| Conditions | 47 |
| Total Lines | 1070 |
| Code Lines | 725 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.pypsaeur.neighbor_reduction() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """The central module containing all code dealing with importing data from |
||
| 671 | def neighbor_reduction(): |
||
| 672 | network_solved = read_network(planning_horizon=2045) |
||
| 673 | network_prepared = prepared_network(planning_horizon="2045") |
||
| 674 | |||
| 675 | # network.links.drop("pipe_retrofit", axis="columns", inplace=True) |
||
| 676 | |||
| 677 | wanted_countries = countries_list() |
||
| 678 | |||
| 679 | foreign_buses = network_solved.buses[ |
||
| 680 | (~network_solved.buses.index.str.contains("|".join(wanted_countries))) |
||
| 681 | | (network_solved.buses.index.str.contains("FR6")) |
||
| 682 | ] |
||
| 683 | network_solved.buses = network_solved.buses.drop( |
||
| 684 | network_solved.buses.loc[foreign_buses.index].index |
||
| 685 | ) |
||
| 686 | |||
| 687 | # Add H2 demand of Fischer-Tropsch process and methanolisation |
||
| 688 | # to industrial H2 demands |
||
| 689 | industrial_hydrogen = network_prepared.loads.loc[ |
||
| 690 | network_prepared.loads.carrier == "H2 for industry" |
||
| 691 | ] |
||
| 692 | fischer_tropsch = ( |
||
| 693 | network_solved.links_t.p0[ |
||
| 694 | network_solved.links.loc[ |
||
| 695 | network_solved.links.carrier == "Fischer-Tropsch" |
||
| 696 | ].index |
||
| 697 | ] |
||
| 698 | .mul(network_solved.snapshot_weightings.generators, axis=0) |
||
| 699 | .sum() |
||
| 700 | ) |
||
| 701 | methanolisation = ( |
||
| 702 | network_solved.links_t.p0[ |
||
| 703 | network_solved.links.loc[ |
||
| 704 | network_solved.links.carrier == "methanolisation" |
||
| 705 | ].index |
||
| 706 | ] |
||
| 707 | .mul(network_solved.snapshot_weightings.generators, axis=0) |
||
| 708 | .sum() |
||
| 709 | ) |
||
| 710 | for i, row in industrial_hydrogen.iterrows(): |
||
| 711 | network_prepared.loads.loc[i, "p_set"] += ( |
||
| 712 | fischer_tropsch[ |
||
| 713 | fischer_tropsch.index.str.startswith(row.bus[:5]) |
||
| 714 | ].sum() |
||
| 715 | / 8760 |
||
| 716 | ) |
||
| 717 | network_prepared.loads.loc[i, "p_set"] += ( |
||
| 718 | methanolisation[ |
||
| 719 | methanolisation.index.str.startswith(row.bus[:5]) |
||
| 720 | ].sum() |
||
| 721 | / 8760 |
||
| 722 | ) |
||
| 723 | # drop foreign lines and links from the 2nd row |
||
| 724 | |||
| 725 | network_solved.lines = network_solved.lines.drop( |
||
| 726 | network_solved.lines[ |
||
| 727 | ( |
||
| 728 | network_solved.lines["bus0"].isin(network_solved.buses.index) |
||
| 729 | == False |
||
| 730 | ) |
||
| 731 | & ( |
||
| 732 | network_solved.lines["bus1"].isin(network_solved.buses.index) |
||
| 733 | == False |
||
| 734 | ) |
||
| 735 | ].index |
||
| 736 | ) |
||
| 737 | |||
| 738 | # select all lines which have at bus1 the bus which is kept |
||
| 739 | lines_cb_1 = network_solved.lines[ |
||
| 740 | ( |
||
| 741 | network_solved.lines["bus0"].isin(network_solved.buses.index) |
||
| 742 | == False |
||
| 743 | ) |
||
| 744 | ] |
||
| 745 | |||
| 746 | # create a load at bus1 with the line's hourly loading |
||
| 747 | for i, k in zip(lines_cb_1.bus1.values, lines_cb_1.index): |
||
| 748 | |||
| 749 | # Copy loading of lines into hourly resolution |
||
| 750 | pset = pd.Series( |
||
| 751 | index=network_prepared.snapshots, |
||
| 752 | data=network_solved.lines_t.p1[k].resample("H").ffill(), |
||
| 753 | ) |
||
| 754 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 755 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 756 | |||
| 757 | # Loads are all imported from the prepared network in the end |
||
| 758 | network_prepared.add( |
||
| 759 | "Load", |
||
| 760 | "slack_fix " + i + " " + k, |
||
| 761 | bus=i, |
||
| 762 | p_set=pset, |
||
| 763 | carrier=lines_cb_1.loc[k, "carrier"], |
||
| 764 | ) |
||
| 765 | |||
| 766 | # select all lines which have at bus0 the bus which is kept |
||
| 767 | lines_cb_0 = network_solved.lines[ |
||
| 768 | ( |
||
| 769 | network_solved.lines["bus1"].isin(network_solved.buses.index) |
||
| 770 | == False |
||
| 771 | ) |
||
| 772 | ] |
||
| 773 | |||
| 774 | # create a load at bus0 with the line's hourly loading |
||
| 775 | for i, k in zip(lines_cb_0.bus0.values, lines_cb_0.index): |
||
| 776 | # Copy loading of lines into hourly resolution |
||
| 777 | pset = pd.Series( |
||
| 778 | index=network_prepared.snapshots, |
||
| 779 | data=network_solved.lines_t.p0[k].resample("H").ffill(), |
||
| 780 | ) |
||
| 781 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 782 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 783 | |||
| 784 | network_prepared.add( |
||
| 785 | "Load", |
||
| 786 | "slack_fix " + i + " " + k, |
||
| 787 | bus=i, |
||
| 788 | p_set=pset, |
||
| 789 | carrier=lines_cb_0.loc[k, "carrier"], |
||
| 790 | ) |
||
| 791 | |||
| 792 | # do the same for links |
||
| 793 | network_solved.mremove( |
||
| 794 | "Link", |
||
| 795 | network_solved.links[ |
||
| 796 | (~network_solved.links.bus0.isin(network_solved.buses.index)) |
||
| 797 | | (~network_solved.links.bus1.isin(network_solved.buses.index)) |
||
| 798 | ].index, |
||
| 799 | ) |
||
