|
1
|
|
|
"""The central module containing all code dealing with importing data from |
|
2
|
|
|
the pysa-eur-sec scenario parameter creation |
|
3
|
|
|
""" |
|
4
|
|
|
|
|
5
|
|
|
from pathlib import Path |
|
6
|
|
|
from urllib.request import urlretrieve |
|
7
|
|
|
import json |
|
8
|
|
|
import shutil |
|
9
|
|
|
|
|
10
|
|
|
from shapely.geometry import LineString |
|
11
|
|
|
import geopandas as gpd |
|
12
|
|
|
import importlib_resources as resources |
|
13
|
|
|
import numpy as np |
|
14
|
|
|
import pandas as pd |
|
15
|
|
|
import pypsa |
|
16
|
|
|
import requests |
|
17
|
|
|
import yaml |
|
18
|
|
|
|
|
19
|
|
|
from egon.data import __path__, config, db, logger |
|
20
|
|
|
from egon.data.datasets import Dataset |
|
21
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
|
22
|
|
|
from egon.data.datasets.scenario_parameters.parameters import ( |
|
23
|
|
|
annualize_capital_costs, |
|
24
|
|
|
) |
|
25
|
|
|
import egon.data.config |
|
26
|
|
|
import egon.data.subprocess as subproc |
|
27
|
|
|
|
|
28
|
|
|
|
|
29
|
|
|
class PreparePypsaEur(Dataset): |
|
30
|
|
|
def __init__(self, dependencies): |
|
31
|
|
|
super().__init__( |
|
32
|
|
|
name="PreparePypsaEur", |
|
33
|
|
|
version="0.0.42", |
|
34
|
|
|
dependencies=dependencies, |
|
35
|
|
|
tasks=( |
|
36
|
|
|
download, |
|
37
|
|
|
prepare_network, |
|
38
|
|
|
), |
|
39
|
|
|
) |
|
40
|
|
|
|
|
41
|
|
|
|
|
42
|
|
|
class RunPypsaEur(Dataset): |
|
43
|
|
|
def __init__(self, dependencies): |
|
44
|
|
|
super().__init__( |
|
45
|
|
|
name="SolvePypsaEur", |
|
46
|
|
|
version="0.0.42", |
|
47
|
|
|
dependencies=dependencies, |
|
48
|
|
|
tasks=( |
|
49
|
|
|
prepare_network_2, |
|
50
|
|
|
execute, |
|
51
|
|
|
solve_network, |
|
52
|
|
|
clean_database, |
|
53
|
|
|
electrical_neighbours_egon100, |
|
54
|
|
|
h2_neighbours_egon2035, |
|
55
|
|
|
# Dropped until we decided how we deal with the H2 grid |
|
56
|
|
|
# overwrite_H2_pipeline_share, |
|
57
|
|
|
), |
|
58
|
|
|
) |
|
59
|
|
|
|
|
60
|
|
|
|
|
61
|
|
|
def countries_list(): |
|
62
|
|
|
return [ |
|
63
|
|
|
"DE", |
|
64
|
|
|
"AT", |
|
65
|
|
|
"CH", |
|
66
|
|
|
"CZ", |
|
67
|
|
|
"PL", |
|
68
|
|
|
"SE", |
|
69
|
|
|
"NO", |
|
70
|
|
|
"DK", |
|
71
|
|
|
"GB", |
|
72
|
|
|
"NL", |
|
73
|
|
|
"BE", |
|
74
|
|
|
"FR", |
|
75
|
|
|
"LU", |
|
76
|
|
|
] |
|
77
|
|
|
|
|
78
|
|
|
|
|
79
|
|
|
def h2_neighbours_egon2035(): |
|
80
|
|
|
""" |
|
81
|
|
|
This function load the pypsa_eur network for eGon2035, processes the H2 |
|
82
|
|
|
buses and insert them into the grid.egon_etrago_bus table. |
|
83
|
|
|
|
|
84
|
|
|
Returns |
|
85
|
|
|
------- |
|
86
|
|
|
None. |
|
87
|
|
|
|
|
88
|
|
|
""" |
|
89
|
|
|
if "eGon2035" in config.settings()["egon-data"]["--scenarios"]: |
|
90
|
|
|
# Delete buses from previous executions |
|
91
|
|
|
db.execute_sql( |
|
92
|
|
|
""" |
|
93
|
|
|
DELETE FROM grid.egon_etrago_bus WHERE carrier = 'H2' |
|
94
|
|
|
AND scn_name = 'eGon2035' |
|
95
|
|
|
AND country <> 'DE' |
|
96
|
|
|
""" |
|
97
|
|
|
) |
|
98
|
|
|
|
|
99
|
|
|
# Load calculated network for eGon2035 |
|
100
|
|
|
n = read_network(planning_horizon=2035) |
|
101
|
|
|
|
|
102
|
|
|
# Filter only H2 buses in selected foreign countries |
|
103
|
|
|
h2_bus = n.buses[(n.buses.country != "DE") & (n.buses.carrier == "H2")] |
|
104
|
|
|
wanted_countries = countries_list() |
|
105
|
|
|
h2_bus = h2_bus[ |
|
106
|
|
|
(h2_bus.country.isin(wanted_countries)) |
|
107
|
|
|
& (~h2_bus.index.str.contains("FR6")) |
|
108
|
|
|
] |
|
109
|
|
|
|
|
110
|
|
|
# Add geometry column |
|
111
|
|
|
h2_bus = ( |
|
112
|
|
|
gpd.GeoDataFrame( |
|
113
|
|
|
h2_bus, geometry=gpd.points_from_xy(h2_bus.x, h2_bus.y) |
|
114
|
|
|
) |
|
115
|
|
|
.rename_geometry("geom") |
|
116
|
|
|
.set_crs(4326) |
|
117
|
|
|
) |
|
118
|
|
|
|
|
119
|
|
|
# Adjust dataframe to the database table format |
|
120
|
|
|
h2_bus["scn_name"] = "eGon2035" |
|
121
|
|
|
|
|
122
|
|
|
bus_id = db.next_etrago_id("bus") # will be change in PR1287 |
|
123
|
|
|
### Delete when PR1287 is merged ### |
|
124
|
|
|
bus_id = range(bus_id, bus_id + len(h2_bus.index)) |
|
125
|
|
|
#################################### |
|
126
|
|
|
h2_bus["bus_id"] = bus_id |
|
127
|
|
|
|
|
128
|
|
|
h2_bus.drop( |
|
129
|
|
|
columns=[ |
|
130
|
|
|
"unit", |
|
131
|
|
|
"control", |
|
132
|
|
|
"generator", |
|
133
|
|
|
"location", |
|
134
|
|
|
"substation_off", |
|
135
|
|
|
"substation_lv", |
|
136
|
|
|
"sub_network", |
|
137
|
|
|
], |
|
138
|
|
|
inplace=True, |
|
139
|
|
|
) |
|
140
|
|
|
|
|
141
|
|
|
# Connect to local database and write results |
|
142
|
|
|
engine = db.engine() |
|
143
|
|
|
|
|
144
|
|
|
h2_bus.to_postgis( |
|
145
|
|
|
"egon_etrago_bus", |
|
146
|
|
|
engine, |
|
147
|
|
|
schema="grid", |
|
148
|
|
|
if_exists="append", |
|
149
|
|
|
index=False, |
|
150
|
|
|
) |
|
151
|
|
|
else: |
|
152
|
|
|
print("eGon2035 is not in the list of scenarios") |
|
153
|
|
|
|
|
154
|
|
|
|
|
155
|
|
|
def download(): |
|
156
|
|
|
cwd = Path(".") |
|
157
|
|
|
filepath = cwd / "run-pypsa-eur" |
|
158
|
|
|
filepath.mkdir(parents=True, exist_ok=True) |
