | |||
118 | # Adjust dataframe to the database table format |
||
119 | h2_bus["scn_name"] = "eGon2035" |
||
120 | |||
121 | bus_id = db.next_etrago_id("bus") # will be change in PR1287 |
||
122 | ### Delete when PR1287 is merged ### |
||
123 | bus_id = range(bus_id, bus_id + len(h2_bus.index)) |
||
124 | #################################### |
||
125 | h2_bus["bus_id"] = bus_id |
||
126 | |||
127 | h2_bus.drop( |
||
128 | columns=[ |
||
129 | "unit", |
||
130 | "control", |
||
131 | "generator", |
||
132 | "location", |
||
133 | "substation_off", |
||
134 | "substation_lv", |
||
135 | "sub_network", |
||
136 | ], |
||
137 | inplace=True, |
||
138 | ) |
||
139 | |||
140 | # Connect to local database and write results |
||
141 | engine = db.engine() |
||
142 | |||
143 | h2_bus.to_postgis( |
||
144 | "egon_etrago_bus", |
||
145 | engine, |
||
146 | schema="grid", |
||
147 | if_exists="append", |
||
148 | index=False, |
||
149 | ) |
||
150 | else: |
||
151 | print("eGon2035 is not in the list of scenarios") |
||
152 | |||
153 | |||
154 | def download(): |
||
155 | cwd = Path(".") |
||
156 | filepath = cwd / "run-pypsa-eur" |
||
157 | filepath.mkdir(parents=True, exist_ok=True) |
||
158 | |||
159 | pypsa_eur_repos = filepath / "pypsa-eur" |
||
160 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
161 | if not pypsa_eur_repos.exists(): |
||
162 | subproc.run( |
||
163 | [ |
||
164 | "git", |
||
165 | "clone", |
||
166 | "--branch", |
||
167 | "master", |
||
168 | "https://github.com/PyPSA/pypsa-eur.git", |
||
169 | pypsa_eur_repos, |
||
170 | ] |
||
171 | ) |
||
172 | |||
173 | subproc.run( |
||
174 | [ |
||
175 | "git", |
||
176 | "checkout", |
||
177 | "2119f4cee05c256509f48d4e9fe0d8fd9e9e3632", |
||
178 | ], |
||
179 | cwd=pypsa_eur_repos, |
||
180 | ) |
||
181 | |||
182 | # Add gurobi solver to environment: |
||
183 | # Read YAML file |
||
184 | # path_to_env = pypsa_eur_repos / "envs" / "environment.yaml" |
||
185 | # with open(path_to_env, "r") as stream: |
||
186 | # env = yaml.safe_load(stream) |
||
187 | |||
188 | # The version of gurobipy has to fit to the version of gurobi. |
||
189 | # Since we mainly use gurobi 10.0 this is set here. |
||
190 | # env["dependencies"][-1]["pip"].append("gurobipy==10.0.0") |
||
191 | |||
192 | # Set python version to <3.12 |
||
193 | # Python<=3.12 needs gurobipy>=11.0, in case gurobipy is updated, |
||
194 | # this can be removed |
||
195 | # env["dependencies"] = [ |
||
196 | # "python>=3.8,<3.12" if x == "python>=3.8" else x |
||
197 | # for x in env["dependencies"] |
||
198 | # ] |
||
199 | |||
200 | # Limit geopandas version |
||
201 | # our pypsa-eur version is not compatible to geopandas>1 |
||
202 | # env["dependencies"] = [ |
||
203 | # "geopandas>=0.11.0,<1" if x == "geopandas>=0.11.0" else x |
||
204 | # for x in env["dependencies"] |
||
205 | # ] |
||
206 | |||
207 | # Write YAML file |
||
208 | # with open(path_to_env, "w", encoding="utf8") as outfile: |
||
209 | # yaml.dump( |
||
210 | # env, outfile, default_flow_style=False, allow_unicode=True |
||
211 | # ) |
||
212 | |||
213 | # Copy config file for egon-data to pypsa-eur directory |
||
214 | shutil.copy( |
||
215 | Path( |
||
216 | __path__[0], "datasets", "pypsaeur", "config_prepare.yaml" |
||
217 | ), |
||
218 | pypsa_eur_repos / "config" / "config.yaml", |
||
219 | ) |
||
220 | |||
221 | # Copy custom_extra_functionality.py file for egon-data to pypsa-eur directory |
||
222 | shutil.copy( |
||
223 | Path( |
||
224 | __path__[0], |
||
225 | "datasets", |
||
226 | "pypsaeur", |
||
227 | "custom_extra_functionality.py", |
||
228 | ), |
||
229 | pypsa_eur_repos / "data", |
||
230 | ) |
||
231 | |||
232 | with open(filepath / "Snakefile", "w") as snakefile: |
||
233 | snakefile.write( |
||
234 | resources.read_text( |
||
235 | "egon.data.datasets.pypsaeur", "Snakefile" |
||
236 | ) |
||
237 | ) |
||
238 | |||
239 | # Copy era5 weather data to folder for pypsaeur |
||
240 | era5_pypsaeur_path = filepath / "pypsa-eur" / "cutouts" |
||
241 | |||
242 | if not era5_pypsaeur_path.exists(): |
||
243 | era5_pypsaeur_path.mkdir(parents=True, exist_ok=True) |
||
244 | copy_from = config.datasets()["era5_weather_data"]["targets"][ |
||
245 | "weather_data" |
||
246 | ]["path"] |
||
247 | filename = "europe-2011-era5.nc" |
||
248 | shutil.copy( |
||
249 | copy_from + "/" + filename, era5_pypsaeur_path / filename |
||
250 | ) |
||
251 | |||
252 | # Workaround to download natura, shipdensity and globalenergymonitor |
||
253 | # data, which is not working in the regular snakemake workflow. |
||
254 | # The same files are downloaded from the same directory as in pypsa-eur |
||
255 | # version 0.10 here. Is is stored in the folders from pypsa-eur. |
||
256 | if not (filepath / "pypsa-eur" / "resources").exists(): |
||
257 | (filepath / "pypsa-eur" / "resources").mkdir( |
||
258 | parents=True, exist_ok=True |
||
259 | ) |
||
260 | urlretrieve( |
||
261 | "https://zenodo.org/record/4706686/files/natura.tiff", |
||
262 | filepath / "pypsa-eur" / "resources" / "natura.tiff", |
||
263 | ) |
||
264 | |||
265 | if not (filepath / "pypsa-eur" / "data").exists(): |
||
266 | (filepath / "pypsa-eur" / "data").mkdir( |
||
267 | parents=True, exist_ok=True |
||
268 | ) |
||
269 | urlretrieve( |
||
270 | "https://zenodo.org/record/13757228/files/shipdensity_global.zip", |
||
271 | filepath / "pypsa-eur" / "data" / "shipdensity_global.zip", |
||
272 | ) |
||
273 | |||
274 | if not ( |
||
275 | filepath |
||
276 | / "pypsa-eur" |
||
277 | / "zenodo.org" |
||
278 | / "records" |
||
279 | / "13757228" |
||
280 | / "files" |
||
281 | ).exists(): |
||
282 | ( |
||
283 | filepath |
||
284 | / "pypsa-eur" |
||
285 | / "zenodo.org" |
||
286 | / "records" |
||
287 | / "13757228" |
||
288 | / "files" |
||
289 | ).mkdir(parents=True, exist_ok=True) |
||
290 | |||
291 | urlretrieve( |
||
292 | "https://zenodo.org/records/10356004/files/ENSPRESO_BIOMASS.xlsx", |
||
293 | filepath |
||
294 | / "pypsa-eur" |
||
295 | / "zenodo.org" |
||
296 | / "records" |
||
297 | / "13757228" |
||
298 | / "files" |
||
299 | / "ENSPRESO_BIOMASS.xlsx", |
||
300 | ) |
||
301 | |||
302 | if not (filepath / "pypsa-eur" / "data" / "gem").exists(): |
||
303 | (filepath / "pypsa-eur" / "data" / "gem").mkdir( |
||
304 | parents=True, exist_ok=True |
||
305 | ) |
||
306 | |||
307 | r = requests.get( |
||
308 | "https://tubcloud.tu-berlin.de/s/LMBJQCsN6Ez5cN2/download/" |
||
309 | "Europe-Gas-Tracker-2024-05.xlsx" |
||
310 | ) |
||
311 | with open( |
||
312 | filepath |
||
313 | / "pypsa-eur" |
||
314 | / "data" |
||
315 | / "gem" |
||
316 | / "Europe-Gas-Tracker-2024-05.xlsx", |
||
317 | "wb", |
||
318 | ) as outfile: |
||
319 | outfile.write(r.content) |
||
320 | |||
321 | if not (filepath / "pypsa-eur" / "data" / "gem").exists(): |
||
322 | (filepath / "pypsa-eur" / "data" / "gem").mkdir( |
||
323 | parents=True, exist_ok=True |
||
324 | ) |
||
325 | |||
326 | r = requests.get( |
||
327 | "https://tubcloud.tu-berlin.de/s/Aqebo3rrQZWKGsG/download/" |
||
328 | "Global-Steel-Plant-Tracker-April-2024-Standard-Copy-V1.xlsx" |
||
329 | ) |
||
330 | with open( |
||
331 | filepath |
||
332 | / "pypsa-eur" |
||
333 | / "data" |
||
334 | / "gem" |
||
335 | / "Global-Steel-Plant-Tracker-April-2024-Standard-Copy-V1.xlsx", |
||
336 | "wb", |
||
337 | ) as outfile: |
||
338 | outfile.write(r.content) |
||
339 | |||
340 | else: |
||
341 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
342 | |||
343 | |||
344 | def prepare_network(): |
||
345 | cwd = Path(".") |
||
346 | filepath = cwd / "run-pypsa-eur" |
||
347 | |||
348 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
349 | subproc.run( |
||
350 | [ |
||
351 | "snakemake", |
||
352 | "-j1", |
||
353 | "--directory", |
||
354 | filepath, |
||
355 | "--snakefile", |
||
356 | filepath / "Snakefile", |
||
357 | "--use-conda", |
||
358 | "--conda-frontend=conda", |
||
359 | "--cores", |
||
360 | "8", |
||
361 | "prepare", |
||
362 | ] |
||
363 | ) |
||
364 | execute() |
||
365 | |||
366 | path = filepath / "pypsa-eur" / "results" / "prenetworks" |
||
367 | |||
368 | path_2 = path / "prenetwork_post-manipulate_pre-solve" |
||
369 | path_2.mkdir(parents=True, exist_ok=True) |
||
370 | |||
371 | with open( |
||
372 | __path__[0] + "/datasets/pypsaeur/config_prepare.yaml", "r" |
||
373 | ) as stream: |
||
374 | data_config = yaml.safe_load(stream) |
||
375 | |||
376 | for i in range(0, len(data_config["scenario"]["planning_horizons"])): |
||
377 | nc_file = ( |
||
378 | f"base_s_{data_config['scenario']['clusters'][0]}" |
||
379 | f"_l{data_config['scenario']['ll'][0]}" |
||
380 | f"_{data_config['scenario']['opts'][0]}" |
||
381 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
382 | f"_{data_config['scenario']['planning_horizons'][i]}.nc" |
||
383 | ) |
||
384 | |||
385 | shutil.copy(Path(path, nc_file), path_2) |
||
386 | |||
387 | else: |
||
388 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
389 | |||
390 | |||
391 | def prepare_network_2(): |
||
392 | cwd = Path(".") |
||
393 | filepath = cwd / "run-pypsa-eur" |
||
394 | |||
395 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
396 | shutil.copy( |
||
397 | Path(__path__[0], "datasets", "pypsaeur", "config_solve.yaml"), |
||
398 | filepath / "pypsa-eur" / "config" / "config.yaml", |
||
399 | ) |
||
400 | |||
401 | subproc.run( |
||
402 | [ |
||
403 | "snakemake", |
||
404 | "-j1", |
||
405 | "--directory", |
||
406 | filepath, |
||
407 | "--snakefile", |
||
408 | filepath / "Snakefile", |
||
409 | "--use-conda", |
||
410 | "--conda-frontend=conda", |
||
411 | "--cores", |
||
412 | "8", |
||
413 | "prepare", |
||
414 | ] |
||
415 | ) |
||
416 | else: |
||
417 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
418 | |||
419 | |||
420 | def solve_network(): |
||
421 | cwd = Path(".") |
||
422 | filepath = cwd / "run-pypsa-eur" |
||
423 | |||
424 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
425 | subproc.run( |
||
426 | [ |
||
427 | "snakemake", |
||
428 | "-j1", |
||
429 | "--cores", |
||
430 | "8", |
||
431 | "--directory", |