| 800 | |||
| 801 | # select all links which have at bus1 the bus which is kept |
||
| 802 | links_cb_1 = network_solved.links[ |
||
| 803 | ( |
||
| 804 | network_solved.links["bus0"].isin(network_solved.buses.index) |
||
| 805 | == False |
||
| 806 | ) |
||
| 807 | ] |
||
| 808 | |||
| 809 | # create a load at bus1 with the link's hourly loading |
||
| 810 | for i, k in zip(links_cb_1.bus1.values, links_cb_1.index): |
||
| 811 | pset = pd.Series( |
||
| 812 | index=network_prepared.snapshots, |
||
| 813 | data=network_solved.links_t.p1[k].resample("H").ffill(), |
||
| 814 | ) |
||
| 815 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 816 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 817 | |||
| 818 | network_prepared.add( |
||
| 819 | "Load", |
||
| 820 | "slack_fix_links " + i + " " + k, |
||
| 821 | bus=i, |
||
| 822 | p_set=pset, |
||
| 823 | carrier=links_cb_1.loc[k, "carrier"], |
||
| 824 | ) |
||
| 825 | |||
| 826 | # select all links which have at bus0 the bus which is kept |
||
| 827 | links_cb_0 = network_solved.links[ |
||
| 828 | ( |
||
| 829 | network_solved.links["bus1"].isin(network_solved.buses.index) |
||
| 830 | == False |
||
| 831 | ) |
||
| 832 | ] |
||
| 833 | |||
| 834 | # create a load at bus0 with the link's hourly loading |
||
| 835 | for i, k in zip(links_cb_0.bus0.values, links_cb_0.index): |
||
| 836 | pset = pd.Series( |
||
| 837 | index=network_prepared.snapshots, |
||
| 838 | data=network_solved.links_t.p0[k].resample("H").ffill(), |
||
| 839 | ) |
||
| 840 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 841 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 842 | |||
| 843 | network_prepared.add( |
||
| 844 | "Load", |
||
| 845 | "slack_fix_links " + i + " " + k, |
||
| 846 | bus=i, |
||
| 847 | p_set=pset, |
||
| 848 | carrier=links_cb_0.carrier[k], |
||
| 849 | ) |
||
| 850 | |||
| 851 | # drop remaining foreign components |
||
| 852 | for comp in network_solved.iterate_components(): |
||
| 853 | if "bus0" in comp.df.columns: |
||
| 854 | network_solved.mremove( |
||
| 855 | comp.name, |
||
| 856 | comp.df[~comp.df.bus0.isin(network_solved.buses.index)].index, |
||
| 857 | ) |
||
| 858 | network_solved.mremove( |
||
| 859 | comp.name, |
||
| 860 | comp.df[~comp.df.bus1.isin(network_solved.buses.index)].index, |
||
| 861 | ) |
||
| 862 | elif "bus" in comp.df.columns: |
||
| 863 | network_solved.mremove( |
||
| 864 | comp.name, |
||
| 865 | comp.df[~comp.df.bus.isin(network_solved.buses.index)].index, |
||
| 866 | ) |
||
| 867 | |||
| 868 | # Combine urban decentral and rural heat |
||
| 869 | network_prepared, network_solved = combine_decentral_and_rural_heat( |
||
| 870 | network_solved, network_prepared |
||
| 871 | ) |
||
| 872 | |||
| 873 | # writing components of neighboring countries to etrago tables |
||
| 874 | |||
| 875 | # Set country tag for all buses |
||
| 876 | network_solved.buses.country = network_solved.buses.index.str[:2] |
||
| 877 | neighbors = network_solved.buses[network_solved.buses.country != "DE"] |
||
| 878 | |||
| 879 | neighbors["new_index"] = ( |
||
| 880 | db.next_etrago_id("bus", len(neighbors.index)) |
||
| 881 | ) |
||
| 882 | |||
| 883 | # Use index of AC buses created by electrical_neigbors |
||
| 884 | foreign_ac_buses = db.select_dataframe( |
||
| 885 | """ |
||
| 886 | SELECT * FROM grid.egon_etrago_bus |
||
| 887 | WHERE carrier = 'AC' AND v_nom = 380 |
||
| 888 | AND country!= 'DE' AND scn_name ='eGon100RE' |
||
| 889 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data) |
||
| 890 | """ |
||
| 891 | ) |
||
| 892 | buses_with_defined_id = neighbors[ |
||
| 893 | (neighbors.carrier == "AC") |
||
| 894 | & (neighbors.country.isin(foreign_ac_buses.country.values)) |
||
| 895 | ].index |
||
| 896 | neighbors.loc[buses_with_defined_id, "new_index"] = ( |
||
| 897 | foreign_ac_buses.set_index("x") |
||
| 898 | .loc[neighbors.loc[buses_with_defined_id, "x"]] |
||
| 899 | .bus_id.values |
||
| 900 | ) |
||
| 901 | |||
| 902 | # lines, the foreign crossborder lines |
||
| 903 | # (without crossborder lines to Germany!) |
||
| 904 | |||
| 905 | neighbor_lines = network_solved.lines[ |
||
| 906 | network_solved.lines.bus0.isin(neighbors.index) |
||
| 907 | & network_solved.lines.bus1.isin(neighbors.index) |
||
| 908 | ] |
||
| 909 | if not network_solved.lines_t["s_max_pu"].empty: |
||
| 910 | neighbor_lines_t = network_prepared.lines_t["s_max_pu"][ |
||
| 911 | neighbor_lines.index |
||
| 912 | ] |
||
| 913 | |||
| 914 | neighbor_lines.reset_index(inplace=True) |
||
| 915 | neighbor_lines.bus0 = ( |
||
| 916 | neighbors.loc[neighbor_lines.bus0, "new_index"].reset_index().new_index |
||
| 917 | ) |
||
| 918 | neighbor_lines.bus1 = ( |
||
| 919 | neighbors.loc[neighbor_lines.bus1, "new_index"].reset_index().new_index |
||
| 920 | ) |
||
| 921 | neighbor_lines.index = db.next_etrago_id("line", len(neighbor_lines.index)) |
||
| 922 | |||
| 923 | if not network_solved.lines_t["s_max_pu"].empty: |
||
| 924 | for i in neighbor_lines_t.columns: |
||
| 925 | new_index = neighbor_lines[neighbor_lines["name"] == i].index |
||
| 926 | neighbor_lines_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 927 | |||
| 928 | # links |
||