|
159
|
|
|
|
|
160
|
|
|
pypsa_eur_repos = filepath / "pypsa-eur" |
|
161
|
|
|
if config.settings()["egon-data"]["--run-pypsa-eur"]: |
|
162
|
|
|
if not pypsa_eur_repos.exists(): |
|
163
|
|
|
subproc.run( |
|
164
|
|
|
[ |
|
165
|
|
|
"git", |
|
166
|
|
|
"clone", |
|
167
|
|
|
"--branch", |
|
168
|
|
|
"master", |
|
169
|
|
|
"https://github.com/PyPSA/pypsa-eur.git", |
|
170
|
|
|
pypsa_eur_repos, |
|
171
|
|
|
] |
|
172
|
|
|
) |
|
173
|
|
|
|
|
174
|
|
|
subproc.run( |
|
175
|
|
|
[ |
|
176
|
|
|
"git", |
|
177
|
|
|
"checkout", |
|
178
|
|
|
"2119f4cee05c256509f48d4e9fe0d8fd9e9e3632", |
|
179
|
|
|
], |
|
180
|
|
|
cwd=pypsa_eur_repos, |
|
181
|
|
|
) |
|
182
|
|
|
|
|
183
|
|
|
# Add gurobi solver to environment: |
|
184
|
|
|
# Read YAML file |
|
185
|
|
|
# path_to_env = pypsa_eur_repos / "envs" / "environment.yaml" |
|
186
|
|
|
# with open(path_to_env, "r") as stream: |
|
187
|
|
|
# env = yaml.safe_load(stream) |
|
188
|
|
|
|
|
189
|
|
|
# The version of gurobipy has to fit to the version of gurobi. |
|
190
|
|
|
# Since we mainly use gurobi 10.0 this is set here. |
|
191
|
|
|
# env["dependencies"][-1]["pip"].append("gurobipy==10.0.0") |
|
192
|
|
|
|
|
193
|
|
|
# Set python version to <3.12 |
|
194
|
|
|
# Python<=3.12 needs gurobipy>=11.0, in case gurobipy is updated, |
|
195
|
|
|
# this can be removed |
|
196
|
|
|
# env["dependencies"] = [ |
|
197
|
|
|
# "python>=3.8,<3.12" if x == "python>=3.8" else x |
|
198
|
|
|
# for x in env["dependencies"] |
|
199
|
|
|
# ] |
|
200
|
|
|
|
|
201
|
|
|
# Limit geopandas version |
|
202
|
|
|
# our pypsa-eur version is not compatible to geopandas>1 |
|
203
|
|
|
# env["dependencies"] = [ |
|
204
|
|
|
# "geopandas>=0.11.0,<1" if x == "geopandas>=0.11.0" else x |
|
205
|
|
|
# for x in env["dependencies"] |
|
206
|
|
|
# ] |
|
207
|
|
|
|
|
208
|
|
|
# Write YAML file |
|
209
|
|
|
# with open(path_to_env, "w", encoding="utf8") as outfile: |
|
210
|
|
|
# yaml.dump( |
|
211
|
|
|
# env, outfile, default_flow_style=False, allow_unicode=True |
|
212
|
|
|
# ) |
|
213
|
|
|
|
|
214
|
|
|
# Copy config file for egon-data to pypsa-eur directory |
|
215
|
|
|
shutil.copy( |
|
216
|
|
|
Path( |
|
217
|
|
|
__path__[0], "datasets", "pypsaeur", "config_prepare.yaml" |
|
218
|
|
|
), |
|
219
|
|
|
pypsa_eur_repos / "config" / "config.yaml", |
|
220
|
|
|
) |
|
221
|
|
|
|
|
222
|
|
|
# Copy custom_extra_functionality.py file for egon-data to pypsa-eur directory |
|
223
|
|
|
shutil.copy( |
|
224
|
|
|
Path( |
|
225
|
|
|
__path__[0], |
|
226
|
|
|
"datasets", |
|
227
|
|
|
"pypsaeur", |
|
228
|
|
|
"custom_extra_functionality.py", |
|
229
|
|
|
), |
|
230
|
|
|
pypsa_eur_repos / "data", |
|
231
|
|
|
) |
|
232
|
|
|
|
|
233
|
|
|
with open(filepath / "Snakefile", "w") as snakefile: |
|
234
|
|
|
snakefile.write( |
|
235
|
|
|
resources.read_text( |
|
236
|
|
|
"egon.data.datasets.pypsaeur", "Snakefile" |
|
237
|
|
|
) |
|
238
|
|
|
) |
|
239
|
|
|
|
|
240
|
|
|
# Copy era5 weather data to folder for pypsaeur |
|
241
|
|
|
era5_pypsaeur_path = filepath / "pypsa-eur" / "cutouts" |
|
242
|
|
|
|
|
243
|
|
|
if not era5_pypsaeur_path.exists(): |
|
244
|
|
|
era5_pypsaeur_path.mkdir(parents=True, exist_ok=True) |
|
245
|
|
|
copy_from = config.datasets()["era5_weather_data"]["targets"][ |
|
246
|
|
|
"weather_data" |
|
247
|
|
|
]["path"] |
|
248
|
|
|
filename = "europe-2011-era5.nc" |
|
249
|
|
|
shutil.copy( |
|
250
|
|
|
copy_from + "/" + filename, era5_pypsaeur_path / filename |
|
251
|
|
|
) |
|
252
|
|
|
|
|
253
|
|
|
# Workaround to download natura, shipdensity and globalenergymonitor |
|
254
|
|
|
# data, which is not working in the regular snakemake workflow. |
|
255
|
|
|
# The same files are downloaded from the same directory as in pypsa-eur |
|
256
|
|
|
# version 0.10 here. Is is stored in the folders from pypsa-eur. |
|
257
|
|
|
if not (filepath / "pypsa-eur" / "resources").exists(): |
|
258
|
|
|
(filepath / "pypsa-eur" / "resources").mkdir( |
|
259
|
|
|
parents=True, exist_ok=True |
|
260
|
|
|
) |
|
261
|
|
|
urlretrieve( |
|
262
|
|
|
"https://zenodo.org/record/4706686/files/natura.tiff", |
|
263
|
|
|
filepath / "pypsa-eur" / "resources" / "natura.tiff", |
|
264
|
|
|
) |
|
265
|
|
|
|
|
266
|
|
|
if not (filepath / "pypsa-eur" / "data").exists(): |
|
267
|
|
|
(filepath / "pypsa-eur" / "data").mkdir( |
|
268
|
|
|
parents=True, exist_ok=True |
|
269
|
|
|
) |
|
270
|
|
|
urlretrieve( |
|
271
|
|
|
"https://zenodo.org/record/13757228/files/shipdensity_global.zip", |
|
272
|
|
|
filepath / "pypsa-eur" / "data" / "shipdensity_global.zip", |
|
273
|
|
|
) |
|
274
|
|
|
|
|
275
|
|
|
if not ( |
|
276
|
|
|
filepath |
|
277
|
|
|
/ "pypsa-eur" |
|
278
|
|
|
/ "zenodo.org" |
|
279
|
|
|
/ "records" |
|
280
|
|
|
/ "13757228" |
|
281
|
|
|
/ "files" |
|
282
|
|
|
).exists(): |
|
283
|
|
|
( |
|
284
|
|
|
filepath |
|
285
|
|
|
/ "pypsa-eur" |
|
286
|
|
|
/ "zenodo.org" |
|
287
|
|
|
/ "records" |
|
288
|
|
|
/ "13757228" |
|
289
|
|
|
/ "files" |
|
290
|
|
|
).mkdir(parents=True, exist_ok=True) |
|
291
|
|
|
|
|
292
|
|
|
urlretrieve( |
|
293