||
432 | filepath, |
||
433 | "--snakefile", |
||
434 | filepath / "Snakefile", |
||
435 | "--use-conda", |
||
436 | "--conda-frontend=conda", |
||
437 | "solve", |
||
438 | ] |
||
439 | ) |
||
440 | |||
441 | postprocessing_biomass_2045() |
||
442 | |||
443 | subproc.run( |
||
444 | [ |
||
445 | "snakemake", |
||
446 | "-j1", |
||
447 | "--directory", |
||
448 | filepath, |
||
449 | "--snakefile", |
||
450 | filepath / "Snakefile", |
||
451 | "--use-conda", |
||
452 | "--conda-frontend=conda", |
||
453 | "summary", |
||
454 | ] |
||
455 | ) |
||
456 | else: |
||
457 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
458 | |||
459 | |||
460 | View Code Duplication | def read_network(planning_horizon=2045): |
|
|
|||
461 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
462 | with open( |
||
463 | __path__[0] + "/datasets/pypsaeur/config_solve.yaml", "r" |
||
464 | ) as stream: |
||
465 | data_config = yaml.safe_load(stream) |
||
466 | |||
467 | target_file = ( |
||
468 | Path(".") |
||
469 | / "run-pypsa-eur" |
||
470 | / "pypsa-eur" |
||
471 | / "results" |
||
472 | / data_config["run"]["name"] |
||
473 | / "postnetworks" |
||
474 | / f"base_s_{data_config['scenario']['clusters'][0]}" |
||
475 | f"_l{data_config['scenario']['ll'][0]}" |
||
476 | f"_{data_config['scenario']['opts'][0]}" |
||
477 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
478 | f"_{planning_horizon}.nc" |
||
479 | ) |
||
480 | |||
481 | else: |
||
482 | target_file = ( |
||
483 | Path(".") |
||
484 | / "data_bundle_egon_data" |
||
485 | / "pypsa_eur" |
||
486 | / "postnetworks" |
||
487 | / f"base_s_39_lc1.25__cb40ex0-T-H-I-B-solar+p3-dist1_{planning_horizon}.nc" |
||
488 | ) |
||
489 | |||
490 | return pypsa.Network(target_file) |
||
491 | |||
492 | |||
493 | def clean_database(): |
||
494 | """Remove all components abroad for eGon100RE of the database |
||
495 | |||
496 | Remove all components abroad and their associated time series of |
||
497 | the datase for the scenario 'eGon100RE'. |
||
498 | |||
499 | Parameters |
||
500 | ---------- |
||
501 | None |
||
502 | |||
503 | Returns |
||
504 | ------- |
||
505 | None |
||
506 | |||
507 | """ |
||
508 | scn_name = "eGon100RE" |
||
509 | |||
510 | comp_one_port = ["load", "generator", "store", "storage"] |
||
511 | |||
512 | # delete existing components and associated timeseries |
||
513 | for comp in comp_one_port: |
||
514 | db.execute_sql( |
||
515 | f""" |
||
516 | DELETE FROM {"grid.egon_etrago_" + comp + "_timeseries"} |
||
517 | WHERE {comp + "_id"} IN ( |
||
518 | SELECT {comp + "_id"} FROM {"grid.egon_etrago_" + comp} |
||
519 | WHERE bus IN ( |
||
520 | SELECT bus_id FROM grid.egon_etrago_bus |
||
521 | WHERE country != 'DE' |
||
522 | AND scn_name = '{scn_name}') |
||
523 | AND scn_name = '{scn_name}' |
||
524 | ); |
||
525 | |||
526 | DELETE FROM {"grid.egon_etrago_" + comp} |
||
527 | WHERE bus IN ( |
||
528 | SELECT bus_id FROM grid.egon_etrago_bus |
||
529 | WHERE country != 'DE' |
||
530 | AND scn_name = '{scn_name}') |
||
531 | AND scn_name = '{scn_name}';""" |
||
532 | ) |
||
533 | |||
534 | comp_2_ports = [ |
||
535 | "line", |
||
536 | "link", |
||
537 | ] |
||
538 | |||
539 | for comp, id in zip(comp_2_ports, ["line_id", "link_id"]): |
||
540 | db.execute_sql( |
||
541 | f""" |
||
542 | DELETE FROM {"grid.egon_etrago_" + comp + "_timeseries"} |
||
543 | WHERE scn_name = '{scn_name}' |
||
544 | AND {id} IN ( |
||
545 | SELECT {id} FROM {"grid.egon_etrago_" + comp} |
||
546 | WHERE "bus0" IN ( |
||
547 | SELECT bus_id FROM grid.egon_etrago_bus |
||
548 | WHERE country != 'DE' |
||
549 | AND scn_name = '{scn_name}' |
||
550 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
||
551 | AND "bus1" IN ( |
||
552 | SELECT bus_id FROM grid.egon_etrago_bus |
||
553 | WHERE country != 'DE' |
||
554 | AND scn_name = '{scn_name}' |
||
555 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
||
556 | ); |
||
557 | |||
558 | |||
559 | DELETE FROM {"grid.egon_etrago_" + comp} |
||
560 | WHERE scn_name = '{scn_name}' |
||
561 | AND "bus0" IN ( |
||
562 | SELECT bus_id FROM grid.egon_etrago_bus |
||
563 | WHERE country != 'DE' |
||
564 | AND scn_name = '{scn_name}' |
||
565 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
||
566 | AND "bus1" IN ( |
||
567 | SELECT bus_id FROM grid.egon_etrago_bus |
||
568 | WHERE country != 'DE' |
||
569 | AND scn_name = '{scn_name}' |
||
570 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
||
571 | ;""" |
||
572 | ) |
||
573 | |||
574 | db.execute_sql( |
||
575 | f""" |
||
576 | DELETE FROM grid.egon_etrago_bus |
||
577 | WHERE scn_name = '{scn_name}' |
||
578 | AND country <> 'DE' |
||
579 | AND carrier <> 'AC' |
||
580 | """ |
||
581 | ) |
||
582 | |||
583 | |||
584 | def electrical_neighbours_egon100(): |
||
585 | if "eGon100RE" in egon.data.config.settings()["egon-data"]["--scenarios"]: |
||
586 | neighbor_reduction() |
||
587 | |||
588 | else: |
||
589 | print( |
||
590 | "eGon100RE is not in the list of created scenarios, this task is skipped." |
||
591 | ) |
||
592 | |||
593 | |||
594 | def combine_decentral_and_rural_heat(network_solved, network_prepared): |
||
595 | |||
596 | for comp in network_solved.iterate_components(): |
||
597 | |||
598 | if comp.name in ["Bus", "Link", "Store"]: |
||
599 | urban_decentral = comp.df[ |
||
600 | comp.df.carrier.str.contains("urban decentral") |
||
601 | ] |
||
602 | rural = comp.df[comp.df.carrier.str.contains("rural")] |
||
603 | for i, row in urban_decentral.iterrows(): |
||
604 | if not "DE" in i: |
||
605 | if comp.name in ["Bus"]: |
||
606 | network_solved.remove("Bus", i) |
||
607 | if comp.name in ["Link", "Generator"]: |
||
608 | if ( |
||
609 | i.replace("urban decentral", "rural") |
||
610 | in rural.index |
||
611 | ): |
||
612 | rural.loc[ |
||
613 | i.replace("urban decentral", "rural"), |
||
614 | "p_nom_opt", |
||
615 | ] += urban_decentral.loc[i, "p_nom_opt"] |
||
616 | rural.loc[ |
||
617 | i.replace("urban decentral", "rural"), "p_nom" |
||
618 | ] += urban_decentral.loc[i, "p_nom"] |
||
619 | network_solved.remove(comp.name, i) |
||
620 | else: |
||
621 | print(i) |
||
622 | comp.df.loc[i, "bus0"] = comp.df.loc[ |
||
623 | i, "bus0" |
||
624 | ].replace("urban decentral", "rural") |
||
625 | comp.df.loc[i, "bus1"] = comp.df.loc[ |
||
626 | i, "bus1" |
||
627 | ].replace("urban decentral", "rural") |
||
628 | comp.df.loc[i, "carrier"] = comp.df.loc[ |
||
629 | i, "carrier" |
||
630 | ].replace("urban decentral", "rural") |
||
631 | if comp.name in ["Store"]: |
||
632 | if ( |
||
633 | i.replace("urban decentral", "rural") |
||
634 | in rural.index |
||
635 | ): |
||
636 | rural.loc[ |
||
637 | i.replace("urban decentral", "rural"), |
||
638 | "e_nom_opt", |
||
639 | ] += urban_decentral.loc[i, "e_nom_opt"] |
||
640 | rural.loc[ |
||
641 | i.replace("urban decentral", "rural"), "e_nom" |
||
642 | ] += urban_decentral.loc[i, "e_nom"] |
||
643 | network_solved.remove(comp.name, i) |
||
644 | |||
645 | else: |
||
646 | print(i) |
||
647 | network_solved.stores.loc[i, "bus"] = ( |
||
648 | network_solved.stores.loc[i, "bus"].replace( |
||
649 | "urban decentral", "rural" |
||
650 | ) |
||
651 | ) |
||
652 | network_solved.stores.loc[i, "carrier"] = ( |
||
653 | "rural water tanks" |
||
654 | ) |
||
655 | |||
656 | urban_decentral_loads = network_prepared.loads[ |
||
657 | network_prepared.loads.carrier.str.contains("urban decentral") |
||
658 | ] |
||
659 | |||
660 | for i, row in urban_decentral_loads.iterrows(): |
||
661 | if i in network_prepared.loads_t.p_set.columns: |
||
662 | network_prepared.loads_t.p_set[ |
||
663 | i.replace("urban decentral", "rural") |
||
664 | ] += network_prepared.loads_t.p_set[i] |
||
665 | network_prepared.mremove("Load", urban_decentral_loads.index) |
||
666 | |||
667 | return network_prepared, network_solved |
||
668 | |||
669 | |||
670 | def neighbor_reduction(): |
||
671 | network_solved = read_network(planning_horizon=2045) |
||
672 | network_prepared = prepared_network(planning_horizon="2045") |
||
673 | |||
674 | # network.links.drop("pipe_retrofit", axis="columns", inplace=True) |
||
675 | |||
676 | wanted_countries = countries_list() |
||
677 | |||
678 | foreign_buses = network_solved.buses[ |
||
679 | (~network_solved.buses.index.str.contains("|".join(wanted_countries))) |
||
680 | | (network_solved.buses.index.str.contains("FR6")) |
||
681 | ] |
||
682 | network_solved.buses = network_solved.buses.drop( |
||
683 | network_solved.buses.loc[foreign_buses.index].index |
||
684 | ) |
||
685 | |||
686 | # Add H2 demand of Fischer-Tropsch process and methanolisation |
||
687 | # to industrial H2 demands |
||
688 | industrial_hydrogen = network_prepared.loads.loc[ |
||
689 | network_prepared.loads.carrier == "H2 for industry" |
||
690 | ] |
||
691 | fischer_tropsch = ( |
||
692 | network_solved.links_t.p0[ |
||
693 | network_solved.links.loc[ |
||
694 | network_solved.links.carrier == "Fischer-Tropsch" |
||
695 | ].index |
||
696 | ] |
||
697 | .mul(network_solved.snapshot_weightings.generators, axis=0) |
||
698 | .sum() |
||
699 | ) |
||
700 | methanolisation = ( |
||
701 | network_solved.links_t.p0[ |
||
702 | network_solved.links.loc[ |
||
703 | network_solved.links.carrier == "methanolisation" |
||
704 | ].index |
||
705 | ] |
||
706 | .mul(network_solved.snapshot_weightings.generators, axis=0) |
||
707 | .sum() |
||
708 | ) |
||
709 | for i, row in industrial_hydrogen.iterrows(): |
||
710 | network_prepared.loads.loc[i, "p_set"] += ( |
||
711 | fischer_tropsch[ |
||
712 | fischer_tropsch.index.str.startswith(row.bus[:5]) |
||
713 | ].sum() |
||
714 | / 8760 |
||
715 | ) |
||
716 | network_prepared.loads.loc[i, "p_set"] += ( |
||
717 | methanolisation[ |
||
718 | methanolisation.index.str.startswith(row.bus[:5]) |
||
719 | ].sum() |
||
720 | / 8760 |
||
721 | ) |
||
722 | # drop foreign lines and links from the 2nd row |
||
723 | |||
724 | network_solved.lines = network_solved.lines.drop( |
||
725 | network_solved.lines[ |
||
726 | ( |
||
727 | network_solved.lines["bus0"].isin(network_solved.buses.index) |