| 929 | neighbor_links = network_solved.links[ |
||
| 930 | network_solved.links.bus0.isin(neighbors.index) |
||
| 931 | & network_solved.links.bus1.isin(neighbors.index) |
||
| 932 | ] |
||
| 933 | |||
| 934 | neighbor_links.reset_index(inplace=True) |
||
| 935 | neighbor_links.bus0 = ( |
||
| 936 | neighbors.loc[neighbor_links.bus0, "new_index"].reset_index().new_index |
||
| 937 | ) |
||
| 938 | neighbor_links.bus1 = ( |
||
| 939 | neighbors.loc[neighbor_links.bus1, "new_index"].reset_index().new_index |
||
| 940 | ) |
||
| 941 | neighbor_links.index = db.next_etrago_id("link", len(neighbor_links.index)) |
||
| 942 | |||
| 943 | # generators |
||
| 944 | neighbor_gens = network_solved.generators[ |
||
| 945 | network_solved.generators.bus.isin(neighbors.index) |
||
| 946 | ] |
||
| 947 | neighbor_gens_t = network_prepared.generators_t["p_max_pu"][ |
||
| 948 | neighbor_gens[ |
||
| 949 | neighbor_gens.index.isin( |
||
| 950 | network_prepared.generators_t["p_max_pu"].columns |
||
| 951 | ) |
||
| 952 | ].index |
||
| 953 | ] |
||
| 954 | |||
| 955 | gen_time = [ |
||
| 956 | "solar", |
||
| 957 | "onwind", |
||
| 958 | "solar rooftop", |
||
| 959 | "offwind-ac", |
||
| 960 | "offwind-dc", |
||
| 961 | "solar-hsat", |
||
| 962 | "urban central solar thermal", |
||
| 963 | "rural solar thermal", |
||
| 964 | "offwind-float", |
||
| 965 | ] |
||
| 966 | |||
| 967 | missing_gent = neighbor_gens[ |
||
| 968 | neighbor_gens["carrier"].isin(gen_time) |
||
| 969 | & ~neighbor_gens.index.isin(neighbor_gens_t.columns) |
||
| 970 | ].index |
||
| 971 | |||
| 972 | gen_timeseries = network_prepared.generators_t["p_max_pu"].copy() |
||
| 973 | for mgt in missing_gent: # mgt: missing generator timeseries |
||
| 974 | try: |
||
| 975 | neighbor_gens_t[mgt] = gen_timeseries.loc[:, mgt[0:-5]] |
||
| 976 | except: |
||
| 977 | print(f"There are not timeseries for {mgt}") |
||
| 978 | |||
| 979 | neighbor_gens.reset_index(inplace=True) |
||
| 980 | neighbor_gens.bus = ( |
||
| 981 | neighbors.loc[neighbor_gens.bus, "new_index"].reset_index().new_index |
||
| 982 | ) |
||
| 983 | neighbor_gens.index = db.next_etrago_id( |
||
| 984 | "generator", len(neighbor_gens.index)) |
||
| 985 | |||
| 986 | for i in neighbor_gens_t.columns: |
||
| 987 | new_index = neighbor_gens[neighbor_gens["Generator"] == i].index |
||
| 988 | neighbor_gens_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 989 | |||
| 990 | # loads |
||
| 991 | # imported from prenetwork in 1h-resolution |
||
| 992 | neighbor_loads = network_prepared.loads[ |
||
| 993 | network_prepared.loads.bus.isin(neighbors.index) |
||
| 994 | ] |
||
| 995 | neighbor_loads_t_index = neighbor_loads.index[ |
||
| 996 | neighbor_loads.index.isin(network_prepared.loads_t.p_set.columns) |
||
| 997 | ] |
||
| 998 | neighbor_loads_t = network_prepared.loads_t["p_set"][ |
||
| 999 | neighbor_loads_t_index |
||
| 1000 | ] |
||
| 1001 | |||
| 1002 | neighbor_loads.reset_index(inplace=True) |
||
| 1003 | neighbor_loads.bus = ( |
||
| 1004 | neighbors.loc[neighbor_loads.bus, "new_index"].reset_index().new_index |
||
| 1005 | ) |
||
| 1006 | neighbor_loads.index = db.next_etrago_id("load", len(neighbor_loads.index)) |
||
| 1007 | |||
| 1008 | for i in neighbor_loads_t.columns: |
||
| 1009 | new_index = neighbor_loads[neighbor_loads["Load"] == i].index |
||
| 1010 | neighbor_loads_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 1011 | |||
| 1012 | # stores |
||
| 1013 | neighbor_stores = network_solved.stores[ |
||
| 1014 | network_solved.stores.bus.isin(neighbors.index) |
||
| 1015 | ] |
||
| 1016 | neighbor_stores_t_index = neighbor_stores.index[ |
||
| 1017 | neighbor_stores.index.isin(network_solved.stores_t.e_min_pu.columns) |
||
| 1018 | ] |
||
| 1019 | neighbor_stores_t = network_prepared.stores_t["e_min_pu"][ |
||
| 1020 | neighbor_stores_t_index |
||
| 1021 | ] |
||
| 1022 | |||
| 1023 | neighbor_stores.reset_index(inplace=True) |
||
| 1024 | neighbor_stores.bus = ( |
||
| 1025 | neighbors.loc[neighbor_stores.bus, "new_index"].reset_index().new_index |
||
| 1026 | ) |
||
| 1027 | neighbor_stores.index = db.next_etrago_id( |
||
| 1028 | "store", len(neighbor_stores.index)) |
||
| 1029 | |||
| 1030 | for i in neighbor_stores_t.columns: |
||
| 1031 | new_index = neighbor_stores[neighbor_stores["Store"] == i].index |
||
| 1032 | neighbor_stores_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 1033 | |||
| 1034 | # storage_units |
||
| 1035 | neighbor_storage = network_solved.storage_units[ |
||
| 1036 | network_solved.storage_units.bus.isin(neighbors.index) |
||
| 1037 | ] |
||
| 1038 | neighbor_storage_t_index = neighbor_storage.index[ |
||
| 1039 | neighbor_storage.index.isin( |
||
| 1040 | network_solved.storage_units_t.inflow.columns |
||
| 1041 | ) |
||
| 1042 | ] |
||
| 1043 | neighbor_storage_t = network_prepared.storage_units_t["inflow"][ |
||
| 1044 | neighbor_storage_t_index |
||
| 1045 | ] |
||
| 1046 | |||
| 1047 | neighbor_storage.reset_index(inplace=True) |
||
| 1048 | neighbor_storage.bus = ( |
||
| 1049 | neighbors.loc[neighbor_storage.bus, "new_index"] |
||
| 1050 | .reset_index() |
||
| 1051 | .new_index |
||
| 1052 | ) |
||
| 1053 | neighbor_storage.index = db.next_etrago_id( |