|
|
|
"https://zenodo.org/records/10356004/files/ENSPRESO_BIOMASS.xlsx", |
|
294
|
|
|
filepath |
|
295
|
|
|
/ "pypsa-eur" |
|
296
|
|
|
/ "zenodo.org" |
|
297
|
|
|
/ "records" |
|
298
|
|
|
/ "13757228" |
|
299
|
|
|
/ "files" |
|
300
|
|
|
/ "ENSPRESO_BIOMASS.xlsx", |
|
301
|
|
|
) |
|
302
|
|
|
|
|
303
|
|
|
if not (filepath / "pypsa-eur" / "data" / "gem").exists(): |
|
304
|
|
|
(filepath / "pypsa-eur" / "data" / "gem").mkdir( |
|
305
|
|
|
parents=True, exist_ok=True |
|
306
|
|
|
) |
|
307
|
|
|
|
|
308
|
|
|
r = requests.get( |
|
309
|
|
|
"https://tubcloud.tu-berlin.de/s/LMBJQCsN6Ez5cN2/download/" |
|
310
|
|
|
"Europe-Gas-Tracker-2024-05.xlsx" |
|
311
|
|
|
) |
|
312
|
|
|
with open( |
|
313
|
|
|
filepath |
|
314
|
|
|
/ "pypsa-eur" |
|
315
|
|
|
/ "data" |
|
316
|
|
|
/ "gem" |
|
317
|
|
|
/ "Europe-Gas-Tracker-2024-05.xlsx", |
|
318
|
|
|
"wb", |
|
319
|
|
|
) as outfile: |
|
320
|
|
|
outfile.write(r.content) |
|
321
|
|
|
|
|
322
|
|
|
if not (filepath / "pypsa-eur" / "data" / "gem").exists(): |
|
323
|
|
|
(filepath / "pypsa-eur" / "data" / "gem").mkdir( |
|
324
|
|
|
parents=True, exist_ok=True |
|
325
|
|
|
) |
|
326
|
|
|
|
|
327
|
|
|
r = requests.get( |
|
328
|
|
|
"https://tubcloud.tu-berlin.de/s/Aqebo3rrQZWKGsG/download/" |
|
329
|
|
|
"Global-Steel-Plant-Tracker-April-2024-Standard-Copy-V1.xlsx" |
|
330
|
|
|
) |
|
331
|
|
|
with open( |
|
332
|
|
|
filepath |
|
333
|
|
|
/ "pypsa-eur" |
|
334
|
|
|
/ "data" |
|
335
|
|
|
/ "gem" |
|
336
|
|
|
/ "Global-Steel-Plant-Tracker-April-2024-Standard-Copy-V1.xlsx", |
|
337
|
|
|
"wb", |
|
338
|
|
|
) as outfile: |
|
339
|
|
|
outfile.write(r.content) |
|
340
|
|
|
|
|
341
|
|
|
else: |
|
342
|
|
|
print("Pypsa-eur is not executed due to the settings of egon-data") |
|
343
|
|
|
|
|
344
|
|
|
|
|
345
|
|
|
def prepare_network(): |
|
346
|
|
|
cwd = Path(".") |
|
347
|
|
|
filepath = cwd / "run-pypsa-eur" |
|
348
|
|
|
|
|
349
|
|
|
if config.settings()["egon-data"]["--run-pypsa-eur"]: |
|
350
|
|
|
subproc.run( |
|
351
|
|
|
[ |
|
352
|
|
|
"snakemake", |
|
353
|
|
|
"-j1", |
|
354
|
|
|
"--directory", |
|
355
|
|
|
filepath, |
|
356
|
|
|
"--snakefile", |
|
357
|
|
|
filepath / "Snakefile", |
|
358
|
|
|
"--use-conda", |
|
359
|
|
|
"--conda-frontend=conda", |
|
360
|
|
|
"--cores", |
|
361
|
|
|
"8", |
|
362
|
|
|
"prepare", |
|
363
|
|
|
] |
|
364
|
|
|
) |
|
365
|
|
|
execute() |
|
366
|
|
|
|
|
367
|
|
|
path = filepath / "pypsa-eur" / "results" / "prenetworks" |
|
368
|
|
|
|
|
369
|
|
|
path_2 = path / "prenetwork_post-manipulate_pre-solve" |
|
370
|
|
|
path_2.mkdir(parents=True, exist_ok=True) |
|
371
|
|
|
|
|
372
|
|
|
with open( |
|
373
|
|
|
__path__[0] + "/datasets/pypsaeur/config_prepare.yaml", "r" |
|
374
|
|
|
) as stream: |
|
375
|
|
|
data_config = yaml.safe_load(stream) |
|
376
|
|
|
|
|
377
|
|
|
for i in range(0, len(data_config["scenario"]["planning_horizons"])): |
|
378
|
|
|
nc_file = ( |
|
379
|
|
|
f"base_s_{data_config['scenario']['clusters'][0]}" |
|
380
|
|
|
f"_l{data_config['scenario']['ll'][0]}" |
|
381
|
|
|
f"_{data_config['scenario']['opts'][0]}" |
|
382
|
|
|
f"_{data_config['scenario']['sector_opts'][0]}" |
|
383
|
|
|
f"_{data_config['scenario']['planning_horizons'][i]}.nc" |
|
384
|
|
|
) |
|
385
|
|
|
|
|
386
|
|
|
shutil.copy(Path(path, nc_file), path_2) |
|
387
|
|
|
|
|
388
|
|
|
else: |
|
389
|
|
|
print("Pypsa-eur is not executed due to the settings of egon-data") |
|
390
|
|
|
|
|
391
|
|
|
|
|
392
|
|
|
def prepare_network_2(): |
|
393
|
|
|
cwd = Path(".") |
|
394
|
|
|
filepath = cwd / "run-pypsa-eur" |
|
395
|
|
|
|
|
396
|
|
|
if config.settings()["egon-data"]["--run-pypsa-eur"]: |
|
397
|
|
|
shutil.copy( |
|
398
|
|
|
Path(__path__[0], "datasets", "pypsaeur", "config_solve.yaml"), |
|
399
|
|
|
filepath / "pypsa-eur" / "config" / "config.yaml", |
|
400
|
|
|
) |
|
401
|
|
|
|
|
402
|
|
|
subproc.run( |
|
403
|
|
|
[ |
|
404
|
|
|
"snakemake", |
|
405
|
|
|
"-j1", |
|
406
|
|
|
"--directory", |
|
407
|
|
|
filepath, |
|
408
|
|
|
"--snakefile", |
|
409
|
|
|
filepath / "Snakefile", |
|
410
|
|
|
"--use-conda", |
|
411
|
|
|
"--conda-frontend=conda", |
|
412
|
|
|
"--cores", |
|
413
|
|
|
"8", |
|
414
|
|
|
"prepare", |
|
415
|
|
|
] |
|
416
|
|
|
) |
|
417
|
|
|
else: |
|
418
|
|
|
print("Pypsa-eur is not executed due to the settings of egon-data") |
|
419
|
|
|
|
|
420
|
|
|
|
|
421
|
|
|
def solve_network(): |
|
422
|
|
|
cwd = Path(".") |
|
423
|
|
|
filepath = cwd / "run-pypsa-eur" |
|
424
|
|
|
|
|
425
|
|
|
if config.settings()["egon-data"]["--run-pypsa-eur"]: |
|
426
|
|
|
subproc.run( |
|
427
|
|
|
[ |
|
428
|
|
|
"snakemake", |
|
429
|
|
|
"-j1", |
|
430
|
|
|
"--cores", |
|
431
|
|
|
"8", |
|
432
|
|
|
"--directory", |
|
433
|
|
|
filepath, |
|
434
|
|
|
"--snakefile", |
|
435
|
|
|
filepath / "Snakefile", |
|
436
|
|
|
"--use-conda", |
|
437
|
|
|
"--conda-frontend=conda", |
|
438
|
|
|
"solve", |
|
439
|
|
|
] |
|
440
|
|
|
) |
|
441
|
|
|
|
|
442
|
|
|
postprocessing_biomass_2045() |
|
443
|
|
|
|
|
444
|
|
|
subproc.run( |
|
445
|
|
|
[ |
|
446
|
|
|
"snakemake", |
|
447
|
|
|
"-j1", |