||
728 | == False |
||
729 | ) |
||
730 | & ( |
||
731 | network_solved.lines["bus1"].isin(network_solved.buses.index) |
||
732 | == False |
||
733 | ) |
||
734 | ].index |
||
735 | ) |
||
736 | |||
737 | # select all lines which have at bus1 the bus which is kept |
||
738 | lines_cb_1 = network_solved.lines[ |
||
739 | ( |
||
740 | network_solved.lines["bus0"].isin(network_solved.buses.index) |
||
741 | == False |
||
742 | ) |
||
743 | ] |
||
744 | |||
745 | # create a load at bus1 with the line's hourly loading |
||
746 | for i, k in zip(lines_cb_1.bus1.values, lines_cb_1.index): |
||
747 | |||
748 | # Copy loading of lines into hourly resolution |
||
749 | pset = pd.Series( |
||
750 | index=network_prepared.snapshots, |
||
751 | data=network_solved.lines_t.p1[k].resample("H").ffill(), |
||
752 | ) |
||
753 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
754 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
755 | |||
756 | # Loads are all imported from the prepared network in the end |
||
757 | network_prepared.add( |
||
758 | "Load", |
||
759 | "slack_fix " + i + " " + k, |
||
760 | bus=i, |
||
761 | p_set=pset, |
||
762 | carrier=lines_cb_1.loc[k, "carrier"], |
||
763 | ) |
||
764 | |||
765 | # select all lines which have at bus0 the bus which is kept |
||
766 | lines_cb_0 = network_solved.lines[ |
||
767 | ( |
||
768 | network_solved.lines["bus1"].isin(network_solved.buses.index) |
||
769 | == False |
||
770 | ) |
||
771 | ] |
||
772 | |||
773 | # create a load at bus0 with the line's hourly loading |
||
774 | for i, k in zip(lines_cb_0.bus0.values, lines_cb_0.index): |
||
775 | # Copy loading of lines into hourly resolution |
||
776 | pset = pd.Series( |
||
777 | index=network_prepared.snapshots, |
||
778 | data=network_solved.lines_t.p0[k].resample("H").ffill(), |
||
779 | ) |
||
780 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
781 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
782 | |||
783 | network_prepared.add( |
||
784 | "Load", |
||
785 | "slack_fix " + i + " " + k, |
||
786 | bus=i, |
||
787 | p_set=pset, |
||
788 | carrier=lines_cb_0.loc[k, "carrier"], |
||
789 | ) |
||
790 | |||
791 | # do the same for links |
||
792 | network_solved.mremove( |
||
793 | "Link", |
||
794 | network_solved.links[ |
||
795 | (~network_solved.links.bus0.isin(network_solved.buses.index)) |
||
796 | | (~network_solved.links.bus1.isin(network_solved.buses.index)) |
||
797 | ].index, |
||
798 | ) |
||
799 | |||
800 | # select all links which have at bus1 the bus which is kept |
||
801 | links_cb_1 = network_solved.links[ |
||
802 | ( |
||
803 | network_solved.links["bus0"].isin(network_solved.buses.index) |
||
804 | == False |
||
805 | ) |
||
806 | ] |
||
807 | |||
808 | # create a load at bus1 with the link's hourly loading |
||
809 | for i, k in zip(links_cb_1.bus1.values, links_cb_1.index): |
||
810 | pset = pd.Series( |
||
811 | index=network_prepared.snapshots, |
||
812 | data=network_solved.links_t.p1[k].resample("H").ffill(), |
||
813 | ) |
||
814 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
815 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
816 | |||
817 | network_prepared.add( |
||
818 | "Load", |
||
819 | "slack_fix_links " + i + " " + k, |
||
820 | bus=i, |
||
821 | p_set=pset, |
||
822 | carrier=links_cb_1.loc[k, "carrier"], |
||
823 | ) |
||
824 | |||
825 | # select all links which have at bus0 the bus which is kept |
||
826 | links_cb_0 = network_solved.links[ |
||
827 | ( |
||
828 | network_solved.links["bus1"].isin(network_solved.buses.index) |
||
829 | == False |
||
830 | ) |
||
831 | ] |
||
832 | |||
833 | # create a load at bus0 with the link's hourly loading |
||
834 | for i, k in zip(links_cb_0.bus0.values, links_cb_0.index): |
||
835 | pset = pd.Series( |
||
836 | index=network_prepared.snapshots, |
||
837 | data=network_solved.links_t.p0[k].resample("H").ffill(), |
||
838 | ) |
||
839 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
840 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
841 | |||
842 | network_prepared.add( |
||
843 | "Load", |
||
844 | "slack_fix_links " + i + " " + k, |
||
845 | bus=i, |
||
846 | p_set=pset, |
||
847 | carrier=links_cb_0.carrier[k], |
||
848 | ) |
||
849 | |||
850 | # drop remaining foreign components |
||
851 | for comp in network_solved.iterate_components(): |
||
852 | if "bus0" in comp.df.columns: |
||
853 | network_solved.mremove( |
||
854 | comp.name, |
||
855 | comp.df[~comp.df.bus0.isin(network_solved.buses.index)].index, |
||
856 | ) |
||
857 | network_solved.mremove( |
||
858 | comp.name, |
||
859 | comp.df[~comp.df.bus1.isin(network_solved.buses.index)].index, |
||
860 | ) |
||
861 | elif "bus" in comp.df.columns: |
||
862 | network_solved.mremove( |
||
863 | comp.name, |
||
864 | comp.df[~comp.df.bus.isin(network_solved.buses.index)].index, |
||
865 | ) |
||
866 | |||
867 | # Combine urban decentral and rural heat |
||
868 | network_prepared, network_solved = combine_decentral_and_rural_heat( |
||
869 | network_solved, network_prepared |
||
870 | ) |
||
871 | |||
872 | # writing components of neighboring countries to etrago tables |
||
873 | |||
874 | # Set country tag for all buses |
||
875 | network_solved.buses.country = network_solved.buses.index.str[:2] |
||
876 | neighbors = network_solved.buses[network_solved.buses.country != "DE"] |
||
877 | |||
878 | neighbors["new_index"] = ( |
||
879 | db.next_etrago_id("bus") + neighbors.reset_index().index |
||
880 | ) |
||
881 | |||
882 | # Use index of AC buses created by electrical_neigbors |
||
883 | foreign_ac_buses = db.select_dataframe( |
||
884 | """ |
||
885 | SELECT * FROM grid.egon_etrago_bus |
||
886 | WHERE carrier = 'AC' AND v_nom = 380 |
||
887 | AND country!= 'DE' AND scn_name ='eGon100RE' |
||
888 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data) |
||
889 | """ |
||
890 | ) |
||
891 | buses_with_defined_id = neighbors[ |
||
892 | (neighbors.carrier == "AC") |
||
893 | & (neighbors.country.isin(foreign_ac_buses.country.values)) |
||
894 | ].index |
||
895 | neighbors.loc[buses_with_defined_id, "new_index"] = ( |
||
896 | foreign_ac_buses.set_index("x") |
||
897 | .loc[neighbors.loc[buses_with_defined_id, "x"]] |
||
898 | .bus_id.values |
||
899 | ) |
||
900 | |||
901 | # lines, the foreign crossborder lines |
||
902 | # (without crossborder lines to Germany!) |
||
903 | |||
904 | neighbor_lines = network_solved.lines[ |
||
905 | network_solved.lines.bus0.isin(neighbors.index) |
||
906 | & network_solved.lines.bus1.isin(neighbors.index) |
||
907 | ] |
||
908 | if not network_solved.lines_t["s_max_pu"].empty: |
||
909 | neighbor_lines_t = network_prepared.lines_t["s_max_pu"][ |
||
910 | neighbor_lines.index |
||
911 | ] |
||
912 | |||
913 | neighbor_lines.reset_index(inplace=True) |
||
914 | neighbor_lines.bus0 = ( |
||
915 | neighbors.loc[neighbor_lines.bus0, "new_index"].reset_index().new_index |
||
916 | ) |
||
917 | neighbor_lines.bus1 = ( |
||
918 | neighbors.loc[neighbor_lines.bus1, "new_index"].reset_index().new_index |
||
919 | ) |
||
920 | neighbor_lines.index += db.next_etrago_id("line") |
||
921 | |||
922 | if not network_solved.lines_t["s_max_pu"].empty: |
||
923 | for i in neighbor_lines_t.columns: |
||
924 | new_index = neighbor_lines[neighbor_lines["name"] == i].index |
||
925 | neighbor_lines_t.rename(columns={i: new_index[0]}, inplace=True) |
||
926 | |||
927 | # links |
||
928 | neighbor_links = network_solved.links[ |
||
929 | network_solved.links.bus0.isin(neighbors.index) |
||
930 | & network_solved.links.bus1.isin(neighbors.index) |
||
931 | ] |
||
932 | |||
933 | neighbor_links.reset_index(inplace=True) |
||
934 | neighbor_links.bus0 = ( |
||
935 | neighbors.loc[neighbor_links.bus0, "new_index"].reset_index().new_index |
||
936 | ) |
||
937 | neighbor_links.bus1 = ( |
||
938 | neighbors.loc[neighbor_links.bus1, "new_index"].reset_index().new_index |
||
939 | ) |
||
940 | neighbor_links.index += db.next_etrago_id("link") |
||
941 | |||
942 | # generators |
||
943 | neighbor_gens = network_solved.generators[ |
||
944 | network_solved.generators.bus.isin(neighbors.index) |
||
945 | ] |
||
946 | neighbor_gens_t = network_prepared.generators_t["p_max_pu"][ |
||
947 | neighbor_gens[ |
||
948 | neighbor_gens.index.isin( |
||
949 | network_prepared.generators_t["p_max_pu"].columns |
||
950 | ) |
||
951 | ].index |
||
952 | ] |
||
953 | |||
954 | gen_time = [ |
||
955 | "solar", |
||
956 | "onwind", |
||
957 | "solar rooftop", |
||
958 | "offwind-ac", |
||
959 | "offwind-dc", |
||
960 | "solar-hsat", |
||
961 | "urban central solar thermal", |
||
962 | "rural solar thermal", |
||
963 | "offwind-float", |
||
964 | ] |
||
965 | |||
966 | missing_gent = neighbor_gens[ |
||
967 | neighbor_gens["carrier"].isin(gen_time) |
||
968 | & ~neighbor_gens.index.isin(neighbor_gens_t.columns) |
||
969 | ].index |
||
970 | |||
971 | gen_timeseries = network_prepared.generators_t["p_max_pu"].copy() |
||
972 | for mgt in missing_gent: # mgt: missing generator timeseries |
||
973 | try: |
||
974 | neighbor_gens_t[mgt] = gen_timeseries.loc[:, mgt[0:-5]] |
||
975 | except: |
||
976 | print(f"There are not timeseries for {mgt}") |
||
977 | |||
978 | neighbor_gens.reset_index(inplace=True) |
||
979 | neighbor_gens.bus = ( |
||
980 | neighbors.loc[neighbor_gens.bus, "new_index"].reset_index().new_index |
||
981 | ) |
||
982 | neighbor_gens.index += db.next_etrago_id("generator") |
||
983 | |||
984 | for i in neighbor_gens_t.columns: |
||
985 | new_index = neighbor_gens[neighbor_gens["Generator"] == i].index |
||
986 | neighbor_gens_t.rename(columns={i: new_index[0]}, inplace=True) |
||
987 | |||
988 | # loads |
||
989 | # imported from prenetwork in 1h-resolution |
||
990 | neighbor_loads = network_prepared.loads[ |
||
991 | network_prepared.loads.bus.isin(neighbors.index) |
||
992 | ] |
||
993 | neighbor_loads_t_index = neighbor_loads.index[ |
||
994 | neighbor_loads.index.isin(network_prepared.loads_t.p_set.columns) |
||
995 | ] |
||
996 | neighbor_loads_t = network_prepared.loads_t["p_set"][ |