||
| 1054 | "storage", len(neighbor_storage.index)) |
||
| 1055 | |||
| 1056 | for i in neighbor_storage_t.columns: |
||
| 1057 | new_index = neighbor_storage[ |
||
| 1058 | neighbor_storage["StorageUnit"] == i |
||
| 1059 | ].index |
||
| 1060 | neighbor_storage_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 1061 | |||
| 1062 | # Connect to local database |
||
| 1063 | engine = db.engine() |
||
| 1064 | |||
| 1065 | neighbors["scn_name"] = "eGon100RE" |
||
| 1066 | neighbors.index = neighbors["new_index"] |
||
| 1067 | |||
| 1068 | # Correct geometry for non AC buses |
||
| 1069 | carriers = set(neighbors.carrier.to_list()) |
||
| 1070 | carriers = [e for e in carriers if e not in ("AC")] |
||
| 1071 | non_AC_neighbors = pd.DataFrame() |
||
| 1072 | for c in carriers: |
||
| 1073 | c_neighbors = neighbors[neighbors.carrier == c].set_index( |
||
| 1074 | "location", drop=False |
||
| 1075 | ) |
||
| 1076 | for i in ["x", "y"]: |
||
| 1077 | c_neighbors = c_neighbors.drop(i, axis=1) |
||
| 1078 | coordinates = neighbors[neighbors.carrier == "AC"][ |
||
| 1079 | ["location", "x", "y"] |
||
| 1080 | ].set_index("location") |
||
| 1081 | c_neighbors = pd.concat([coordinates, c_neighbors], axis=1).set_index( |
||
| 1082 | "new_index", drop=False |
||
| 1083 | ) |
||
| 1084 | non_AC_neighbors = pd.concat([non_AC_neighbors, c_neighbors]) |
||
| 1085 | |||
| 1086 | neighbors = pd.concat( |
||
| 1087 | [neighbors[neighbors.carrier == "AC"], non_AC_neighbors] |
||
| 1088 | ) |
||
| 1089 | |||
| 1090 | for i in [ |
||
| 1091 | "new_index", |
||
| 1092 | "control", |
||
| 1093 | "generator", |
||
| 1094 | "location", |
||
| 1095 | "sub_network", |
||
| 1096 | "unit", |
||
| 1097 | "substation_lv", |
||
| 1098 | "substation_off", |
||
| 1099 | ]: |
||
| 1100 | neighbors = neighbors.drop(i, axis=1) |
||
| 1101 | |||
| 1102 | # Add geometry column |
||
| 1103 | neighbors = ( |
||
| 1104 | gpd.GeoDataFrame( |
||
| 1105 | neighbors, geometry=gpd.points_from_xy(neighbors.x, neighbors.y) |
||
| 1106 | ) |
||
| 1107 | .rename_geometry("geom") |
||
| 1108 | .set_crs(4326) |
||
| 1109 | ) |
||
| 1110 | |||
| 1111 | # Unify carrier names |
||
| 1112 | neighbors.carrier = neighbors.carrier.str.replace(" ", "_") |
||
| 1113 | neighbors.carrier.replace( |
||
| 1114 | { |
||
| 1115 | "gas": "CH4", |
||
| 1116 | "gas_for_industry": "CH4_for_industry", |
||
| 1117 | "urban_central_heat": "central_heat", |
||
| 1118 | "EV_battery": "Li_ion", |
||
| 1119 | "urban_central_water_tanks": "central_heat_store", |
||
| 1120 | "rural_water_tanks": "rural_heat_store", |
||
| 1121 | }, |
||
| 1122 | inplace=True, |
||
| 1123 | ) |
||
| 1124 | |||
| 1125 | neighbors[~neighbors.carrier.isin(["AC"])].to_postgis( |
||
| 1126 | "egon_etrago_bus", |
||
| 1127 | engine, |
||
| 1128 | schema="grid", |
||
| 1129 | if_exists="append", |
||
| 1130 | index=True, |
||
| 1131 | index_label="bus_id", |
||
| 1132 | ) |
||
| 1133 | |||
| 1134 | # prepare and write neighboring crossborder lines to etrago tables |
||
| 1135 | def lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE"): |
||
| 1136 | neighbor_lines["scn_name"] = scn |
||
| 1137 | neighbor_lines["cables"] = 3 * neighbor_lines["num_parallel"].astype( |
||
| 1138 | int |
||
| 1139 | ) |
||
| 1140 | neighbor_lines["s_nom"] = neighbor_lines["s_nom_min"] |
||
| 1141 | |||
| 1142 | for i in [ |
||
| 1143 | "Line", |
||
| 1144 | "x_pu_eff", |
||
| 1145 | "r_pu_eff", |
||
| 1146 | "sub_network", |
||
| 1147 | "x_pu", |
||
| 1148 | "r_pu", |
||
| 1149 | "g_pu", |
||
| 1150 | "b_pu", |
||
| 1151 | "s_nom_opt", |
||
| 1152 | "i_nom", |
||
| 1153 | "dc", |
||
| 1154 | ]: |
||
| 1155 | neighbor_lines = neighbor_lines.drop(i, axis=1) |
||
| 1156 | |||
| 1157 | # Define geometry and add to lines dataframe as 'topo' |
||
| 1158 | gdf = gpd.GeoDataFrame(index=neighbor_lines.index) |
||
| 1159 | gdf["geom_bus0"] = neighbors.geom[neighbor_lines.bus0].values |
||
| 1160 | gdf["geom_bus1"] = neighbors.geom[neighbor_lines.bus1].values |
||
| 1161 | gdf["geometry"] = gdf.apply( |
||
| 1162 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
| 1163 | ) |
||
| 1164 | |||
| 1165 | neighbor_lines = ( |
||
| 1166 | gpd.GeoDataFrame(neighbor_lines, geometry=gdf["geometry"]) |
||
| 1167 | .rename_geometry("topo") |
||
| 1168 | .set_crs(4326) |
||
| 1169 | ) |
||
| 1170 | |||
| 1171 | neighbor_lines["lifetime"] = get_sector_parameters("electricity", scn)[ |
||
| 1172 | "lifetime" |
||
| 1173 | ]["ac_ehv_overhead_line"] |
||
| 1174 | |||
| 1175 | neighbor_lines.to_postgis( |
||
| 1176 | "egon_etrago_line", |
||
| 1177 | engine, |
||
| 1178 | schema="grid", |
||
| 1179 | if_exists="append", |
||
| 1180 | index=True, |
||
| 1181 | index_label="line_id", |
||
| 1182 | ) |
||
| 1183 | |||
| 1184 | lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE") |
||
| 1185 | |||
| 1186 | def links_to_etrago(neighbor_links, scn="eGon100RE", extendable=True): |
||
| 1187 | """Prepare and write neighboring crossborder links to eTraGo table |
||
| 1188 | |||
| 1189 | This function prepare the neighboring crossborder links |
||
| 1190 | generated the PyPSA-eur-sec (p-e-s) run by: |
||
| 1191 | * Delete the useless columns |
||