|
448
|
|
|
"--directory", |
|
449
|
|
|
filepath, |
|
450
|
|
|
"--snakefile", |
|
451
|
|
|
filepath / "Snakefile", |
|
452
|
|
|
"--use-conda", |
|
453
|
|
|
"--conda-frontend=conda", |
|
454
|
|
|
"summary", |
|
455
|
|
|
] |
|
456
|
|
|
) |
|
457
|
|
|
else: |
|
458
|
|
|
print("Pypsa-eur is not executed due to the settings of egon-data") |
|
459
|
|
|
|
|
460
|
|
|
|
|
461
|
|
View Code Duplication |
def read_network(planning_horizon=2045): |
|
|
|
|
|
|
462
|
|
|
if config.settings()["egon-data"]["--run-pypsa-eur"]: |
|
463
|
|
|
with open( |
|
464
|
|
|
__path__[0] + "/datasets/pypsaeur/config_solve.yaml", "r" |
|
465
|
|
|
) as stream: |
|
466
|
|
|
data_config = yaml.safe_load(stream) |
|
467
|
|
|
|
|
468
|
|
|
target_file = ( |
|
469
|
|
|
Path(".") |
|
470
|
|
|
/ "run-pypsa-eur" |
|
471
|
|
|
/ "pypsa-eur" |
|
472
|
|
|
/ "results" |
|
473
|
|
|
/ data_config["run"]["name"] |
|
474
|
|
|
/ "postnetworks" |
|
475
|
|
|
/ f"base_s_{data_config['scenario']['clusters'][0]}" |
|
476
|
|
|
f"_l{data_config['scenario']['ll'][0]}" |
|
477
|
|
|
f"_{data_config['scenario']['opts'][0]}" |
|
478
|
|
|
f"_{data_config['scenario']['sector_opts'][0]}" |
|
479
|
|
|
f"_{planning_horizon}.nc" |
|
480
|
|
|
) |
|
481
|
|
|
|
|
482
|
|
|
else: |
|
483
|
|
|
target_file = ( |
|
484
|
|
|
Path(".") |
|
485
|
|
|
/ "data_bundle_egon_data" |
|
486
|
|
|
/ "pypsa_eur" |
|
487
|
|
|
/ "postnetworks" |
|
488
|
|
|
/ f"base_s_39_lc1.25__cb40ex0-T-H-I-B-solar+p3-dist1_{planning_horizon}.nc" |
|
489
|
|
|
) |
|
490
|
|
|
|
|
491
|
|
|
return pypsa.Network(target_file) |
|
492
|
|
|
|
|
493
|
|
|
|
|
494
|
|
|
def clean_database(): |
|
495
|
|
|
"""Remove all components abroad for eGon100RE of the database |
|
496
|
|
|
|
|
497
|
|
|
Remove all components abroad and their associated time series of |
|
498
|
|
|
the datase for the scenario 'eGon100RE'. |
|
499
|
|
|
|
|
500
|
|
|
Parameters |
|
501
|
|
|
---------- |
|
502
|
|
|
None |
|
503
|
|
|
|
|
504
|
|
|
Returns |
|
505
|
|
|
------- |
|
506
|
|
|
None |
|
507
|
|
|
|
|
508
|
|
|
""" |
|
509
|
|
|
scn_name = "eGon100RE" |
|
510
|
|
|
|
|
511
|
|
|
comp_one_port = ["load", "generator", "store", "storage"] |
|
512
|
|
|
|
|
513
|
|
|
# delete existing components and associated timeseries |
|
514
|
|
|
for comp in comp_one_port: |
|
515
|
|
|
db.execute_sql( |
|
516
|
|
|
f""" |
|
517
|
|
|
DELETE FROM {"grid.egon_etrago_" + comp + "_timeseries"} |
|
518
|
|
|
WHERE {comp + "_id"} IN ( |
|
519
|
|
|
SELECT {comp + "_id"} FROM {"grid.egon_etrago_" + comp} |
|
520
|
|
|
WHERE bus IN ( |
|
521
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
|
522
|
|
|
WHERE country != 'DE' |
|
523
|
|
|
AND scn_name = '{scn_name}') |
|
524
|
|
|
AND scn_name = '{scn_name}' |
|
525
|
|
|
); |
|
526
|
|
|
|
|
527
|
|
|
DELETE FROM {"grid.egon_etrago_" + comp} |
|
528
|
|
|
WHERE bus IN ( |
|
529
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
|
530
|
|
|
WHERE country != 'DE' |
|
531
|
|
|
AND scn_name = '{scn_name}') |
|
532
|
|
|
AND scn_name = '{scn_name}';""" |
|
533
|
|
|
) |
|
534
|
|
|
|
|
535
|
|
|
comp_2_ports = [ |
|
536
|
|
|
"line", |
|
537
|
|
|
"link", |
|
538
|
|
|
] |
|
539
|
|
|
|
|
540
|
|
|
for comp, id in zip(comp_2_ports, ["line_id", "link_id"]): |
|
541
|
|
|
db.execute_sql( |
|
542
|
|
|
f""" |
|
543
|
|
|
DELETE FROM {"grid.egon_etrago_" + comp + "_timeseries"} |
|
544
|
|
|
WHERE scn_name = '{scn_name}' |
|
545
|
|
|
AND {id} IN ( |
|
546
|
|
|
SELECT {id} FROM {"grid.egon_etrago_" + comp} |
|
547
|
|
|
WHERE "bus0" IN ( |
|
548
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
|
549
|
|
|
WHERE country != 'DE' |
|
550
|
|
|
AND scn_name = '{scn_name}' |
|
551
|
|
|
AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
|
552
|
|
|
AND "bus1" IN ( |
|
553
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
|
554
|
|
|
WHERE country != 'DE' |
|
555
|
|
|
AND scn_name = '{scn_name}' |
|
556
|
|
|
AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
|
557
|
|
|
); |
|
558
|
|
|
|
|
559
|
|
|
|
|
560
|
|
|
DELETE FROM {"grid.egon_etrago_" + comp} |
|
561
|
|
|
WHERE scn_name = '{scn_name}' |
|
562
|
|
|
AND "bus0" IN ( |
|
563
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
|
564
|
|
|
WHERE country != 'DE' |
|
565
|
|
|
AND scn_name = '{scn_name}' |
|
566
|
|
|
AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
|
567
|
|
|
AND "bus1" IN ( |
|
568
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
|
569
|
|
|
WHERE country != 'DE' |
|
570
|
|
|
AND scn_name = '{scn_name}' |
|
571
|
|
|
AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
|
572
|
|
|
;""" |
|
573
|
|
|
) |
|
574
|
|
|
|
|
575
|
|
|
db.execute_sql( |
|
576
|
|
|
f""" |
|
577
|
|
|
DELETE FROM grid.egon_etrago_bus |
|
578
|
|
|
WHERE scn_name = '{scn_name}' |
|
579
|
|
|
AND country <> 'DE' |
|
580
|
|
|
AND carrier <> 'AC' |
|
581
|
|
|
""" |
|
582
|
|
|
) |
|
583
|
|
|
|
|
584
|
|
|
|
|
585
|
|
|
def electrical_neighbours_egon100(): |
|
586
|
|
|
if "eGon100RE" in egon.data.config.settings()["egon-data"]["--scenarios"]: |
|
587
|
|
|
neighbor_reduction() |
|
588
|
|
|
|
|
589