||
997 | neighbor_loads_t_index |
||
998 | ] |
||
999 | |||
1000 | neighbor_loads.reset_index(inplace=True) |
||
1001 | neighbor_loads.bus = ( |
||
1002 | neighbors.loc[neighbor_loads.bus, "new_index"].reset_index().new_index |
||
1003 | ) |
||
1004 | neighbor_loads.index += db.next_etrago_id("load") |
||
1005 | |||
1006 | for i in neighbor_loads_t.columns: |
||
1007 | new_index = neighbor_loads[neighbor_loads["Load"] == i].index |
||
1008 | neighbor_loads_t.rename(columns={i: new_index[0]}, inplace=True) |
||
1009 | |||
1010 | # stores |
||
1011 | neighbor_stores = network_solved.stores[ |
||
1012 | network_solved.stores.bus.isin(neighbors.index) |
||
1013 | ] |
||
1014 | neighbor_stores_t_index = neighbor_stores.index[ |
||
1015 | neighbor_stores.index.isin(network_solved.stores_t.e_min_pu.columns) |
||
1016 | ] |
||
1017 | neighbor_stores_t = network_prepared.stores_t["e_min_pu"][ |
||
1018 | neighbor_stores_t_index |
||
1019 | ] |
||
1020 | |||
1021 | neighbor_stores.reset_index(inplace=True) |
||
1022 | neighbor_stores.bus = ( |
||
1023 | neighbors.loc[neighbor_stores.bus, "new_index"].reset_index().new_index |
||
1024 | ) |
||
1025 | neighbor_stores.index += db.next_etrago_id("store") |
||
1026 | |||
1027 | for i in neighbor_stores_t.columns: |
||
1028 | new_index = neighbor_stores[neighbor_stores["Store"] == i].index |
||
1029 | neighbor_stores_t.rename(columns={i: new_index[0]}, inplace=True) |
||
1030 | |||
1031 | # storage_units |
||
1032 | neighbor_storage = network_solved.storage_units[ |
||
1033 | network_solved.storage_units.bus.isin(neighbors.index) |
||
1034 | ] |
||
1035 | neighbor_storage_t_index = neighbor_storage.index[ |
||
1036 | neighbor_storage.index.isin( |
||
1037 | network_solved.storage_units_t.inflow.columns |
||
1038 | ) |
||
1039 | ] |
||
1040 | neighbor_storage_t = network_prepared.storage_units_t["inflow"][ |
||
1041 | neighbor_storage_t_index |
||
1042 | ] |
||
1043 | |||
1044 | neighbor_storage.reset_index(inplace=True) |
||
1045 | neighbor_storage.bus = ( |
||
1046 | neighbors.loc[neighbor_storage.bus, "new_index"] |
||
1047 | .reset_index() |
||
1048 | .new_index |
||
1049 | ) |
||
1050 | neighbor_storage.index += db.next_etrago_id("storage") |
||
1051 | |||
1052 | for i in neighbor_storage_t.columns: |
||
1053 | new_index = neighbor_storage[ |
||
1054 | neighbor_storage["StorageUnit"] == i |
||
1055 | ].index |
||
1056 | neighbor_storage_t.rename(columns={i: new_index[0]}, inplace=True) |
||
1057 | |||
1058 | # Connect to local database |
||
1059 | engine = db.engine() |
||
1060 | |||
1061 | neighbors["scn_name"] = "eGon100RE" |
||
1062 | neighbors.index = neighbors["new_index"] |
||
1063 | |||
1064 | # Correct geometry for non AC buses |
||
1065 | carriers = set(neighbors.carrier.to_list()) |
||
1066 | carriers = [e for e in carriers if e not in ("AC")] |
||
1067 | non_AC_neighbors = pd.DataFrame() |
||
1068 | for c in carriers: |
||
1069 | c_neighbors = neighbors[neighbors.carrier == c].set_index( |
||
1070 | "location", drop=False |
||
1071 | ) |
||
1072 | for i in ["x", "y"]: |
||
1073 | c_neighbors = c_neighbors.drop(i, axis=1) |
||
1074 | coordinates = neighbors[neighbors.carrier == "AC"][ |
||
1075 | ["location", "x", "y"] |
||
1076 | ].set_index("location") |
||
1077 | c_neighbors = pd.concat([coordinates, c_neighbors], axis=1).set_index( |
||
1078 | "new_index", drop=False |
||
1079 | ) |
||
1080 | non_AC_neighbors = pd.concat([non_AC_neighbors, c_neighbors]) |
||
1081 | |||
1082 | neighbors = pd.concat( |
||
1083 | [neighbors[neighbors.carrier == "AC"], non_AC_neighbors] |
||
1084 | ) |
||
1085 | |||
1086 | for i in [ |
||
1087 | "new_index", |
||
1088 | "control", |
||
1089 | "generator", |
||
1090 | "location", |
||
1091 | "sub_network", |
||
1092 | "unit", |
||
1093 | "substation_lv", |
||
1094 | "substation_off", |
||
1095 | ]: |
||
1096 | neighbors = neighbors.drop(i, axis=1) |
||
1097 | |||
1098 | # Add geometry column |
||
1099 | neighbors = ( |
||
1100 | gpd.GeoDataFrame( |
||
1101 | neighbors, geometry=gpd.points_from_xy(neighbors.x, neighbors.y) |
||
1102 | ) |
||
1103 | .rename_geometry("geom") |
||
1104 | .set_crs(4326) |
||
1105 | ) |
||
1106 | |||
1107 | # Unify carrier names |
||
1108 | neighbors.carrier = neighbors.carrier.str.replace(" ", "_") |
||
1109 | neighbors.carrier.replace( |
||
1110 | { |
||
1111 | "gas": "CH4", |
||
1112 | "gas_for_industry": "CH4_for_industry", |
||
1113 | "urban_central_heat": "central_heat", |
||
1114 | "EV_battery": "Li_ion", |
||
1115 | "urban_central_water_tanks": "central_heat_store", |
||
1116 | "rural_water_tanks": "rural_heat_store", |
||
1117 | }, |
||
1118 | inplace=True, |
||
1119 | ) |
||
1120 | |||
1121 | neighbors[~neighbors.carrier.isin(["AC"])].to_postgis( |
||
1122 | "egon_etrago_bus", |
||
1123 | engine, |
||
1124 | schema="grid", |
||
1125 | if_exists="append", |
||
1126 | index=True, |
||
1127 | index_label="bus_id", |
||
1128 | ) |
||
1129 | |||
1130 | # prepare and write neighboring crossborder lines to etrago tables |
||
1131 | def lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE"): |
||
1132 | neighbor_lines["scn_name"] = scn |
||
1133 | neighbor_lines["cables"] = 3 * neighbor_lines["num_parallel"].astype( |
||
1134 | int |
||
1135 | ) |
||
1136 | neighbor_lines["s_nom"] = neighbor_lines["s_nom_min"] |
||
1137 | |||
1138 | for i in [ |
||
1139 | "Line", |
||
1140 | "x_pu_eff", |
||
1141 | "r_pu_eff", |
||
1142 | "sub_network", |
||
1143 | "x_pu", |
||
1144 | "r_pu", |
||
1145 | "g_pu", |
||
1146 | "b_pu", |
||
1147 | "s_nom_opt", |
||
1148 | "i_nom", |
||
1149 | "dc", |
||
1150 | ]: |
||
1151 | neighbor_lines = neighbor_lines.drop(i, axis=1) |
||
1152 | |||
1153 | # Define geometry and add to lines dataframe as 'topo' |
||
1154 | gdf = gpd.GeoDataFrame(index=neighbor_lines.index) |
||
1155 | gdf["geom_bus0"] = neighbors.geom[neighbor_lines.bus0].values |
||
1156 | gdf["geom_bus1"] = neighbors.geom[neighbor_lines.bus1].values |
||
1157 | gdf["geometry"] = gdf.apply( |
||
1158 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
1159 | ) |
||
1160 | |||
1161 | neighbor_lines = ( |
||
1162 | gpd.GeoDataFrame(neighbor_lines, geometry=gdf["geometry"]) |
||
1163 | .rename_geometry("topo") |
||
1164 | .set_crs(4326) |
||
1165 | ) |
||
1166 | |||
1167 | neighbor_lines["lifetime"] = get_sector_parameters("electricity", scn)[ |
||
1168 | "lifetime" |
||
1169 | ]["ac_ehv_overhead_line"] |
||
1170 | |||
1171 | neighbor_lines.to_postgis( |
||
1172 | "egon_etrago_line", |
||
1173 | engine, |
||
1174 | schema="grid", |
||
1175 | if_exists="append", |
||
1176 | index=True, |
||
1177 | index_label="line_id", |
||
1178 | ) |
||
1179 | |||
1180 | lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE") |
||
1181 | |||
1182 | def links_to_etrago(neighbor_links, scn="eGon100RE", extendable=True): |
||
1183 | """Prepare and write neighboring crossborder links to eTraGo table |
||
1184 | |||
1185 | This function prepare the neighboring crossborder links |
||
1186 | generated the PyPSA-eur-sec (p-e-s) run by: |
||
1187 | * Delete the useless columns |
||
1188 | * If extendable is false only (non default case): |
||
1189 | * Replace p_nom = 0 with the p_nom_op values (arrising |
||
1190 | from the p-e-s optimisation) |
||
1191 | * Setting p_nom_extendable to false |
||
1192 | * Add geomtry to the links: 'geom' and 'topo' columns |
||
1193 | * Change the name of the carriers to have the consistent in |
||
1194 | eGon-data |
||
1195 | |||
1196 | The function insert then the link to the eTraGo table and has |
||
1197 | no return. |
||
1198 | |||
1199 | Parameters |
||
1200 | ---------- |
||
1201 | neighbor_links : pandas.DataFrame |
||
1202 | Dataframe containing the neighboring crossborder links |
||
1203 | scn_name : str |
||
1204 | Name of the scenario |
||
1205 | extendable : bool |
||
1206 | Boolean expressing if the links should be extendable or not |
||
1207 | |||
1208 | Returns |
||
1209 | ------- |
||
1210 | None |
||
1211 | |||
1212 | """ |
||
1213 | neighbor_links["scn_name"] = scn |
||
1214 | |||
1215 | dropped_carriers = [ |
||
1216 | "Link", |
||
1217 | "geometry", |
||
1218 | "tags", |
||
1219 | "under_construction", |
||
1220 | "underground", |
||
1221 | "underwater_fraction", |
||
1222 | "bus2", |
||
1223 | "bus3", |
||
1224 | "bus4", |
||
1225 | "efficiency2", |
||
1226 | "efficiency3", |
||
1227 | "efficiency4", |
||
1228 | "lifetime", |
||
1229 | "pipe_retrofit", |
||
1230 | "committable", |
||
1231 | "start_up_cost", |
||
1232 | "shut_down_cost", |
||
1233 | "min_up_time", |
||
1234 | "min_down_time", |
||
1235 | "up_time_before", |
||
1236 | "down_time_before", |
||
1237 | "ramp_limit_up", |
||
1238 | "ramp_limit_down", |
||
1239 | "ramp_limit_start_up", |
||
1240 | "ramp_limit_shut_down", |
||
1241 | "length_original", |
||
1242 | "reversed", |
||
1243 | "location", |
||
1244 | "project_status", |
||
1245 | "dc", |
||
1246 | "voltage", |
||
1247 | ] |
||
1248 | |||
1249 | if extendable: |
||
1250 | dropped_carriers.append("p_nom_opt") |
||
1251 | neighbor_links = neighbor_links.drop( |
||
1252 | columns=dropped_carriers, |
||
1253 | errors="ignore", |
||
1254 | ) |
||
1255 | |||
1256 | else: |
||
1257 | dropped_carriers.append("p_nom") |
||
1258 | dropped_carriers.append("p_nom_extendable") |
||
1259 | neighbor_links = neighbor_links.drop( |
||
1260 | columns=dropped_carriers, |
||
1261 | errors="ignore", |
||
1262 | ) |
||
1263 | neighbor_links = neighbor_links.rename( |
||
1264 | columns={"p_nom_opt": "p_nom"} |
||
1265 | ) |
||
1266 | neighbor_links["p_nom_extendable"] = False |
||
1267 | |||
1268 | if neighbor_links.empty: |
||
1269 | print("No links selected") |
||
1270 | return |
||
1271 | |||
1272 | # Define geometry and add to lines dataframe as 'topo' |
||
1273 | gdf = gpd.GeoDataFrame( |
||
1274 | index=neighbor_links.index, |
||
1275 | data={ |
||
1276 | "geom_bus0": neighbors.loc[neighbor_links.bus0, "geom"].values, |
||
1277 | "geom_bus1": neighbors.loc[neighbor_links.bus1, "geom"].values, |
||
1278 | }, |
||
1279 | ) |