| 1192 | * If extendable is false only (non default case): |
||
| 1193 | * Replace p_nom = 0 with the p_nom_op values (arrising |
||
| 1194 | from the p-e-s optimisation) |
||
| 1195 | * Setting p_nom_extendable to false |
||
| 1196 | * Add geomtry to the links: 'geom' and 'topo' columns |
||
| 1197 | * Change the name of the carriers to have the consistent in |
||
| 1198 | eGon-data |
||
| 1199 | |||
| 1200 | The function insert then the link to the eTraGo table and has |
||
| 1201 | no return. |
||
| 1202 | |||
| 1203 | Parameters |
||
| 1204 | ---------- |
||
| 1205 | neighbor_links : pandas.DataFrame |
||
| 1206 | Dataframe containing the neighboring crossborder links |
||
| 1207 | scn_name : str |
||
| 1208 | Name of the scenario |
||
| 1209 | extendable : bool |
||
| 1210 | Boolean expressing if the links should be extendable or not |
||
| 1211 | |||
| 1212 | Returns |
||
| 1213 | ------- |
||
| 1214 | None |
||
| 1215 | |||
| 1216 | """ |
||
| 1217 | neighbor_links["scn_name"] = scn |
||
| 1218 | |||
| 1219 | dropped_carriers = [ |
||
| 1220 | "Link", |
||
| 1221 | "geometry", |
||
| 1222 | "tags", |
||
| 1223 | "under_construction", |
||
| 1224 | "underground", |
||
| 1225 | "underwater_fraction", |
||
| 1226 | "bus2", |
||
| 1227 | "bus3", |
||
| 1228 | "bus4", |
||
| 1229 | "efficiency2", |
||
| 1230 | "efficiency3", |
||
| 1231 | "efficiency4", |
||
| 1232 | "lifetime", |
||
| 1233 | "pipe_retrofit", |
||
| 1234 | "committable", |
||
| 1235 | "start_up_cost", |
||
| 1236 | "shut_down_cost", |
||
| 1237 | "min_up_time", |
||
| 1238 | "min_down_time", |
||
| 1239 | "up_time_before", |
||
| 1240 | "down_time_before", |
||
| 1241 | "ramp_limit_up", |
||
| 1242 | "ramp_limit_down", |
||
| 1243 | "ramp_limit_start_up", |
||
| 1244 | "ramp_limit_shut_down", |
||
| 1245 | "length_original", |
||
| 1246 | "reversed", |
||
| 1247 | "location", |
||
| 1248 | "project_status", |
||
| 1249 | "dc", |
||
| 1250 | "voltage", |
||
| 1251 | ] |
||
| 1252 | |||
| 1253 | if extendable: |
||
| 1254 | dropped_carriers.append("p_nom_opt") |
||
| 1255 | neighbor_links = neighbor_links.drop( |
||
| 1256 | columns=dropped_carriers, |
||
| 1257 | errors="ignore", |
||
| 1258 | ) |
||
| 1259 | |||
| 1260 | else: |
||
| 1261 | dropped_carriers.append("p_nom") |
||
| 1262 | dropped_carriers.append("p_nom_extendable") |
||
| 1263 | neighbor_links = neighbor_links.drop( |
||
| 1264 | columns=dropped_carriers, |
||
| 1265 | errors="ignore", |
||
| 1266 | ) |
||
| 1267 | neighbor_links = neighbor_links.rename( |
||
| 1268 | columns={"p_nom_opt": "p_nom"} |
||
| 1269 | ) |
||
| 1270 | neighbor_links["p_nom_extendable"] = False |
||
| 1271 | |||
| 1272 | if neighbor_links.empty: |
||
| 1273 | print("No links selected") |
||
| 1274 | return |
||
| 1275 | |||
| 1276 | # Define geometry and add to lines dataframe as 'topo' |
||
| 1277 | gdf = gpd.GeoDataFrame( |
||
| 1278 | index=neighbor_links.index, |
||
| 1279 | data={ |
||
| 1280 | "geom_bus0": neighbors.loc[neighbor_links.bus0, "geom"].values, |
||
| 1281 | "geom_bus1": neighbors.loc[neighbor_links.bus1, "geom"].values, |
||
| 1282 | }, |
||
| 1283 | ) |
||
| 1284 | |||
| 1285 | gdf["geometry"] = gdf.apply( |
||
| 1286 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
| 1287 | ) |
||
| 1288 | |||
| 1289 | neighbor_links = ( |
||
| 1290 | gpd.GeoDataFrame(neighbor_links, geometry=gdf["geometry"]) |
||
| 1291 | .rename_geometry("topo") |
||
| 1292 | .set_crs(4326) |
||
| 1293 | ) |
||
| 1294 | |||
| 1295 | # Unify carrier names |
||
| 1296 | neighbor_links.carrier = neighbor_links.carrier.str.replace(" ", "_") |
||
| 1297 | |||
| 1298 | neighbor_links.carrier.replace( |
||
| 1299 | { |
||
| 1300 | "H2_Electrolysis": "power_to_H2", |
||
| 1301 | "H2_Fuel_Cell": "H2_to_power", |
||
| 1302 | "H2_pipeline_retrofitted": "H2_retrofit", |
||
| 1303 | "SMR": "CH4_to_H2", |
||
| 1304 | "Sabatier": "H2_to_CH4", |
||
| 1305 | "gas_for_industry": "CH4_for_industry", |
||
| 1306 | "gas_pipeline": "CH4", |
||
| 1307 | "urban_central_gas_boiler": "central_gas_boiler", |
||
| 1308 | "urban_central_resistive_heater": "central_resistive_heater", |
||
| 1309 | "urban_central_water_tanks_charger": "central_heat_store_charger", |
||
| 1310 | "urban_central_water_tanks_discharger": "central_heat_store_discharger", |
||
| 1311 | "rural_water_tanks_charger": "rural_heat_store_charger", |
||
| 1312 | "rural_water_tanks_discharger": "rural_heat_store_discharger", |
||
| 1313 | "urban_central_gas_CHP": "central_gas_CHP", |
||
| 1314 | "urban_central_air_heat_pump": "central_heat_pump", |
||
| 1315 | "rural_ground_heat_pump": "rural_heat_pump", |
||
| 1316 | }, |
||
| 1317 | inplace=True, |
||
| 1318 | ) |
||
| 1319 | |||
| 1320 | H2_links = { |
||
| 1321 | "H2_to_CH4": "H2_to_CH4", |
||
| 1322 | "H2_to_power": "H2_to_power", |
||
| 1323 | "power_to_H2": "power_to_H2_system", |
||
| 1324 | "CH4_to_H2": "CH4_to_H2", |
||
| 1325 | } |
||
| 1326 | |||
| 1327 | for c in H2_links.keys(): |
||
| 1328 | |||
| 1329 | neighbor_links.loc[ |
||
| 1330 | (neighbor_links.carrier == c), |
||
| 1331 | "lifetime", |
||
| 1332 | ] = get_sector_parameters("gas", "eGon100RE")["lifetime"][ |
||
| 1333 | H2_links[c] |
||
| 1334 | ] |
||