|
|
|
else: |
|
590
|
|
|
print( |
|
591
|
|
|
"eGon100RE is not in the list of created scenarios, this task is skipped." |
|
592
|
|
|
) |
|
593
|
|
|
|
|
594
|
|
|
|
|
595
|
|
|
def combine_decentral_and_rural_heat(network_solved, network_prepared): |
|
596
|
|
|
|
|
597
|
|
|
for comp in network_solved.iterate_components(): |
|
598
|
|
|
|
|
599
|
|
|
if comp.name in ["Bus", "Link", "Store"]: |
|
600
|
|
|
urban_decentral = comp.df[ |
|
601
|
|
|
comp.df.carrier.str.contains("urban decentral") |
|
602
|
|
|
] |
|
603
|
|
|
rural = comp.df[comp.df.carrier.str.contains("rural")] |
|
604
|
|
|
for i, row in urban_decentral.iterrows(): |
|
605
|
|
|
if not "DE" in i: |
|
606
|
|
|
if comp.name in ["Bus"]: |
|
607
|
|
|
network_solved.remove("Bus", i) |
|
608
|
|
|
if comp.name in ["Link", "Generator"]: |
|
609
|
|
|
if ( |
|
610
|
|
|
i.replace("urban decentral", "rural") |
|
611
|
|
|
in rural.index |
|
612
|
|
|
): |
|
613
|
|
|
rural.loc[ |
|
614
|
|
|
i.replace("urban decentral", "rural"), |
|
615
|
|
|
"p_nom_opt", |
|
616
|
|
|
] += urban_decentral.loc[i, "p_nom_opt"] |
|
617
|
|
|
rural.loc[ |
|
618
|
|
|
i.replace("urban decentral", "rural"), "p_nom" |
|
619
|
|
|
] += urban_decentral.loc[i, "p_nom"] |
|
620
|
|
|
network_solved.remove(comp.name, i) |
|
621
|
|
|
else: |
|
622
|
|
|
print(i) |
|
623
|
|
|
comp.df.loc[i, "bus0"] = comp.df.loc[ |
|
624
|
|
|
i, "bus0" |
|
625
|
|
|
].replace("urban decentral", "rural") |
|
626
|
|
|
comp.df.loc[i, "bus1"] = comp.df.loc[ |
|
627
|
|
|
i, "bus1" |
|
628
|
|
|
].replace("urban decentral", "rural") |
|
629
|
|
|
comp.df.loc[i, "carrier"] = comp.df.loc[ |
|
630
|
|
|
i, "carrier" |
|
631
|
|
|
].replace("urban decentral", "rural") |
|
632
|
|
|
if comp.name in ["Store"]: |
|
633
|
|
|
if ( |
|
634
|
|
|
i.replace("urban decentral", "rural") |
|
635
|
|
|
in rural.index |
|
636
|
|
|
): |
|
637
|
|
|
rural.loc[ |
|
638
|
|
|
i.replace("urban decentral", "rural"), |
|
639
|
|
|
"e_nom_opt", |
|
640
|
|
|
] += urban_decentral.loc[i, "e_nom_opt"] |
|
641
|
|
|
rural.loc[ |
|
642
|
|
|
i.replace("urban decentral", "rural"), "e_nom" |
|
643
|
|
|
] += urban_decentral.loc[i, "e_nom"] |
|
644
|
|
|
network_solved.remove(comp.name, i) |
|
645
|
|
|
|
|
646
|
|
|
else: |
|
647
|
|
|
print(i) |
|
648
|
|
|
network_solved.stores.loc[i, "bus"] = ( |
|
649
|
|
|
network_solved.stores.loc[i, "bus"].replace( |
|
650
|
|
|
"urban decentral", "rural" |
|
651
|
|
|
) |
|
652
|
|
|
) |
|
653
|
|
|
network_solved.stores.loc[i, "carrier"] = ( |
|
654
|
|
|
"rural water tanks" |
|
655
|
|
|
) |
|
656
|
|
|
|
|
657
|
|
|
urban_decentral_loads = network_prepared.loads[ |
|
658
|
|
|
network_prepared.loads.carrier.str.contains("urban decentral") |
|
659
|
|
|
] |
|
660
|
|
|
|
|
661
|
|
|
for i, row in urban_decentral_loads.iterrows(): |
|
662
|
|
|
if i in network_prepared.loads_t.p_set.columns: |
|
663
|
|
|
network_prepared.loads_t.p_set[ |
|
664
|
|
|
i.replace("urban decentral", "rural") |
|
665
|
|
|
] += network_prepared.loads_t.p_set[i] |
|
666
|
|
|
network_prepared.mremove("Load", urban_decentral_loads.index) |
|
667
|
|
|
|
|
668
|
|
|
return network_prepared, network_solved |
|
669
|
|
|
|
|
670
|
|
|
|
|
671
|
|
|
def neighbor_reduction(): |
|
672
|
|
|
network_solved = read_network(planning_horizon=2045) |
|
673
|
|
|
network_prepared = prepared_network(planning_horizon="2045") |
|
674
|
|
|
|
|
675
|
|
|
# network.links.drop("pipe_retrofit", axis="columns", inplace=True) |
|
676
|
|
|
|
|
677
|
|
|
wanted_countries = countries_list() |
|
678
|
|
|
|
|
679
|
|
|
foreign_buses = network_solved.buses[ |
|
680
|
|
|
(~network_solved.buses.index.str.contains("|".join(wanted_countries))) |
|
681
|
|
|
| (network_solved.buses.index.str.contains("FR6")) |
|
682
|
|
|
] |
|
683
|
|
|
network_solved.buses = network_solved.buses.drop( |
|
684
|
|
|
network_solved.buses.loc[foreign_buses.index].index |
|
685
|
|
|
) |
|
686
|
|
|
|
|
687
|
|
|
# Add H2 demand of Fischer-Tropsch process and methanolisation |
|
688
|
|
|
# to industrial H2 demands |
|
689
|
|
|
industrial_hydrogen = network_prepared.loads.loc[ |
|
690
|
|
|
network_prepared.loads.carrier == "H2 for industry" |
|
691
|
|
|
] |
|
692
|
|
|
fischer_tropsch = ( |
|
693
|
|
|
network_solved.links_t.p0[ |
|
694
|
|
|
network_solved.links.loc[ |
|
695
|
|
|
network_solved.links.carrier == "Fischer-Tropsch" |
|
696
|
|
|
].index |
|
697
|
|
|
] |
|
698
|
|
|
.mul(network_solved.snapshot_weightings.generators, axis=0) |
|
699
|
|
|
.sum() |
|
700
|
|
|
) |
|
701
|
|
|
methanolisation = ( |
|
702
|
|
|
network_solved.links_t.p0[ |
|
703
|
|
|
network_solved.links.loc[ |
|
704
|
|
|
network_solved.links.carrier == "methanolisation" |
|
705
|
|
|
].index |
|
706
|
|
|
] |
|
707
|
|
|
.mul(network_solved.snapshot_weightings.generators, axis=0) |
|
708
|
|
|
.sum() |
|
709
|
|
|
) |
|
710
|
|
|
for i, row in industrial_hydrogen.iterrows(): |
|
711
|
|
|
network_prepared.loads.loc[i, "p_set"] += ( |
|
712
|
|
|
fischer_tropsch[ |
|
713
|
|
|
fischer_tropsch.index.str.startswith(row.bus[:5]) |
|
714
|
|
|
].sum() |
|
715
|
|
|
/ 8760 |
|