||
1280 | |||
1281 | gdf["geometry"] = gdf.apply( |
||
1282 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
1283 | ) |
||
1284 | |||
1285 | neighbor_links = ( |
||
1286 | gpd.GeoDataFrame(neighbor_links, geometry=gdf["geometry"]) |
||
1287 | .rename_geometry("topo") |
||
1288 | .set_crs(4326) |
||
1289 | ) |
||
1290 | |||
1291 | # Unify carrier names |
||
1292 | neighbor_links.carrier = neighbor_links.carrier.str.replace(" ", "_") |
||
1293 | |||
1294 | neighbor_links.carrier.replace( |
||
1295 | { |
||
1296 | "H2_Electrolysis": "power_to_H2", |
||
1297 | "H2_Fuel_Cell": "H2_to_power", |
||
1298 | "H2_pipeline_retrofitted": "H2_retrofit", |
||
1299 | "SMR": "CH4_to_H2", |
||
1300 | "Sabatier": "H2_to_CH4", |
||
1301 | "gas_for_industry": "CH4_for_industry", |
||
1302 | "gas_pipeline": "CH4", |
||
1303 | "urban_central_gas_boiler": "central_gas_boiler", |
||
1304 | "urban_central_resistive_heater": "central_resistive_heater", |
||
1305 | "urban_central_water_tanks_charger": "central_heat_store_charger", |
||
1306 | "urban_central_water_tanks_discharger": "central_heat_store_discharger", |
||
1307 | "rural_water_tanks_charger": "rural_heat_store_charger", |
||
1308 | "rural_water_tanks_discharger": "rural_heat_store_discharger", |
||
1309 | "urban_central_gas_CHP": "central_gas_CHP", |
||
1310 | "urban_central_air_heat_pump": "central_heat_pump", |
||
1311 | "rural_ground_heat_pump": "rural_heat_pump", |
||
1312 | }, |
||
1313 | inplace=True, |
||
1314 | ) |
||
1315 | |||
1316 | H2_links = { |
||
1317 | "H2_to_CH4": "H2_to_CH4", |
||
1318 | "H2_to_power": "H2_to_power", |
||
1319 | "power_to_H2": "power_to_H2_system", |
||
1320 | "CH4_to_H2": "CH4_to_H2", |
||
1321 | } |
||
1322 | |||
1323 | for c in H2_links.keys(): |
||
1324 | |||
1325 | neighbor_links.loc[ |
||
1326 | (neighbor_links.carrier == c), |
||
1327 | "lifetime", |
||
1328 | ] = get_sector_parameters("gas", "eGon100RE")["lifetime"][ |
||
1329 | H2_links[c] |
||
1330 | ] |
||
1331 | |||
1332 | neighbor_links.to_postgis( |
||
1333 | "egon_etrago_link", |
||
1334 | engine, |
||
1335 | schema="grid", |
||
1336 | if_exists="append", |
||
1337 | index=True, |
||
1338 | index_label="link_id", |
||
1339 | ) |
||
1340 | |||
1341 | extendable_links_carriers = [ |
||
1342 | "battery charger", |
||
1343 | "battery discharger", |
||
1344 | "home battery charger", |
||
1345 | "home battery discharger", |
||
1346 | "rural water tanks charger", |
||
1347 | "rural water tanks discharger", |
||
1348 | "urban central water tanks charger", |
||
1349 | "urban central water tanks discharger", |
||
1350 | "urban decentral water tanks charger", |
||
1351 | "urban decentral water tanks discharger", |
||
1352 | "H2 Electrolysis", |
||
1353 | "H2 Fuel Cell", |
||
1354 | "SMR", |
||
1355 | "Sabatier", |
||
1356 | ] |
||
1357 | |||
1358 | # delete unwanted carriers for eTraGo |
||
1359 | excluded_carriers = [ |
||
1360 | "gas for industry CC", |
||
1361 | "SMR CC", |
||
1362 | "DAC", |
||
1363 | ] |
||
1364 | neighbor_links = neighbor_links[ |
||
1365 | ~neighbor_links.carrier.isin(excluded_carriers) |
||
1366 | ] |
||
1367 | |||
1368 | # Combine CHP_CC and CHP |
||
1369 | chp_cc = neighbor_links[ |
||
1370 | neighbor_links.carrier == "urban central gas CHP CC" |
||
1371 | ] |
||
1372 | for index, row in chp_cc.iterrows(): |
||
1373 | neighbor_links.loc[ |
||
1374 | neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), |
||
1375 | "p_nom_opt", |
||
1376 | ] += row.p_nom_opt |
||
1377 | neighbor_links.loc[ |
||
1378 | neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), "p_nom" |
||
1379 | ] += row.p_nom |
||
1380 | neighbor_links.drop(index, inplace=True) |
||
1381 | |||
1382 | # Combine heat pumps |
||
1383 | # Like in Germany, there are air heat pumps in central heat grids |
||
1384 | # and ground heat pumps in rural areas |
||
1385 | rural_air = neighbor_links[neighbor_links.carrier == "rural air heat pump"] |
||
1386 | for index, row in rural_air.iterrows(): |
||
1387 | neighbor_links.loc[ |
||
1388 | neighbor_links.Link == row.Link.replace("air", "ground"), |
||
1389 | "p_nom_opt", |
||
1390 | ] += row.p_nom_opt |
||
1391 | neighbor_links.loc[ |
||
1392 | neighbor_links.Link == row.Link.replace("air", "ground"), "p_nom" |
||
1393 | ] += row.p_nom |
||
1394 | neighbor_links.drop(index, inplace=True) |
||
1395 | links_to_etrago( |
||
1396 | neighbor_links[neighbor_links.carrier.isin(extendable_links_carriers)], |
||
1397 | "eGon100RE", |
||
1398 | ) |
||
1399 | links_to_etrago( |
||
1400 | neighbor_links[ |
||
1401 | ~neighbor_links.carrier.isin(extendable_links_carriers) |
||
1402 | ], |
||
1403 | "eGon100RE", |
||
1404 | extendable=False, |
||
1405 | ) |
||
1406 | # Include links time-series |
||
1407 | # For heat_pumps |
||
1408 | hp = neighbor_links[neighbor_links["carrier"].str.contains("heat pump")] |
||
1409 | |||
1410 | neighbor_eff_t = network_prepared.links_t["efficiency"][ |
||
1411 | hp[hp.Link.isin(network_prepared.links_t["efficiency"].columns)].index |
||
1412 | ] |
||
1413 | |||
1414 | missing_hp = hp[~hp["Link"].isin(neighbor_eff_t.columns)].Link |
||
1415 | |||
1416 | eff_timeseries = network_prepared.links_t["efficiency"].copy() |
||
1417 | for met in missing_hp: # met: missing efficiency timeseries |
||
1418 | try: |
||
1419 | neighbor_eff_t[met] = eff_timeseries.loc[:, met[0:-5]] |
||
1420 | except: |
||
1421 | print(f"There are not timeseries for heat_pump {met}") |
||
1422 | |||
1423 | for i in neighbor_eff_t.columns: |
||
1424 | new_index = neighbor_links[neighbor_links["Link"] == i].index |
||
1425 | neighbor_eff_t.rename(columns={i: new_index[0]}, inplace=True) |
||
1426 | |||
1427 | # Include links time-series |
||
1428 | # For ev_chargers |
||
1429 | ev = neighbor_links[neighbor_links["carrier"].str.contains("BEV charger")] |
||
1430 | |||
1431 | ev_p_max_pu = network_prepared.links_t["p_max_pu"][ |
||
1432 | ev[ev.Link.isin(network_prepared.links_t["p_max_pu"].columns)].index |
||
1433 | ] |
||
1434 | |||
1435 | missing_ev = ev[~ev["Link"].isin(ev_p_max_pu.columns)].Link |
||
1436 | |||
1437 | ev_p_max_pu_timeseries = network_prepared.links_t["p_max_pu"].copy() |
||
1438 | for mct in missing_ev: # evt: missing charger timeseries |
||
1439 | try: |
||
1440 | ev_p_max_pu[mct] = ev_p_max_pu_timeseries.loc[:, mct[0:-5]] |
||
1441 | except: |
||
1442 | print(f"There are not timeseries for EV charger {mct}") |
||
1443 | |||
1444 | for i in ev_p_max_pu.columns: |
||
1445 | new_index = neighbor_links[neighbor_links["Link"] == i].index |
||
1446 | ev_p_max_pu.rename(columns={i: new_index[0]}, inplace=True) |
||
1447 | |||
1448 | # prepare neighboring generators for etrago tables |
||
1449 | neighbor_gens["scn_name"] = "eGon100RE" |
||
1450 | neighbor_gens["p_nom"] = neighbor_gens["p_nom_opt"] |
||
1451 | neighbor_gens["p_nom_extendable"] = False |
||
1452 | |||
1453 | # Unify carrier names |
||
1454 | neighbor_gens.carrier = neighbor_gens.carrier.str.replace(" ", "_") |
||
1455 | |||
1456 | neighbor_gens.carrier.replace( |
||
1457 | { |
||
1458 | "onwind": "wind_onshore", |
||
1459 | "ror": "run_of_river", |
||
1460 | "offwind-ac": "wind_offshore", |
||
1461 | "offwind-dc": "wind_offshore", |
||
1462 | "offwind-float": "wind_offshore", |
||
1463 | "urban_central_solar_thermal": "urban_central_solar_thermal_collector", |
||
1464 | "residential_rural_solar_thermal": "residential_rural_solar_thermal_collector", |
||
1465 | "services_rural_solar_thermal": "services_rural_solar_thermal_collector", |
||
1466 | "solar-hsat": "solar", |
||
1467 | }, |
||
1468 | inplace=True, |
||
1469 | ) |
||
1470 | |||
1471 | for i in [ |
||
1472 | "Generator", |
||
1473 | "weight", |
||
1474 | "lifetime", |
||
1475 | "p_set", |
||
1476 | "q_set", |
||
1477 | "p_nom_opt", |
||
1478 | "e_sum_min", |
||
1479 | "e_sum_max", |
||
1480 | ]: |
||
1481 | neighbor_gens = neighbor_gens.drop(i, axis=1) |
||
1482 | |||
1483 | neighbor_gens.to_sql( |
||
1484 | "egon_etrago_generator", |
||
1485 | engine, |
||
1486 | schema="grid", |
||
1487 | if_exists="append", |
||
1488 | index=True, |
||
1489 | index_label="generator_id", |
||
1490 | ) |
||
1491 | |||
1492 | # prepare neighboring loads for etrago tables |
||
1493 | neighbor_loads["scn_name"] = "eGon100RE" |
||
1494 | |||
1495 | # Unify carrier names |
||
1496 | neighbor_loads.carrier = neighbor_loads.carrier.str.replace(" ", "_") |
||
1497 | |||
1498 | neighbor_loads.carrier.replace( |
||
1499 | { |
||
1500 | "electricity": "AC", |
||
1501 | "DC": "AC", |
||
1502 | "industry_electricity": "AC", |
||
1503 | "H2_pipeline_retrofitted": "H2_system_boundary", |
||
1504 | "gas_pipeline": "CH4_system_boundary", |
||
1505 | "gas_for_industry": "CH4_for_industry", |
||
1506 | "urban_central_heat": "central_heat", |
||
1507 | }, |
||
1508 | inplace=True, |
||
1509 | ) |
||
1510 | |||
1511 | neighbor_loads = neighbor_loads.drop( |
||
1512 | columns=["Load"], |
||
1513 | errors="ignore", |
||
1514 | ) |
||
1515 | |||
1516 | neighbor_loads.to_sql( |
||
1517 | "egon_etrago_load", |
||
1518 | engine, |
||
1519 | schema="grid", |
||
1520 | if_exists="append", |
||
1521 | index=True, |
||
1522 | index_label="load_id", |
||
1523 | ) |
||
1524 | |||
1525 | # prepare neighboring stores for etrago tables |
||
1526 | neighbor_stores["scn_name"] = "eGon100RE" |
||
1527 | |||
1528 | # Unify carrier names |
||
1529 | neighbor_stores.carrier = neighbor_stores.carrier.str.replace(" ", "_") |
||
1530 | |||
1531 | neighbor_stores.carrier.replace( |
||
1532 | { |
||
1533 | "Li_ion": "battery", |
||
1534 | "gas": "CH4", |
||
1535 | "urban_central_water_tanks": "central_heat_store", |
||
1536 | "rural_water_tanks": "rural_heat_store", |
||
1537 | "EV_battery": "battery_storage", |
||
1538 | }, |
||
1539 | inplace=True, |
||
1540 | ) |
||
1541 | neighbor_stores.loc[ |
||
1542 | ( |
||
1543 | (neighbor_stores.e_nom_max <= 1e9) |
||
1544 | & (neighbor_stores.carrier == "H2_Store") |
||
1545 | ), |
||
1546 | "carrier", |
||
1547 | ] = "H2_underground" |
||
1548 | neighbor_stores.loc[ |
||
1549 | ( |
||