| 1335 | |||
| 1336 | neighbor_links.to_postgis( |
||
| 1337 | "egon_etrago_link", |
||
| 1338 | engine, |
||
| 1339 | schema="grid", |
||
| 1340 | if_exists="append", |
||
| 1341 | index=True, |
||
| 1342 | index_label="link_id", |
||
| 1343 | ) |
||
| 1344 | |||
| 1345 | extendable_links_carriers = [ |
||
| 1346 | "battery charger", |
||
| 1347 | "battery discharger", |
||
| 1348 | "home battery charger", |
||
| 1349 | "home battery discharger", |
||
| 1350 | "rural water tanks charger", |
||
| 1351 | "rural water tanks discharger", |
||
| 1352 | "urban central water tanks charger", |
||
| 1353 | "urban central water tanks discharger", |
||
| 1354 | "urban decentral water tanks charger", |
||
| 1355 | "urban decentral water tanks discharger", |
||
| 1356 | "H2 Electrolysis", |
||
| 1357 | "H2 Fuel Cell", |
||
| 1358 | "SMR", |
||
| 1359 | "Sabatier", |
||
| 1360 | ] |
||
| 1361 | |||
| 1362 | # delete unwanted carriers for eTraGo |
||
| 1363 | excluded_carriers = [ |
||
| 1364 | "gas for industry CC", |
||
| 1365 | "SMR CC", |
||
| 1366 | "DAC", |
||
| 1367 | ] |
||
| 1368 | neighbor_links = neighbor_links[ |
||
| 1369 | ~neighbor_links.carrier.isin(excluded_carriers) |
||
| 1370 | ] |
||
| 1371 | |||
| 1372 | # Combine CHP_CC and CHP |
||
| 1373 | chp_cc = neighbor_links[ |
||
| 1374 | neighbor_links.carrier == "urban central gas CHP CC" |
||
| 1375 | ] |
||
| 1376 | for index, row in chp_cc.iterrows(): |
||
| 1377 | neighbor_links.loc[ |
||
| 1378 | neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), |
||
| 1379 | "p_nom_opt", |
||
| 1380 | ] += row.p_nom_opt |
||
| 1381 | neighbor_links.loc[ |
||
| 1382 | neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), "p_nom" |
||
| 1383 | ] += row.p_nom |
||
| 1384 | neighbor_links.drop(index, inplace=True) |
||
| 1385 | |||
| 1386 | # Combine heat pumps |
||
| 1387 | # Like in Germany, there are air heat pumps in central heat grids |
||
| 1388 | # and ground heat pumps in rural areas |
||
| 1389 | rural_air = neighbor_links[neighbor_links.carrier == "rural air heat pump"] |
||
| 1390 | for index, row in rural_air.iterrows(): |
||
| 1391 | neighbor_links.loc[ |
||
| 1392 | neighbor_links.Link == row.Link.replace("air", "ground"), |
||
| 1393 | "p_nom_opt", |
||
| 1394 | ] += row.p_nom_opt |
||
| 1395 | neighbor_links.loc[ |
||
| 1396 | neighbor_links.Link == row.Link.replace("air", "ground"), "p_nom" |
||
| 1397 | ] += row.p_nom |
||
| 1398 | neighbor_links.drop(index, inplace=True) |
||
| 1399 | links_to_etrago( |
||
| 1400 | neighbor_links[neighbor_links.carrier.isin(extendable_links_carriers)], |
||
| 1401 | "eGon100RE", |
||
| 1402 | ) |
||
| 1403 | links_to_etrago( |
||
| 1404 | neighbor_links[ |
||
| 1405 | ~neighbor_links.carrier.isin(extendable_links_carriers) |
||
| 1406 | ], |
||
| 1407 | "eGon100RE", |
||
| 1408 | extendable=False, |
||
| 1409 | ) |
||
| 1410 | # Include links time-series |
||
| 1411 | # For heat_pumps |
||
| 1412 | hp = neighbor_links[neighbor_links["carrier"].str.contains("heat pump")] |
||
| 1413 | |||
| 1414 | neighbor_eff_t = network_prepared.links_t["efficiency"][ |
||
| 1415 | hp[hp.Link.isin(network_prepared.links_t["efficiency"].columns)].index |
||
| 1416 | ] |
||
| 1417 | |||
| 1418 | missing_hp = hp[~hp["Link"].isin(neighbor_eff_t.columns)].Link |
||
| 1419 | |||
| 1420 | eff_timeseries = network_prepared.links_t["efficiency"].copy() |
||
| 1421 | for met in missing_hp: # met: missing efficiency timeseries |
||
| 1422 | try: |
||
| 1423 | neighbor_eff_t[met] = eff_timeseries.loc[:, met[0:-5]] |
||
| 1424 | except: |
||
| 1425 | print(f"There are not timeseries for heat_pump {met}") |
||
| 1426 | |||
| 1427 | for i in neighbor_eff_t.columns: |
||
| 1428 | new_index = neighbor_links[neighbor_links["Link"] == i].index |
||
| 1429 | neighbor_eff_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 1430 | |||
| 1431 | # Include links time-series |
||
| 1432 | # For ev_chargers |
||
| 1433 | ev = neighbor_links[neighbor_links["carrier"].str.contains("BEV charger")] |
||
| 1434 | |||
| 1435 | ev_p_max_pu = network_prepared.links_t["p_max_pu"][ |
||
| 1436 | ev[ev.Link.isin(network_prepared.links_t["p_max_pu"].columns)].index |
||
| 1437 | ] |
||
| 1438 | |||
| 1439 | missing_ev = ev[~ev["Link"].isin(ev_p_max_pu.columns)].Link |
||
| 1440 | |||
| 1441 | ev_p_max_pu_timeseries = network_prepared.links_t["p_max_pu"].copy() |
||
| 1442 | for mct in missing_ev: # evt: missing charger timeseries |
||
| 1443 | try: |
||
| 1444 | ev_p_max_pu[mct] = ev_p_max_pu_timeseries.loc[:, mct[0:-5]] |
||
| 1445 | except: |
||
| 1446 | print(f"There are not timeseries for EV charger {mct}") |
||
| 1447 | |||
| 1448 | for i in ev_p_max_pu.columns: |
||
| 1449 | new_index = neighbor_links[neighbor_links["Link"] == i].index |
||
| 1450 | ev_p_max_pu.rename(columns={i: new_index[0]}, inplace=True) |
||
| 1451 | |||
| 1452 | # prepare neighboring generators for etrago tables |
||
| 1453 | neighbor_gens["scn_name"] = "eGon100RE" |
||
| 1454 | neighbor_gens["p_nom"] = neighbor_gens["p_nom_opt"] |
||
| 1455 | neighbor_gens["p_nom_extendable"] = False |
||
| 1456 | |||
| 1457 | # Unify carrier names |
||
| 1458 | neighbor_gens.carrier = neighbor_gens.carrier.str.replace(" ", "_") |