716
|
|
|
) |
|
717
|
|
|
network_prepared.loads.loc[i, "p_set"] += ( |
|
718
|
|
|
methanolisation[ |
|
719
|
|
|
methanolisation.index.str.startswith(row.bus[:5]) |
|
720
|
|
|
].sum() |
|
721
|
|
|
/ 8760 |
|
722
|
|
|
) |
|
723
|
|
|
# drop foreign lines and links from the 2nd row |
|
724
|
|
|
|
|
725
|
|
|
network_solved.lines = network_solved.lines.drop( |
|
726
|
|
|
network_solved.lines[ |
|
727
|
|
|
( |
|
728
|
|
|
network_solved.lines["bus0"].isin(network_solved.buses.index) |
|
729
|
|
|
== False |
|
730
|
|
|
) |
|
731
|
|
|
& ( |
|
732
|
|
|
network_solved.lines["bus1"].isin(network_solved.buses.index) |
|
733
|
|
|
== False |
|
734
|
|
|
) |
|
735
|
|
|
].index |
|
736
|
|
|
) |
|
737
|
|
|
|
|
738
|
|
|
# select all lines which have at bus1 the bus which is kept |
|
739
|
|
|
lines_cb_1 = network_solved.lines[ |
|
740
|
|
|
( |
|
741
|
|
|
network_solved.lines["bus0"].isin(network_solved.buses.index) |
|
742
|
|
|
== False |
|
743
|
|
|
) |
|
744
|
|
|
] |
|
745
|
|
|
|
|
746
|
|
|
# create a load at bus1 with the line's hourly loading |
|
747
|
|
|
for i, k in zip(lines_cb_1.bus1.values, lines_cb_1.index): |
|
748
|
|
|
|
|
749
|
|
|
# Copy loading of lines into hourly resolution |
|
750
|
|
|
pset = pd.Series( |
|
751
|
|
|
index=network_prepared.snapshots, |
|
752
|
|
|
data=network_solved.lines_t.p1[k].resample("H").ffill(), |
|
753
|
|
|
) |
|
754
|
|
|
pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
|
755
|
|
|
pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
|
756
|
|
|
|
|
757
|
|
|
# Loads are all imported from the prepared network in the end |
|
758
|
|
|
network_prepared.add( |
|
759
|
|
|
"Load", |
|
760
|
|
|
"slack_fix " + i + " " + k, |
|
761
|
|
|
bus=i, |
|
762
|
|
|
p_set=pset, |
|
763
|
|
|
carrier=lines_cb_1.loc[k, "carrier"], |
|
764
|
|
|
) |
|
765
|
|
|
|
|
766
|
|
|
# select all lines which have at bus0 the bus which is kept |
|
767
|
|
|
lines_cb_0 = network_solved.lines[ |
|
768
|
|
|
( |
|
769
|
|
|
network_solved.lines["bus1"].isin(network_solved.buses.index) |
|
770
|
|
|
== False |
|
771
|
|
|
) |
|
772
|
|
|
] |
|
773
|
|
|
|
|
774
|
|
|
# create a load at bus0 with the line's hourly loading |
|
775
|
|
|
for i, k in zip(lines_cb_0.bus0.values, lines_cb_0.index): |
|
776
|
|
|
# Copy loading of lines into hourly resolution |
|
777
|
|
|
pset = pd.Series( |
|
778
|
|
|
index=network_prepared.snapshots, |
|
779
|
|
|
data=network_solved.lines_t.p0[k].resample("H").ffill(), |
|
780
|
|
|
) |
|
781
|
|
|
pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
|
782
|
|
|
pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
|
783
|
|
|
|
|
784
|
|
|
network_prepared.add( |
|
785
|
|
|
"Load", |
|
786
|
|
|
"slack_fix " + i + " " + k, |
|
787
|
|
|
bus=i, |
|
788
|
|
|
p_set=pset, |
|
789
|
|
|
carrier=lines_cb_0.loc[k, "carrier"], |
|
790
|
|
|
) |
|
791
|
|
|
|
|
792
|
|
|
# do the same for links |
|
793
|
|
|
network_solved.mremove( |
|
794
|
|
|
"Link", |
|
795
|
|
|
network_solved.links[ |
|
796
|
|
|
(~network_solved.links.bus0.isin(network_solved.buses.index)) |
|
797
|
|
|
| (~network_solved.links.bus1.isin(network_solved.buses.index)) |
|
798
|
|
|
].index, |
|
799
|
|
|
) |
|
800
|
|
|
|
|
801
|
|
|
# select all links which have at bus1 the bus which is kept |
|
802
|
|
|
links_cb_1 = network_solved.links[ |
|
803
|
|
|
( |
|
804
|
|
|
network_solved.links["bus0"].isin(network_solved.buses.index) |
|
805
|
|
|
== False |
|
806
|
|
|
) |
|
807
|
|
|
] |
|
808
|
|
|
|
|
809
|
|
|
# create a load at bus1 with the link's hourly loading |
|
810
|
|
|
for i, k in zip(links_cb_1.bus1.values, links_cb_1.index): |
|
811
|
|
|
pset = pd.Series( |
|
812
|
|
|
index=network_prepared.snapshots, |
|
813
|
|
|
data=network_solved.links_t.p1[k].resample("H").ffill(), |
|
814
|
|
|
) |
|
815
|
|
|
pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
|
816
|
|
|
pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
|
817
|
|
|
|
|
818
|
|
|
network_prepared.add( |
|
819
|
|
|
"Load", |
|
820
|
|
|
"slack_fix_links " + i + " " + k, |
|
821
|
|
|
bus=i, |
|
822
|
|
|
p_set=pset, |
|
823
|
|
|
carrier=links_cb_1.loc[k, "carrier"], |
|
824
|
|
|
) |
|
825
|
|
|
|
|
826
|
|
|
# select all links which have at bus0 the bus which is kept |
|
827
|
|
|
links_cb_0 = network_solved.links[ |
|
828
|
|
|
( |
|
829
|
|
|
network_solved.links["bus1"].isin(network_solved.buses.index) |
|
830
|
|
|
== False |
|
831
|
|
|
) |
|
832
|
|
|
] |
|
833
|
|
|
|
|
834
|
|
|
# create a load at bus0 with the link's hourly loading |
|
835
|
|
|
for i, k in zip(links_cb_0.bus0.values, links_cb_0.index): |
|
836
|
|
|
pset = pd.Series( |
|
837
|
|
|
index=network_prepared.snapshots, |
|
838
|
|
|
data=network_solved.links_t.p0[k].resample("H").ffill(), |
|
839
|
|
|
) |
|
840
|
|
|
pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
|
841
|
|
|
pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
|
842
|
|
|
|
|
843
|
|
|
network_prepared.add( |
|
844
|
|
|
"Load", |
|
845
|
|
|
"slack_fix_links " + i + " " + k, |
|
846
|
|
|
bus=i, |
|
847
|
|
|
p_set=pset, |
|
848
|
|
|
carrier=links_cb_0.carrier[k], |