1550 | (neighbor_stores.e_nom_max > 1e9) |
||
1551 | & (neighbor_stores.carrier == "H2_Store") |
||
1552 | ), |
||
1553 | "carrier", |
||
1554 | ] = "H2_overground" |
||
1555 | |||
1556 | for i in [ |
||
1557 | "Store", |
||
1558 | "p_set", |
||
1559 | "q_set", |
||
1560 | "e_nom_opt", |
||
1561 | "lifetime", |
||
1562 | "e_initial_per_period", |
||
1563 | "e_cyclic_per_period", |
||
1564 | "location", |
||
1565 | ]: |
||
1566 | neighbor_stores = neighbor_stores.drop(i, axis=1, errors="ignore") |
||
1567 | |||
1568 | for c in ["H2_underground", "H2_overground"]: |
||
1569 | neighbor_stores.loc[ |
||
1570 | (neighbor_stores.carrier == c), |
||
1571 | "lifetime", |
||
1572 | ] = get_sector_parameters("gas", "eGon100RE")["lifetime"][c] |
||
1573 | |||
1574 | neighbor_stores.to_sql( |
||
1575 | "egon_etrago_store", |
||
1576 | engine, |
||
1577 | schema="grid", |
||
1578 | if_exists="append", |
||
1579 | index=True, |
||
1580 | index_label="store_id", |
||
1581 | ) |
||
1582 | |||
1583 | # prepare neighboring storage_units for etrago tables |
||
1584 | neighbor_storage["scn_name"] = "eGon100RE" |
||
1585 | |||
1586 | # Unify carrier names |
||
1587 | neighbor_storage.carrier = neighbor_storage.carrier.str.replace(" ", "_") |
||
1588 | |||
1589 | neighbor_storage.carrier.replace( |
||
1590 | {"PHS": "pumped_hydro", "hydro": "reservoir"}, inplace=True |
||
1591 | ) |
||
1592 | |||
1593 | for i in [ |
||
1594 | "StorageUnit", |
||
1595 | "p_nom_opt", |
||
1596 | "state_of_charge_initial_per_period", |
||
1597 | "cyclic_state_of_charge_per_period", |
||
1598 | ]: |
||
1599 | neighbor_storage = neighbor_storage.drop(i, axis=1, errors="ignore") |
||
1600 | |||
1601 | neighbor_storage.to_sql( |
||
1602 | "egon_etrago_storage", |
||
1603 | engine, |
||
1604 | schema="grid", |
||
1605 | if_exists="append", |
||
1606 | index=True, |
||
1607 | index_label="storage_id", |
||
1608 | ) |
||
1609 | |||
1610 | # writing neighboring loads_t p_sets to etrago tables |
||
1611 | |||
1612 | neighbor_loads_t_etrago = pd.DataFrame( |
||
1613 | columns=["scn_name", "temp_id", "p_set"], |
||
1614 | index=neighbor_loads_t.columns, |
||
1615 | ) |
||
1616 | neighbor_loads_t_etrago["scn_name"] = "eGon100RE" |
||
1617 | neighbor_loads_t_etrago["temp_id"] = 1 |
||
1618 | for i in neighbor_loads_t.columns: |
||
1619 | neighbor_loads_t_etrago["p_set"][i] = neighbor_loads_t[ |
||
1620 | i |
||
1621 | ].values.tolist() |
||
1622 | |||
1623 | neighbor_loads_t_etrago.to_sql( |
||
1624 | "egon_etrago_load_timeseries", |
||
1625 | engine, |
||
1626 | schema="grid", |
||
1627 | if_exists="append", |
||
1628 | index=True, |
||
1629 | index_label="load_id", |
||
1630 | ) |
||
1631 | |||
1632 | # writing neighboring link_t efficiency and p_max_pu to etrago tables |
||
1633 | neighbor_link_t_etrago = pd.DataFrame( |
||
1634 | columns=["scn_name", "temp_id", "p_max_pu", "efficiency"], |
||
1635 | index=neighbor_eff_t.columns.to_list() + ev_p_max_pu.columns.to_list(), |
||
1636 | ) |
||
1637 | neighbor_link_t_etrago["scn_name"] = "eGon100RE" |
||
1638 | neighbor_link_t_etrago["temp_id"] = 1 |
||
1639 | for i in neighbor_eff_t.columns: |
||
1640 | neighbor_link_t_etrago["efficiency"][i] = neighbor_eff_t[ |
||
1641 | i |
||
1642 | ].values.tolist() |
||
1643 | for i in ev_p_max_pu.columns: |
||
1644 | neighbor_link_t_etrago["p_max_pu"][i] = ev_p_max_pu[i].values.tolist() |
||
1645 | |||
1646 | neighbor_link_t_etrago.to_sql( |
||
1647 | "egon_etrago_link_timeseries", |
||
1648 | engine, |
||
1649 | schema="grid", |
||
1650 | if_exists="append", |
||
1651 | index=True, |
||
1652 | index_label="link_id", |
||
1653 | ) |
||
1654 | |||
1655 | # writing neighboring generator_t p_max_pu to etrago tables |
||
1656 | neighbor_gens_t_etrago = pd.DataFrame( |
||
1657 | columns=["scn_name", "temp_id", "p_max_pu"], |
||
1658 | index=neighbor_gens_t.columns, |
||
1659 | ) |
||
1660 | neighbor_gens_t_etrago["scn_name"] = "eGon100RE" |
||
1661 | neighbor_gens_t_etrago["temp_id"] = 1 |
||
1662 | for i in neighbor_gens_t.columns: |
||
1663 | neighbor_gens_t_etrago["p_max_pu"][i] = neighbor_gens_t[ |
||
1664 | i |
||
1665 | ].values.tolist() |
||
1666 | |||
1667 | neighbor_gens_t_etrago.to_sql( |
||
1668 | "egon_etrago_generator_timeseries", |
||
1669 | engine, |
||
1670 | schema="grid", |
||
1671 | if_exists="append", |
||
1672 | index=True, |
||
1673 | index_label="generator_id", |
||
1674 | ) |
||
1675 | |||
1676 | # writing neighboring stores_t e_min_pu to etrago tables |
||
1677 | neighbor_stores_t_etrago = pd.DataFrame( |
||
1678 | columns=["scn_name", "temp_id", "e_min_pu"], |
||
1679 | index=neighbor_stores_t.columns, |
||
1680 | ) |
||
1681 | neighbor_stores_t_etrago["scn_name"] = "eGon100RE" |
||
1682 | neighbor_stores_t_etrago["temp_id"] = 1 |
||
1683 | for i in neighbor_stores_t.columns: |
||
1684 | neighbor_stores_t_etrago["e_min_pu"][i] = neighbor_stores_t[ |
||
1685 | i |
||
1686 | ].values.tolist() |
||
1687 | |||
1688 | neighbor_stores_t_etrago.to_sql( |
||
1689 | "egon_etrago_store_timeseries", |
||
1690 | engine, |
||
1691 | schema="grid", |
||
1692 | if_exists="append", |
||
1693 | index=True, |
||
1694 | index_label="store_id", |
||
1695 | ) |
||
1696 | |||
1697 | # writing neighboring storage_units inflow to etrago tables |
||
1698 | neighbor_storage_t_etrago = pd.DataFrame( |
||
1699 | columns=["scn_name", "temp_id", "inflow"], |
||
1700 | index=neighbor_storage_t.columns, |
||
1701 | ) |
||
1702 | neighbor_storage_t_etrago["scn_name"] = "eGon100RE" |
||
1703 | neighbor_storage_t_etrago["temp_id"] = 1 |
||
1704 | for i in neighbor_storage_t.columns: |
||
1705 | neighbor_storage_t_etrago["inflow"][i] = neighbor_storage_t[ |
||
1706 | i |
||
1707 | ].values.tolist() |
||
1708 | |||
1709 | neighbor_storage_t_etrago.to_sql( |
||
1710 | "egon_etrago_storage_timeseries", |
||
1711 | engine, |
||
1712 | schema="grid", |
||
1713 | if_exists="append", |
||
1714 | index=True, |
||
1715 | index_label="storage_id", |
||
1716 | ) |
||
1717 | |||
1718 | # writing neighboring lines_t s_max_pu to etrago tables |
||
1719 | if not network_solved.lines_t["s_max_pu"].empty: |
||
1720 | neighbor_lines_t_etrago = pd.DataFrame( |
||
1721 | columns=["scn_name", "s_max_pu"], index=neighbor_lines_t.columns |
||
1722 | ) |
||
1723 | neighbor_lines_t_etrago["scn_name"] = "eGon100RE" |
||
1724 | |||
1725 | for i in neighbor_lines_t.columns: |
||
1726 | neighbor_lines_t_etrago["s_max_pu"][i] = neighbor_lines_t[ |
||
1727 | i |
||
1728 | ].values.tolist() |
||
1729 | |||
1730 | neighbor_lines_t_etrago.to_sql( |
||
1731 | "egon_etrago_line_timeseries", |
||
1732 | engine, |
||
1733 | schema="grid", |
||
1734 | if_exists="append", |
||
1735 | index=True, |
||
1736 | index_label="line_id", |
||
1737 | ) |
||
1738 | |||
1739 | |||
1740 | View Code Duplication | def prepared_network(planning_horizon=3): |
|
1741 | if egon.data.config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
1742 | with open( |
||
1743 | __path__[0] + "/datasets/pypsaeur/config_prepare.yaml", "r" |
||
1744 | ) as stream: |
||
1745 | data_config = yaml.safe_load(stream) |
||
1746 | |||
1747 | target_file = ( |
||
1748 | Path(".") |
||
1749 | / "run-pypsa-eur" |
||
1750 | / "pypsa-eur" |
||
1751 | / "results" |
||
1752 | / data_config["run"]["name"] |
||
1753 | / "prenetworks" |
||
1754 | / f"base_s_{data_config['scenario']['clusters'][0]}" |
||
1755 | f"_l{data_config['scenario']['ll'][0]}" |
||
1756 | f"_{data_config['scenario']['opts'][0]}" |
||
1757 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
1758 | f"_{data_config['scenario']['planning_horizons'][planning_horizon]}.nc" |
||
1759 | ) |
||
1760 | |||
1761 | else: |
||
1762 | target_file = ( |
||
1763 | Path(".") |
||
1764 | / "data_bundle_egon_data" |
||
1765 | / "pypsa_eur" |
||
1766 | / "prenetworks" |
||
1767 | / "prenetwork_post-manipulate_pre-solve" |
||
1768 | / "base_s_39_lc1.25__cb40ex0-T-H-I-B-solar+p3-dist1_2045.nc" |
||
1769 | ) |
||
1770 | |||
1771 | return pypsa.Network(target_file.absolute().as_posix()) |
||
1772 | |||
1773 | |||
1774 | def overwrite_H2_pipeline_share(): |
||
1775 | """Overwrite retrofitted_CH4pipeline-to-H2pipeline_share value |
||
1776 | |||
1777 | Overwrite retrofitted_CH4pipeline-to-H2pipeline_share in the |
||
1778 | scenario parameter table if p-e-s is run. |
||
1779 | This function write in the database and has no return. |
||
1780 | |||
1781 | """ |
||
1782 | scn_name = "eGon100RE" |
||
1783 | # Select source and target from dataset configuration |
||
1784 | target = egon.data.config.datasets()["pypsa-eur-sec"]["target"] |
||
1785 | |||
1786 | n = read_network(planning_horizon=2045) |
||
1787 | |||
1788 | H2_pipelines = n.links[n.links["carrier"] == "H2 pipeline retrofitted"] |
||
1789 | CH4_pipelines = n.links[n.links["carrier"] == "gas pipeline"] |
||
1790 | H2_pipes_share = np.mean( |
||
1791 | [ |
||
1792 | (i / j) |
||
1793 | for i, j in zip( |
||
1794 | H2_pipelines.p_nom_opt.to_list(), CH4_pipelines.p_nom.to_list() |
||
1795 | ) |
||
1796 | ] |
||
1797 | ) |
||
1798 | logger.info( |
||
1799 | "retrofitted_CH4pipeline-to-H2pipeline_share = " + str(H2_pipes_share) |
||
1800 | ) |
||
1801 | |||
1802 | parameters = db.select_dataframe( |
||
1803 | f""" |
||
1804 | SELECT * |
||
1805 | FROM {target['scenario_parameters']['schema']}.{target['scenario_parameters']['table']} |
||
1806 | WHERE name = '{scn_name}' |
||
1807 | """ |
||
1808 | ) |
||
1809 | |||
1810 | gas_param = parameters.loc[0, "gas_parameters"] |
||
1811 | gas_param["retrofitted_CH4pipeline-to-H2pipeline_share"] = H2_pipes_share |
||
1812 | gas_param = json.dumps(gas_param) |
||
1813 | |||
1814 | # Update data in db |
||
1815 | db.execute_sql( |
||
1816 | f""" |
||
1817 | UPDATE {target['scenario_parameters']['schema']}.{target['scenario_parameters']['table']} |
||
1818 | SET gas_parameters = '{gas_param}' |
||
1819 | WHERE name = '{scn_name}'; |
||
1820 | """ |
||
1821 | ) |
||
1822 | |||
1823 | |||
1824 | def update_electrical_timeseries_germany(network): |
||
1825 | """Replace electrical demand time series in Germany with data from egon-data |