||
| 1459 | |||
| 1460 | neighbor_gens.carrier.replace( |
||
| 1461 | { |
||
| 1462 | "onwind": "wind_onshore", |
||
| 1463 | "ror": "run_of_river", |
||
| 1464 | "offwind-ac": "wind_offshore", |
||
| 1465 | "offwind-dc": "wind_offshore", |
||
| 1466 | "offwind-float": "wind_offshore", |
||
| 1467 | "urban_central_solar_thermal": "urban_central_solar_thermal_collector", |
||
| 1468 | "residential_rural_solar_thermal": "residential_rural_solar_thermal_collector", |
||
| 1469 | "services_rural_solar_thermal": "services_rural_solar_thermal_collector", |
||
| 1470 | "solar-hsat": "solar", |
||
| 1471 | }, |
||
| 1472 | inplace=True, |
||
| 1473 | ) |
||
| 1474 | |||
| 1475 | for i in [ |
||
| 1476 | "Generator", |
||
| 1477 | "weight", |
||
| 1478 | "lifetime", |
||
| 1479 | "p_set", |
||
| 1480 | "q_set", |
||
| 1481 | "p_nom_opt", |
||
| 1482 | "e_sum_min", |
||
| 1483 | "e_sum_max", |
||
| 1484 | ]: |
||
| 1485 | neighbor_gens = neighbor_gens.drop(i, axis=1) |
||
| 1486 | |||
| 1487 | neighbor_gens.to_sql( |
||
| 1488 | "egon_etrago_generator", |
||
| 1489 | engine, |
||
| 1490 | schema="grid", |
||
| 1491 | if_exists="append", |
||
| 1492 | index=True, |
||
| 1493 | index_label="generator_id", |
||
| 1494 | ) |
||
| 1495 | |||
| 1496 | # prepare neighboring loads for etrago tables |
||
| 1497 | neighbor_loads["scn_name"] = "eGon100RE" |
||
| 1498 | |||
| 1499 | # Unify carrier names |
||
| 1500 | neighbor_loads.carrier = neighbor_loads.carrier.str.replace(" ", "_") |
||
| 1501 | |||
| 1502 | neighbor_loads.carrier.replace( |
||
| 1503 | { |
||
| 1504 | "electricity": "AC", |
||
| 1505 | "DC": "AC", |
||
| 1506 | "industry_electricity": "AC", |
||
| 1507 | "H2_pipeline_retrofitted": "H2_system_boundary", |
||
| 1508 | "gas_pipeline": "CH4_system_boundary", |
||
| 1509 | "gas_for_industry": "CH4_for_industry", |
||
| 1510 | "urban_central_heat": "central_heat", |
||
| 1511 | }, |
||
| 1512 | inplace=True, |
||
| 1513 | ) |
||
| 1514 | |||
| 1515 | neighbor_loads = neighbor_loads.drop( |
||
| 1516 | columns=["Load"], |
||
| 1517 | errors="ignore", |
||
| 1518 | ) |
||
| 1519 | |||
| 1520 | neighbor_loads.to_sql( |
||
| 1521 | "egon_etrago_load", |
||
| 1522 | engine, |
||
| 1523 | schema="grid", |
||
| 1524 | if_exists="append", |
||
| 1525 | index=True, |
||
| 1526 | index_label="load_id", |
||
| 1527 | ) |
||
| 1528 | |||
| 1529 | # prepare neighboring stores for etrago tables |
||
| 1530 | neighbor_stores["scn_name"] = "eGon100RE" |
||
| 1531 | |||
| 1532 | # Unify carrier names |
||
| 1533 | neighbor_stores.carrier = neighbor_stores.carrier.str.replace(" ", "_") |
||
| 1534 | |||
| 1535 | neighbor_stores.carrier.replace( |
||
| 1536 | { |
||
| 1537 | "Li_ion": "battery", |
||
| 1538 | "gas": "CH4", |
||
| 1539 | "urban_central_water_tanks": "central_heat_store", |
||
| 1540 | "rural_water_tanks": "rural_heat_store", |
||
| 1541 | "EV_battery": "battery_storage", |
||
| 1542 | }, |
||
| 1543 | inplace=True, |
||
| 1544 | ) |
||
| 1545 | neighbor_stores.loc[ |
||
| 1546 | ( |
||
| 1547 | (neighbor_stores.e_nom_max <= 1e9) |
||
| 1548 | & (neighbor_stores.carrier == "H2_Store") |
||
| 1549 | ), |
||
| 1550 | "carrier", |
||
| 1551 | ] = "H2_underground" |
||
| 1552 | neighbor_stores.loc[ |
||
| 1553 | ( |
||
| 1554 | (neighbor_stores.e_nom_max > 1e9) |
||
| 1555 | & (neighbor_stores.carrier == "H2_Store") |
||
| 1556 | ), |
||
| 1557 | "carrier", |
||
| 1558 | ] = "H2_overground" |
||
| 1559 | |||
| 1560 | for i in [ |
||
| 1561 | "Store", |
||
| 1562 | "p_set", |
||
| 1563 | "q_set", |
||
| 1564 | "e_nom_opt", |
||
| 1565 | "lifetime", |
||
| 1566 | "e_initial_per_period", |
||
| 1567 | "e_cyclic_per_period", |
||
| 1568 | "location", |
||
| 1569 | ]: |
||
| 1570 | neighbor_stores = neighbor_stores.drop(i, axis=1, errors="ignore") |
||
| 1571 | |||
| 1572 | for c in ["H2_underground", "H2_overground"]: |
||
| 1573 | neighbor_stores.loc[ |
||
| 1574 | (neighbor_stores.carrier == c), |
||
| 1575 | "lifetime", |
||
| 1576 | ] = get_sector_parameters("gas", "eGon100RE")["lifetime"][c] |
||
| 1577 | |||
| 1578 | neighbor_stores.to_sql( |
||
| 1579 | "egon_etrago_store", |
||
| 1580 | engine, |
||
| 1581 | schema="grid", |
||
| 1582 | if_exists="append", |
||
| 1583 | index=True, |
||
| 1584 | index_label="store_id", |
||
| 1585 | ) |
||
| 1586 | |||
| 1587 | # prepare neighboring storage_units for etrago tables |
||
| 1588 | neighbor_storage["scn_name"] = "eGon100RE" |
||
| 1589 | |||
| 1590 | # Unify carrier names |
||
| 1591 | neighbor_storage.carrier = neighbor_storage.carrier.str.replace(" ", "_") |
||
| 1592 | |||
| 1593 | neighbor_storage.carrier.replace( |
||
| 1594 | {"PHS": "pumped_hydro", "hydro": "reservoir"}, inplace=True |
||
| 1595 | ) |
||
| 1596 | |||
| 1597 | for i in [ |
||
| 1598 | "StorageUnit", |
||
| 1599 | "p_nom_opt", |
||
| 1600 | "state_of_charge_initial_per_period", |
||
| 1601 | "cyclic_state_of_charge_per_period", |
||
| 1602 | ]: |
||
| 1603 | neighbor_storage = neighbor_storage.drop(i, axis=1, errors="ignore") |
||
| 1604 | |||
| 1605 | neighbor_storage.to_sql( |
||
| 1606 | "egon_etrago_storage", |
||
| 1607 | engine, |
||
| 1608 | schema="grid", |
||
| 1609 | if_exists="append", |