|
849
|
|
|
) |
|
850
|
|
|
|
|
851
|
|
|
# drop remaining foreign components |
|
852
|
|
|
for comp in network_solved.iterate_components(): |
|
853
|
|
|
if "bus0" in comp.df.columns: |
|
854
|
|
|
network_solved.mremove( |
|
855
|
|
|
comp.name, |
|
856
|
|
|
comp.df[~comp.df.bus0.isin(network_solved.buses.index)].index, |
|
857
|
|
|
) |
|
858
|
|
|
network_solved.mremove( |
|
859
|
|
|
comp.name, |
|
860
|
|
|
comp.df[~comp.df.bus1.isin(network_solved.buses.index)].index, |
|
861
|
|
|
) |
|
862
|
|
|
elif "bus" in comp.df.columns: |
|
863
|
|
|
network_solved.mremove( |
|
864
|
|
|
comp.name, |
|
865
|
|
|
comp.df[~comp.df.bus.isin(network_solved.buses.index)].index, |
|
866
|
|
|
) |
|
867
|
|
|
|
|
868
|
|
|
# Combine urban decentral and rural heat |
|
869
|
|
|
network_prepared, network_solved = combine_decentral_and_rural_heat( |
|
870
|
|
|
network_solved, network_prepared |
|
871
|
|
|
) |
|
872
|
|
|
|
|
873
|
|
|
# writing components of neighboring countries to etrago tables |
|
874
|
|
|
|
|
875
|
|
|
# Set country tag for all buses |
|
876
|
|
|
network_solved.buses.country = network_solved.buses.index.str[:2] |
|
877
|
|
|
neighbors = network_solved.buses[network_solved.buses.country != "DE"] |
|
878
|
|
|
|
|
879
|
|
|
neighbors["new_index"] = ( |
|
880
|
|
|
db.next_etrago_id("bus", len(neighbors.index)) |
|
881
|
|
|
) |
|
882
|
|
|
|
|
883
|
|
|
# Use index of AC buses created by electrical_neigbors |
|
884
|
|
|
foreign_ac_buses = db.select_dataframe( |
|
885
|
|
|
""" |
|
886
|
|
|
SELECT * FROM grid.egon_etrago_bus |
|
887
|
|
|
WHERE carrier = 'AC' AND v_nom = 380 |
|
888
|
|
|
AND country!= 'DE' AND scn_name ='eGon100RE' |
|
889
|
|
|
AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data) |
|
890
|
|
|
""" |
|
891
|
|
|
) |
|
892
|
|
|
buses_with_defined_id = neighbors[ |
|
893
|
|
|
(neighbors.carrier == "AC") |
|
894
|
|
|
& (neighbors.country.isin(foreign_ac_buses.country.values)) |
|
895
|
|
|
].index |
|
896
|
|
|
neighbors.loc[buses_with_defined_id, "new_index"] = ( |
|
897
|
|
|
foreign_ac_buses.set_index("x") |
|
898
|
|
|
.loc[neighbors.loc[buses_with_defined_id, "x"]] |
|
899
|
|
|
.bus_id.values |
|
900
|
|
|
) |
|
901
|
|
|
|
|
902
|
|
|
# lines, the foreign crossborder lines |
|
903
|
|
|
# (without crossborder lines to Germany!) |
|
904
|
|
|
|
|
905
|
|
|
neighbor_lines = network_solved.lines[ |
|
906
|
|
|
network_solved.lines.bus0.isin(neighbors.index) |
|
907
|
|
|
& network_solved.lines.bus1.isin(neighbors.index) |
|
908
|
|
|
] |
|
909
|
|
|
if not network_solved.lines_t["s_max_pu"].empty: |
|
910
|
|
|
neighbor_lines_t = network_prepared.lines_t["s_max_pu"][ |
|
911
|
|
|
neighbor_lines.index |
|
912
|
|
|
] |
|
913
|
|
|
|
|
914
|
|
|
neighbor_lines.reset_index(inplace=True) |
|
915
|
|
|
neighbor_lines.bus0 = ( |
|
916
|
|
|
neighbors.loc[neighbor_lines.bus0, "new_index"].reset_index().new_index |
|
917
|
|
|
) |
|
918
|
|
|
neighbor_lines.bus1 = ( |
|
919
|
|
|
neighbors.loc[neighbor_lines.bus1, "new_index"].reset_index().new_index |
|
920
|
|
|
) |
|
921
|
|
|
neighbor_lines.index = db.next_etrago_id("line", len(neighbor_lines.index)) |
|
922
|
|
|
|
|
923
|
|
|
if not network_solved.lines_t["s_max_pu"].empty: |
|
924
|
|
|
for i in neighbor_lines_t.columns: |
|
|
|
|
|
|
925
|
|
|
new_index = neighbor_lines[neighbor_lines["name"] == i].index |
|
926
|
|
|
neighbor_lines_t.rename(columns={i: new_index[0]}, inplace=True) |
|
927
|
|
|
|
|
928
|
|
|
# links |
|
929
|
|
|
neighbor_links = network_solved.links[ |
|
930
|
|
|
network_solved.links.bus0.isin(neighbors.index) |
|
931
|
|
|
& network_solved.links.bus1.isin(neighbors.index) |
|
932
|
|
|
] |
|
933
|
|
|
|
|
934
|
|
|
neighbor_links.reset_index(inplace=True) |
|
935
|
|
|
neighbor_links.bus0 = ( |
|
936
|
|
|
neighbors.loc[neighbor_links.bus0, "new_index"].reset_index().new_index |
|
937
|
|
|
) |
|
938
|
|
|
neighbor_links.bus1 = ( |
|
939
|
|
|
neighbors.loc[neighbor_links.bus1, "new_index"].reset_index().new_index |
|
940
|
|
|
) |
|
941
|
|
|
neighbor_links.index = db.next_etrago_id("link", len(neighbor_links.index)) |
|
942
|
|
|
|
|
943
|
|
|
# generators |
|
944
|
|
|
neighbor_gens = network_solved.generators[ |
|
945
|
|
|
network_solved.generators.bus.isin(neighbors.index) |
|
946
|
|
|
] |
|
947
|
|
|
neighbor_gens_t = network_prepared.generators_t["p_max_pu"][ |
|
948
|
|
|
neighbor_gens[ |
|
949
|
|
|
neighbor_gens.index.isin( |
|
950
|
|
|
network_prepared.generators_t["p_max_pu"].columns |
|
951
|
|
|
) |
|
952
|
|
|
].index |
|
953
|
|
|
] |
|
954
|
|
|
|
|
955
|
|
|
gen_time = [ |
|
956
|
|
|
"solar", |
|
957
|
|
|
"onwind", |
|
958
|
|
|
"solar rooftop", |
|
959
|
|
|
"offwind-ac", |
|
960
|
|
|
"offwind-dc", |
|
961
|
|
|
"solar-hsat", |
|
962
|
|
|
"urban central solar thermal", |
|
963
|
|
|
"rural solar thermal", |
|
964
|
|
|
"offwind-float", |
|
965
|
|
|
] |
|
966
|
|
|
|
|
967
|
|
|
missing_gent = neighbor_gens[ |
|
968
|
|
|
neighbor_gens["carrier"].isin(gen_time) |
|
969
|
|
|
& ~neighbor_gens.index.isin(neighbor_gens_t.columns) |
|
970
|
|
|
].index |
|
971
|
|