||
1826 | |||
1827 | Parameters |
||
1828 | ---------- |
||
1829 | network : pypsa.Network |
||
1830 | Network including demand time series from pypsa-eur |
||
1831 | |||
1832 | Returns |
||
1833 | ------- |
||
1834 | network : pypsa.Network |
||
1835 | Network including electrical demand time series in Germany from egon-data |
||
1836 | |||
1837 | """ |
||
1838 | year = network.year |
||
1839 | skip = network.snapshot_weightings.objective.iloc[0].astype("int") |
||
1840 | df = pd.read_csv( |
||
1841 | "input-pypsa-eur-sec/electrical_demand_timeseries_DE_eGon100RE.csv" |
||
1842 | ) |
||
1843 | |||
1844 | annual_demand = pd.Series(index=[2019, 2037]) |
||
1845 | annual_demand_industry = pd.Series(index=[2019, 2037]) |
||
1846 | # Define values from status2019 for interpolation |
||
1847 | # Residential and service (in TWh) |
||
1848 | annual_demand.loc[2019] = 124.71 + 143.26 |
||
1849 | # Industry (in TWh) |
||
1850 | annual_demand_industry.loc[2019] = 241.925 |
||
1851 | |||
1852 | # Define values from NEP 2023 scenario B 2037 for interpolation |
||
1853 | # Residential and service (in TWh) |
||
1854 | annual_demand.loc[2037] = 104 + 153.1 |
||
1855 | # Industry (in TWh) |
||
1856 | annual_demand_industry.loc[2037] = 334.0 |
||
1857 | |||
1858 | # Set interpolated demands for years between 2019 and 2045 |
||
1859 | if year < 2037: |
||
1860 | # Calculate annual demands for year by linear interpolating between |
||
1861 | # 2019 and 2037 |
||
1862 | # Done seperatly for industry and residential and service to fit |
||
1863 | # to pypsa-eurs structure |
||
1864 | annual_rate = (annual_demand.loc[2037] - annual_demand.loc[2019]) / ( |
||
1865 | 2037 - 2019 |
||
1866 | ) |
||
1867 | annual_demand_year = annual_demand.loc[2019] + annual_rate * ( |
||
1868 | year - 2019 |
||
1869 | ) |
||
1870 | |||
1871 | annual_rate_industry = ( |
||
1872 | annual_demand_industry.loc[2037] - annual_demand_industry.loc[2019] |
||
1873 | ) / (2037 - 2019) |
||
1874 | annual_demand_year_industry = annual_demand_industry.loc[ |
||
1875 | 2019 |
||
1876 | ] + annual_rate_industry * (year - 2019) |
||
1877 | |||
1878 | # Scale time series for 100% scenario with the annual demands |
||
1879 | # The shape of the curve is taken from the 100% scenario since the |
||
1880 | # same weather and calender year is used there |
||
1881 | network.loads_t.p_set.loc[:, "DE0 0"] = ( |
||
1882 | df["residential_and_service"].loc[::skip] |
||
1883 | / df["residential_and_service"].sum() |
||
1884 | * annual_demand_year |
||
1885 | * 1e6 |
||
1886 | ).values |
||
1887 | |||
1888 | network.loads_t.p_set.loc[:, "DE0 0 industry electricity"] = ( |
||
1889 | df["industry"].loc[::skip] |
||
1890 | / df["industry"].sum() |
||
1891 | * annual_demand_year_industry |
||
1892 | * 1e6 |
||
1893 | ).values |
||
1894 | |||
1895 | elif year == 2045: |
||
1896 | network.loads_t.p_set.loc[:, "DE0 0"] = df[ |
||
1897 | "residential_and_service" |
||
1898 | ].loc[::skip] |
||
1899 | |||
1900 | network.loads_t.p_set.loc[:, "DE0 0 industry electricity"] = ( |
||
1901 | df["industry"].loc[::skip].values |
||
1902 | ) |
||
1903 | |||
1904 | else: |
||
1905 | print( |
||
1906 | "Scaling not implemented for years between 2037 and 2045 and beyond." |
||
1907 | ) |
||
1908 | return |
||
1909 | |||
1910 | network.loads.loc["DE0 0 industry electricity", "p_set"] = 0.0 |
||
1911 | |||
1912 | return network |
||
1913 | |||
1914 | |||
1915 | def geothermal_district_heating(network): |
||
1916 | """Add the option to build geothermal power plants in district heating in Germany |
||
1917 | |||
1918 | Parameters |
||
1919 | ---------- |
||
1920 | network : pypsa.Network |
||
1921 | Network from pypsa-eur without geothermal generators |
||
1922 | |||
1923 | Returns |
||
1924 | ------- |
||
1925 | network : pypsa.Network |
||
1926 | Updated network with geothermal generators |
||
1927 | |||
1928 | """ |
||
1929 | |||
1930 | costs_and_potentials = pd.read_csv( |
||
1931 | "input-pypsa-eur-sec/geothermal_potential_germany.csv" |
||
1932 | ) |
||
1933 | |||
1934 | network.add("Carrier", "urban central geo thermal") |
||
1935 | |||
1936 | for i, row in costs_and_potentials.iterrows(): |
||
1937 | # Set lifetime of geothermal plant to 30 years based on: |
||
1938 | # Ableitung eines Korridors für den Ausbau der erneuerbaren Wärme im Gebäudebereich, |
||
1939 | # Beuth Hochschule für Technik, Berlin ifeu – Institut für Energie- und Umweltforschung Heidelberg GmbH |
||
1940 | # Februar 2017 |
||
1941 | lifetime_geothermal = 30 |
||
1942 | |||
1943 | network.add( |
||
1944 | "Generator", |
||
1945 | f"DE0 0 urban central geo thermal {i}", |
||
1946 | bus="DE0 0 urban central heat", |
||
1947 | carrier="urban central geo thermal", |
||
1948 | p_nom_extendable=True, |
||
1949 | p_nom_max=row["potential [MW]"], |
||
1950 | capital_cost=annualize_capital_costs( |
||
1951 | row["cost [EUR/kW]"] * 1e6, lifetime_geothermal, 0.07 |
||
1952 | ), |
||
1953 | ) |
||
1954 | return network |
||
1955 | |||
1956 | |||
1957 | def h2_overground_stores(network): |
||
1958 | """Add hydrogen overground stores to each hydrogen node |
||
1959 | |||
1960 | In pypsa-eur, only countries without the potential of underground hydrogen |
||
1961 | stores have to option to build overground hydrogen tanks. |
||
1962 | Overground stores are more expensive, but are not resitcted by the geological |
||
1963 | potential. To allow higher hydrogen store capacities in each country, optional |
||
1964 | hydogen overground tanks are also added to node with a potential for |
||
1965 | underground stores. |
||
1966 | |||
1967 | Parameters |
||
1968 | ---------- |
||
1969 | network : pypsa.Network |
||
1970 | Network without hydrogen overground stores at each hydrogen node |
||
1971 | |||
1972 | Returns |
||
1973 | ------- |
||
1974 | network : pypsa.Network |
||
1975 | Network with hydrogen overground stores at each hydrogen node |
||
1976 | |||
1977 | """ |
||
1978 | |||
1979 | underground_h2_stores = network.stores[ |
||
1980 | (network.stores.carrier == "H2 Store") |
||
1981 | & (network.stores.e_nom_max != np.inf) |
||
1982 | ] |
||
1983 | |||
1984 | overground_h2_stores = network.stores[ |
||
1985 | (network.stores.carrier == "H2 Store") |
||
1986 | & (network.stores.e_nom_max == np.inf) |
||
1987 | ] |
||
1988 | |||
1989 | network.madd( |
||
1990 | "Store", |
||
1991 | underground_h2_stores.bus + " overground Store", |
||
1992 | bus=underground_h2_stores.bus.values, |
||
1993 | e_nom_extendable=True, |
||
1994 | e_cyclic=True, |
||
1995 | carrier="H2 Store", |
||
1996 | capital_cost=overground_h2_stores.capital_cost.mean(), |
||
1997 | ) |
||
1998 | |||
1999 | return network |
||
2000 | |||
2001 | |||
2002 | def update_heat_timeseries_germany(network): |
||
2003 | network.loads |
||
2004 | # Import heat demand curves for Germany from eGon-data |
||
2005 | df_egon_heat_demand = pd.read_csv( |
||
2006 | "input-pypsa-eur-sec/heat_demand_timeseries_DE_eGon100RE.csv" |
||
2007 | ) |
||
2008 | |||
2009 | # Replace heat demand curves in Germany with values from eGon-data |
||
2010 | network.loads_t.p_set.loc[:, "DE1 0 rural heat"] = ( |
||
2011 | df_egon_heat_demand.loc[:, "residential rural"].values |
||
2012 | + df_egon_heat_demand.loc[:, "service rural"].values |
||
2013 | ) |
||
2014 | |||
2015 | network.loads_t.p_set.loc[:, "DE1 0 urban central heat"] = ( |
||
2016 | df_egon_heat_demand.loc[:, "urban central"].values |
||
2017 | ) |
||
2018 | |||
2019 | return network |
||
2020 | |||
2021 | |||
2022 | def drop_biomass(network): |
||
2023 | carrier = "biomass" |
||
2024 | |||
2025 | for c in network.iterate_components(): |
||
2026 | network.mremove(c.name, c.df[c.df.index.str.contains(carrier)].index) |
||
2027 | return network |
||
2028 | |||
2029 | |||
2030 | def postprocessing_biomass_2045(): |
||
2031 | |||
2032 | network = read_network(planning_horizon=2045) |
||
2033 | network = drop_biomass(network) |
||
2034 | |||
2035 | with open( |
||
2036 | __path__[0] + "/datasets/pypsaeur/config_solve.yaml", "r" |
||
2037 | ) as stream: |
||
2038 | data_config = yaml.safe_load(stream) |
||
2039 | |||
2040 | target_file = ( |
||
2041 | Path(".") |
||
2042 | / "run-pypsa-eur" |
||
2043 | / "pypsa-eur" |
||
2044 | / "results" |
||
2045 | / data_config["run"]["name"] |
||
2046 | / "postnetworks" |
||
2047 | / f"base_s_{data_config['scenario']['clusters'][0]}" |
||
2048 | f"_l{data_config['scenario']['ll'][0]}" |
||
2049 | f"_{data_config['scenario']['opts'][0]}" |
||
2050 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
2051 | f"_{data_config['scenario']['planning_horizons'][3]}.nc" |
||
2052 | ) |
||
2053 | |||
2054 | network.export_to_netcdf(target_file) |
||
2055 | |||
2056 | |||
2057 | def drop_urban_decentral_heat(network): |
||
2058 | carrier = "urban decentral heat" |
||
2059 | |||
2060 | # Add urban decentral heat demand to urban central heat demand |
||
2061 | for country in network.loads.loc[ |
||
2062 | network.loads.carrier == carrier, "bus" |
||
2063 | ].str[:5]: |
||
2064 | |||
2065 | if f"{country} {carrier}" in network.loads_t.p_set.columns: |
||
2066 | network.loads_t.p_set[ |
||
2067 | f"{country} rural heat" |
||
2068 | ] += network.loads_t.p_set[f"{country} {carrier}"] |
||
2069 | else: |
||
2070 | print( |
||
2071 | f"""No time series available for {country} {carrier}. |
||
2072 | Using static p_set.""" |
||
2073 | ) |
||
2074 | |||
2075 | network.loads_t.p_set[ |
||
2076 | f"{country} rural heat" |
||
2077 | ] += network.loads.loc[f"{country} {carrier}", "p_set"] |
||
2078 | |||
2079 | # In some cases low-temperature heat for industry is connected to the urban |
||
2080 | # decentral heat bus since there is no urban central heat bus. |
||
2081 | # These loads are connected to the representatiive rural heat bus: |
||
2082 | network.loads.loc[ |
||
2083 | (network.loads.bus.str.contains(carrier)) |
||
2084 | & (~network.loads.carrier.str.contains(carrier.replace(" heat", ""))), |
||
2085 | "bus", |
||
2086 | ] = network.loads.loc[ |
||