||
| 1610 | index=True, |
||
| 1611 | index_label="storage_id", |
||
| 1612 | ) |
||
| 1613 | |||
| 1614 | # writing neighboring loads_t p_sets to etrago tables |
||
| 1615 | |||
| 1616 | neighbor_loads_t_etrago = pd.DataFrame( |
||
| 1617 | columns=["scn_name", "temp_id", "p_set"], |
||
| 1618 | index=neighbor_loads_t.columns, |
||
| 1619 | ) |
||
| 1620 | neighbor_loads_t_etrago["scn_name"] = "eGon100RE" |
||
| 1621 | neighbor_loads_t_etrago["temp_id"] = 1 |
||
| 1622 | for i in neighbor_loads_t.columns: |
||
| 1623 | neighbor_loads_t_etrago["p_set"][i] = neighbor_loads_t[ |
||
| 1624 | i |
||
| 1625 | ].values.tolist() |
||
| 1626 | |||
| 1627 | neighbor_loads_t_etrago.to_sql( |
||
| 1628 | "egon_etrago_load_timeseries", |
||
| 1629 | engine, |
||
| 1630 | schema="grid", |
||
| 1631 | if_exists="append", |
||
| 1632 | index=True, |
||
| 1633 | index_label="load_id", |
||
| 1634 | ) |
||
| 1635 | |||
| 1636 | # writing neighboring link_t efficiency and p_max_pu to etrago tables |
||
| 1637 | neighbor_link_t_etrago = pd.DataFrame( |
||
| 1638 | columns=["scn_name", "temp_id", "p_max_pu", "efficiency"], |
||
| 1639 | index=neighbor_eff_t.columns.to_list() + ev_p_max_pu.columns.to_list(), |
||
| 1640 | ) |
||
| 1641 | neighbor_link_t_etrago["scn_name"] = "eGon100RE" |
||
| 1642 | neighbor_link_t_etrago["temp_id"] = 1 |
||
| 1643 | for i in neighbor_eff_t.columns: |
||
| 1644 | neighbor_link_t_etrago["efficiency"][i] = neighbor_eff_t[ |
||
| 1645 | i |
||
| 1646 | ].values.tolist() |
||
| 1647 | for i in ev_p_max_pu.columns: |
||
| 1648 | neighbor_link_t_etrago["p_max_pu"][i] = ev_p_max_pu[i].values.tolist() |
||
| 1649 | |||
| 1650 | neighbor_link_t_etrago.to_sql( |
||
| 1651 | "egon_etrago_link_timeseries", |
||
| 1652 | engine, |
||
| 1653 | schema="grid", |
||
| 1654 | if_exists="append", |
||
| 1655 | index=True, |
||
| 1656 | index_label="link_id", |
||
| 1657 | ) |
||
| 1658 | |||
| 1659 | # writing neighboring generator_t p_max_pu to etrago tables |
||
| 1660 | neighbor_gens_t_etrago = pd.DataFrame( |
||
| 1661 | columns=["scn_name", "temp_id", "p_max_pu"], |
||
| 1662 | index=neighbor_gens_t.columns, |
||
| 1663 | ) |
||
| 1664 | neighbor_gens_t_etrago["scn_name"] = "eGon100RE" |
||
| 1665 | neighbor_gens_t_etrago["temp_id"] = 1 |
||
| 1666 | for i in neighbor_gens_t.columns: |
||
| 1667 | neighbor_gens_t_etrago["p_max_pu"][i] = neighbor_gens_t[ |
||
| 1668 | i |
||
| 1669 | ].values.tolist() |
||
| 1670 | |||
| 1671 | neighbor_gens_t_etrago.to_sql( |
||
| 1672 | "egon_etrago_generator_timeseries", |
||
| 1673 | engine, |
||
| 1674 | schema="grid", |
||
| 1675 | if_exists="append", |
||
| 1676 | index=True, |
||
| 1677 | index_label="generator_id", |
||
| 1678 | ) |
||
| 1679 | |||
| 1680 | # writing neighboring stores_t e_min_pu to etrago tables |
||
| 1681 | neighbor_stores_t_etrago = pd.DataFrame( |
||
| 1682 | columns=["scn_name", "temp_id", "e_min_pu"], |
||
| 1683 | index=neighbor_stores_t.columns, |
||
| 1684 | ) |
||
| 1685 | neighbor_stores_t_etrago["scn_name"] = "eGon100RE" |
||
| 1686 | neighbor_stores_t_etrago["temp_id"] = 1 |
||
| 1687 | for i in neighbor_stores_t.columns: |
||
| 1688 | neighbor_stores_t_etrago["e_min_pu"][i] = neighbor_stores_t[ |
||
| 1689 | i |
||
| 1690 | ].values.tolist() |
||
| 1691 | |||
| 1692 | neighbor_stores_t_etrago.to_sql( |
||
| 1693 | "egon_etrago_store_timeseries", |
||
| 1694 | engine, |
||
| 1695 | schema="grid", |
||
| 1696 | if_exists="append", |
||
| 1697 | index=True, |
||
| 1698 | index_label="store_id", |
||
| 1699 | ) |
||
| 1700 | |||
| 1701 | # writing neighboring storage_units inflow to etrago tables |
||
| 1702 | neighbor_storage_t_etrago = pd.DataFrame( |
||
| 1703 | columns=["scn_name", "temp_id", "inflow"], |
||
| 1704 | index=neighbor_storage_t.columns, |
||
| 1705 | ) |
||
| 1706 | neighbor_storage_t_etrago["scn_name"] = "eGon100RE" |
||
| 1707 | neighbor_storage_t_etrago["temp_id"] = 1 |
||
| 1708 | for i in neighbor_storage_t.columns: |
||
| 1709 | neighbor_storage_t_etrago["inflow"][i] = neighbor_storage_t[ |
||
| 1710 | i |
||
| 1711 | ].values.tolist() |
||
| 1712 | |||
| 1713 | neighbor_storage_t_etrago.to_sql( |
||
| 1714 | "egon_etrago_storage_timeseries", |
||
| 1715 | engine, |
||
| 1716 | schema="grid", |
||
| 1717 | if_exists="append", |
||
| 1718 | index=True, |
||
| 1719 | index_label="storage_id", |
||
| 1720 | ) |
||
| 1721 | |||
| 1722 | # writing neighboring lines_t s_max_pu to etrago tables |
||
| 1723 | if not network_solved.lines_t["s_max_pu"].empty: |
||
| 1724 | neighbor_lines_t_etrago = pd.DataFrame( |
||
| 1725 | columns=["scn_name", "s_max_pu"], index=neighbor_lines_t.columns |
||
| 1726 | ) |
||
| 1727 | neighbor_lines_t_etrago["scn_name"] = "eGon100RE" |
||
| 1728 | |||
| 1729 | for i in neighbor_lines_t.columns: |
||
| 1730 | neighbor_lines_t_etrago["s_max_pu"][i] = neighbor_lines_t[ |
||
| 1731 | i |
||
| 1732 | ].values.tolist() |
||
| 1733 | |||
| 1734 | neighbor_lines_t_etrago.to_sql( |
||
| 1735 | "egon_etrago_line_timeseries", |
||
| 1736 | engine, |
||
| 1737 | schema="grid", |
||
| 1738 | if_exists="append", |
||
| 1739 | index=True, |
||
| 1740 | index_label="line_id", |
||
| 1741 | ) |
||
| 2388 |