2087 | (network.loads.bus.str.contains(carrier)) |
||
2088 | & (~network.loads.carrier.str.contains(carrier.replace(" heat", ""))), |
||
2089 | "bus", |
||
2090 | ].str.replace( |
||
2091 | "urban decentral", "rural" |
||
2092 | ) |
||
2093 | |||
2094 | # Drop componentents attached to urban decentral heat |
||
2095 | for c in network.iterate_components(): |
||
2096 | network.mremove( |
||
2097 | c.name, c.df[c.df.index.str.contains("urban decentral")].index |
||
2098 | ) |
||
2099 | |||
2100 | return network |
||
2101 | |||
2102 | |||
2103 | def district_heating_shares(network): |
||
2104 | df = pd.read_csv( |
||
2105 | "data_bundle_powerd_data/district_heating_shares_egon.csv" |
||
2106 | ).set_index("country_code") |
||
2107 | |||
2108 | heat_demand_per_country = ( |
||
2109 | network.loads_t.p_set[ |
||
2110 | network.loads[ |
||
2111 | (network.loads.carrier.str.contains("heat")) |
||
2112 | & network.loads.index.isin(network.loads_t.p_set.columns) |
||
2113 | ].index |
||
2114 | ] |
||
2115 | .groupby(network.loads.bus.str[:5], axis=1) |
||
2116 | .sum() |
||
2117 | ) |
||
2118 | |||
2119 | for country in heat_demand_per_country.columns: |
||
2120 | network.loads_t.p_set[f"{country} urban central heat"] = ( |
||
2121 | heat_demand_per_country.loc[:, country].mul( |
||
2122 | df.loc[country[:2]].values[0] |
||
2123 | ) |
||
2124 | ) |
||
2125 | network.loads_t.p_set[f"{country} rural heat"] = ( |
||
2126 | heat_demand_per_country.loc[:, country].mul( |
||
2127 | (1 - df.loc[country[:2]].values[0]) |
||
2128 | ) |
||
2129 | ) |
||
2130 | |||
2131 | # Drop links with undefined buses or carrier |
||
2132 | network.mremove( |
||
2133 | "Link", |
||
2134 | network.links[ |
||
2135 | ~network.links.bus0.isin(network.buses.index.values) |
||
2136 | ].index, |
||
2137 | ) |
||
2138 | network.mremove( |
||
2139 | "Link", |
||
2140 | network.links[network.links.carrier == ""].index, |
||
2141 | ) |
||
2142 | |||
2143 | return network |
||
2144 | |||
2145 | |||
2146 | def drop_new_gas_pipelines(network): |
||
2147 | network.mremove( |
||
2148 | "Link", |
||
2149 | network.links[ |
||
2150 | network.links.index.str.contains("gas pipeline new") |
||
2151 | ].index, |
||
2152 | ) |
||
2153 | |||
2154 | return network |
||
2155 | |||
2156 | |||
2157 | def drop_fossil_gas(network): |
||
2158 | network.mremove( |
||
2159 | "Generator", |
||
2160 | network.generators[network.generators.carrier == "gas"].index, |
||
2161 | ) |
||
2162 | |||
2163 | return network |
||
2164 | |||
2165 | |||
2166 | def drop_conventional_power_plants(network): |
||
2167 | |||
2168 | # Drop lignite and coal power plants in Germany |
||
2169 | network.mremove( |
||
2170 | "Link", |
||
2171 | network.links[ |
||
2172 | (network.links.carrier.isin(["coal", "lignite"])) |
||
2173 | & (network.links.bus1.str.startswith("DE")) |
||
2174 | ].index, |
||
2175 | ) |
||
2176 | |||
2177 | return network |
||
2178 | |||
2179 | |||
2180 | def rual_heat_technologies(network): |
||
2181 | network.mremove( |
||
2182 | "Link", |
||
2183 | network.links[ |
||
2184 | network.links.index.str.contains("rural gas boiler") |
||
2185 | ].index, |
||
2186 | ) |
||
2187 | |||
2188 | network.mremove( |
||
2189 | "Generator", |
||
2190 | network.generators[ |
||
2191 | network.generators.carrier.str.contains("rural solar thermal") |
||
2192 | ].index, |
||
2193 | ) |
||
2194 | |||
2195 | return network |
||
2196 | |||
2197 | |||
2198 | def coal_exit_D(): |
||
2199 | |||
2200 | df = pd.read_csv( |
||
2201 | "run-pypsa-eur/pypsa-eur/resources/powerplants_s_39.csv", index_col=0 |
||
2202 | ) |
||
2203 | df_de_coal = df[ |
||
2204 | (df.Country == "DE") |
||
2205 | & ((df.Fueltype == "Lignite") | (df.Fueltype == "Hard Coal")) |
||
2206 | ] |
||
2207 | df_de_coal.loc[df_de_coal.DateOut.values >= 2035, "DateOut"] = 2034 |
||
2208 | df.loc[df_de_coal.index] = df_de_coal |
||
2209 | |||
2210 | df.to_csv("run-pypsa-eur/pypsa-eur/resources/powerplants_s_39.csv") |
||
2211 | |||
2212 | |||
2213 | def offwind_potential_D(network, capacity_per_sqkm=4): |
||
2214 | |||
2215 | offwind_ac_factor = 1942 |
||
2216 | offwind_dc_factor = 10768 |
||
2217 | offwind_float_factor = 134 |
||
2218 | |||
2219 | # set p_nom_max for German offshore with respect to capacity_per_sqkm = 4 instead of default 2 (which is applied for the rest of Europe) |
||
2220 | network.generators.loc[ |
||
2221 | (network.generators.bus == "DE0 0") |
||
2222 | & (network.generators.carrier == "offwind-ac"), |
||
2223 | "p_nom_max", |
||
2224 | ] = ( |
||
2225 | offwind_ac_factor * capacity_per_sqkm |
||
2226 | ) |
||
2227 | network.generators.loc[ |
||
2228 | (network.generators.bus == "DE0 0") |
||
2229 | & (network.generators.carrier == "offwind-dc"), |
||
2230 | "p_nom_max", |
||
2231 | ] = ( |
||
2232 | offwind_dc_factor * capacity_per_sqkm |
||
2233 | ) |
||
2234 | network.generators.loc[ |
||
2235 | (network.generators.bus == "DE0 0") |
||
2236 | & (network.generators.carrier == "offwind-float"), |
||
2237 | "p_nom_max", |
||
2238 | ] = ( |
||
2239 | offwind_float_factor * capacity_per_sqkm |
||
2240 | ) |
||
2241 | |||
2242 | return network |
||
2243 | |||
2244 | |||
2245 | def additional_grid_expansion_2045(network): |
||
2246 | |||
2247 | network.global_constraints.loc["lc_limit", "constant"] *= 1.05 |
||
2248 | |||
2249 | return network |
||
2250 | |||
2251 | |||
2252 | def execute(): |
||
2253 | if egon.data.config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
2254 | with open( |
||
2255 | __path__[0] + "/datasets/pypsaeur/config.yaml", "r" |
||
2256 | ) as stream: |
||
2257 | data_config = yaml.safe_load(stream) |
||
2258 | |||
2259 | if data_config["foresight"] == "myopic": |
||
2260 | |||
2261 | print("Adjusting scenarios on the myopic pathway...") |
||
2262 | |||
2263 | coal_exit_D() |
||
2264 | |||
2265 | networks = pd.Series() |
||
2266 | |||
2267 | for i in range( |
||
2268 | 0, len(data_config["scenario"]["planning_horizons"]) |
||
2269 | ): |
||
2270 | nc_file = pd.Series( |
||
2271 | f"base_s_{data_config['scenario']['clusters'][0]}" |
||
2272 | f"_l{data_config['scenario']['ll'][0]}" |
||
2273 | f"_{data_config['scenario']['opts'][0]}" |
||
2274 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
2275 | f"_{data_config['scenario']['planning_horizons'][i]}.nc" |
||
2276 | ) |
||
2277 | networks = networks._append(nc_file) |
||
2278 | |||
2279 | scn_path = pd.DataFrame( |
||
2280 | index=["2025", "2030", "2035", "2045"], |
||
2281 | columns=["prenetwork", "functions"], |
||
2282 | ) |
||
2283 | |||
2284 | for year in scn_path.index: |
||
2285 | scn_path.at[year, "prenetwork"] = networks[ |
||
2286 | networks.str.contains(year) |
||
2287 | ].values |
||
2288 | |||
2289 | for year in ["2025", "2030", "2035"]: |
||
2290 | scn_path.loc[year, "functions"] = [ |
||
2291 | # drop_urban_decentral_heat, |
||
2292 | update_electrical_timeseries_germany, |
||
2293 | geothermal_district_heating, |
||
2294 | h2_overground_stores, |
||
2295 | drop_new_gas_pipelines, |
||
2296 | offwind_potential_D, |
||
2297 | ] |
||
2298 | |||
2299 | scn_path.loc["2045", "functions"] = [ |
||
2300 | drop_biomass, |
||
2301 | # drop_urban_decentral_heat, |
||
2302 | update_electrical_timeseries_germany, |
||
2303 | geothermal_district_heating, |
||
2304 | h2_overground_stores, |
||
2305 | drop_new_gas_pipelines, |
||
2306 | drop_fossil_gas, |
||
2307 | offwind_potential_D, |
||
2308 | additional_grid_expansion_2045, |
||
2309 | # drop_conventional_power_plants, |
||
2310 | # rual_heat_technologies, #To be defined |
||
2311 | ] |
||
2312 | |||
2313 | network_path = ( |
||
2314 | Path(".") |
||
2315 | / "run-pypsa-eur" |
||
2316 | / "pypsa-eur" |
||
2317 | / "results" |
||
2318 | / data_config["run"]["name"] |
||
2319 | / "prenetworks" |
||
2320 | ) |
||
2321 | |||
2322 | for scn in scn_path.index: |
||
2323 | path = network_path / scn_path.at[scn, "prenetwork"] |
||
2324 | network = pypsa.Network(path) |
||
2325 | network.year = int(scn) |
||
2326 | for manipulator in scn_path.at[scn, "functions"]: |
||
2327 | network = manipulator(network) |
||
2328 | network.export_to_netcdf(path) |
||
2329 | |||
2330 | elif (data_config["foresight"] == "overnight") & ( |
||
2331 | int(data_config["scenario"]["planning_horizons"][0]) > 2040 |
||
2332 | ): |
||
2333 | |||
2334 | print("Adjusting overnight long-term scenario...") |
||
2335 | |||
2336 | network_path = ( |
||
2337 | Path(".") |
||
2338 | / "run-pypsa-eur" |
||
2339 | / "pypsa-eur" |
||
2340 | / "results" |
||
2341 | / data_config["run"]["name"] |
||
2342 | / "prenetworks" |
||
2343 | / f"elec_s_{data_config['scenario']['clusters'][0]}" |
||
2344 | f"_l{data_config['scenario']['ll'][0]}" |
||
2345 | f"_{data_config['scenario']['opts'][0]}" |
||
2346 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
2347 | f"_{data_config['scenario']['planning_horizons'][0]}.nc" |
||
2348 | ) |
||
2349 | |||
2350 | network = pypsa.Network(network_path) |
||
2351 | |||
2352 | network = drop_biomass(network) |
||
2353 | |||
2354 | network = drop_urban_decentral_heat(network) |
||
2355 | |||
2356 | network = district_heating_shares(network) |
||
2357 | |||
2358 | network = update_heat_timeseries_germany(network) |
||
2359 | |||
2360 | network = update_electrical_timeseries_germany(network) |
||
2361 | |||
2362 | network = geothermal_district_heating(network) |
||
2363 | |||
2364 | network = h2_overground_stores(network) |
||
2365 | |||
2366 | network = drop_new_gas_pipelines(network) |
||
2367 | |||
2368 | network = drop_fossil_gas(network) |
||
2369 | |||
2370 | network = rual_heat_technologies(network) |
||
2371 | |||
2372 | network.export_to_netcdf(network_path) |
||
2373 | |||
2374 | else: |
||
2375 | print( |
||
2376 | f"""Adjustments on prenetworks are not implemented for |
||
2377 | foresight option {data_config['foresight']} and |
||
2378 | year int(data_config['scenario']['planning_horizons'][0]. |
||
2379 | Please check the pypsaeur.execute function. |
||
2380 | """ |
||
2381 | ) |
||
2382 | else: |
||
2383 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
2384 |