|
|
|
972
|
|
|
gen_timeseries = network_prepared.generators_t["p_max_pu"].copy() |
|
973
|
|
|
for mgt in missing_gent: # mgt: missing generator timeseries |
|
974
|
|
|
try: |
|
975
|
|
|
neighbor_gens_t[mgt] = gen_timeseries.loc[:, mgt[0:-5]] |
|
976
|
|
|
except: |
|
977
|
|
|
print(f"There are not timeseries for {mgt}") |
|
978
|
|
|
|
|
979
|
|
|
neighbor_gens.reset_index(inplace=True) |
|
980
|
|
|
neighbor_gens.bus = ( |
|
981
|
|
|
neighbors.loc[neighbor_gens.bus, "new_index"].reset_index().new_index |
|
982
|
|
|
) |
|
983
|
|
|
neighbor_gens.index = db.next_etrago_id( |
|
984
|
|
|
"generator", len(neighbor_gens.index)) |
|
985
|
|
|
|
|
986
|
|
|
for i in neighbor_gens_t.columns: |
|
987
|
|
|
new_index = neighbor_gens[neighbor_gens["Generator"] == i].index |
|
988
|
|
|
neighbor_gens_t.rename(columns={i: new_index[0]}, inplace=True) |
|
989
|
|
|
|
|
990
|
|
|
# loads |
|
991
|
|
|
# imported from prenetwork in 1h-resolution |
|
992
|
|
|
neighbor_loads = network_prepared.loads[ |
|
993
|
|
|
network_prepared.loads.bus.isin(neighbors.index) |
|
994
|
|
|
] |
|
995
|
|
|
neighbor_loads_t_index = neighbor_loads.index[ |
|
996
|
|
|
neighbor_loads.index.isin(network_prepared.loads_t.p_set.columns) |
|
997
|
|
|
] |
|
998
|
|
|
neighbor_loads_t = network_prepared.loads_t["p_set"][ |
|
999
|
|
|
neighbor_loads_t_index |
|
1000
|
|
|
] |
|
1001
|
|
|
|
|
1002
|
|
|
neighbor_loads.reset_index(inplace=True) |
|
1003
|
|
|
neighbor_loads.bus = ( |
|
1004
|
|
|
neighbors.loc[neighbor_loads.bus, "new_index"].reset_index().new_index |
|
1005
|
|
|
) |
|
1006
|
|
|
neighbor_loads.index = db.next_etrago_id("load", len(neighbor_loads.index)) |
|
1007
|
|
|
|
|
1008
|
|
|
for i in neighbor_loads_t.columns: |
|
1009
|
|
|
new_index = neighbor_loads[neighbor_loads["Load"] == i].index |
|
1010
|
|
|
neighbor_loads_t.rename(columns={i: new_index[0]}, inplace=True) |
|
1011
|
|
|
|
|
1012
|
|
|
# stores |
|
1013
|
|
|
neighbor_stores = network_solved.stores[ |
|
1014
|
|
|
network_solved.stores.bus.isin(neighbors.index) |
|
1015
|
|
|
] |
|
1016
|
|
|
neighbor_stores_t_index = neighbor_stores.index[ |
|
1017
|
|
|
neighbor_stores.index.isin(network_solved.stores_t.e_min_pu.columns) |
|
1018
|
|
|
] |
|
1019
|
|
|
neighbor_stores_t = network_prepared.stores_t["e_min_pu"][ |
|
1020
|
|
|
neighbor_stores_t_index |
|
1021
|
|
|
] |
|
1022
|
|
|
|
|
1023
|
|
|
neighbor_stores.reset_index(inplace=True) |
|
1024
|
|
|
neighbor_stores.bus = ( |
|
1025
|
|
|
neighbors.loc[neighbor_stores.bus, "new_index"].reset_index().new_index |
|
1026
|
|
|
) |
|
1027
|
|
|
neighbor_stores.index = db.next_etrago_id( |
|
1028
|
|
|
"store", len(neighbor_stores.index)) |
|
1029
|
|
|
|
|
1030
|
|
|
for i in neighbor_stores_t.columns: |
|
1031
|
|
|
new_index = neighbor_stores[neighbor_stores["Store"] == i].index |
|
1032
|
|
|
neighbor_stores_t.rename(columns={i: new_index[0]}, inplace=True) |
|
1033
|
|
|
|
|
1034
|
|
|
# storage_units |
|
1035
|
|
|
neighbor_storage = network_solved.storage_units[ |
|
1036
|
|
|
network_solved.storage_units.bus.isin(neighbors.index) |
|
1037
|
|
|
] |
|
1038
|
|
|
neighbor_storage_t_index = neighbor_storage.index[ |
|
1039
|
|
|
neighbor_storage.index.isin( |
|
1040
|
|
|
network_solved.storage_units_t.inflow.columns |
|
1041
|
|
|
) |
|
1042
|
|
|
] |
|
1043
|
|
|
neighbor_storage_t = network_prepared.storage_units_t["inflow"][ |
|
1044
|
|
|
neighbor_storage_t_index |
|
1045
|
|
|
] |
|
1046
|
|
|
|
|
1047
|
|
|
neighbor_storage.reset_index(inplace=True) |
|
1048
|
|
|
neighbor_storage.bus = ( |
|
1049
|
|
|
neighbors.loc[neighbor_storage.bus, "new_index"] |
|
1050
|
|
|
.reset_index() |
|
1051
|
|
|
.new_index |
|
1052
|
|
|
) |
|
1053
|
|
|
neighbor_storage.index = db.next_etrago_id( |
|
1054
|
|
|
"storage", len(neighbor_storage.index)) |
|
1055
|
|
|
|
|
1056
|
|
|
for i in neighbor_storage_t.columns: |
|
1057
|
|
|
new_index = neighbor_storage[ |
|
1058
|
|
|
neighbor_storage["StorageUnit"] == i |
|
1059
|
|
|
].index |
|
1060
|
|
|
neighbor_storage_t.rename(columns={i: new_index[0]}, inplace=True) |
|
1061
|
|
|
|
|
1062
|
|
|
# Connect to local database |
|
1063
|
|
|
engine = db.engine() |
|
1064
|
|
|
|
|
1065
|
|
|
neighbors["scn_name"] = "eGon100RE" |
|
1066
|
|
|
neighbors.index = neighbors["new_index"] |
|
1067
|
|
|
|
|
1068
|
|
|
# Correct geometry for non AC buses |
|
1069
|
|
|
carriers = set(neighbors.carrier.to_list()) |
|
1070
|
|
|
carriers = [e for e in carriers if e not in ("AC")] |
|
1071
|
|
|
non_AC_neighbors = pd.DataFrame() |
|
1072
|
|
|
for c in carriers: |
|
1073
|
|
|
c_neighbors = neighbors[neighbors.carrier == c].set_index( |
|
1074
|
|
|
"location", drop=False |
|
1075
|
|
|
) |
|
1076
|
|
|
for i in ["x", "y"]: |
|
1077
|
|
|
c_neighbors = c_neighbors.drop(i, axis=1) |
|
1078
|
|
|
coordinates = neighbors[neighbors.carrier == "AC"][ |
|
1079
|
|
|
["location", "x", "y"] |
|
1080
|
|
|
].set_index("location") |
|
1081
|
|
|
c_neighbors = pd.concat([coordinates, c_neighbors], axis=1).set_index( |
|
1082
|
|
|
"new_index", drop=False |
|
1083
|
|
|
) |
|
1084
|
|
|
non_AC_neighbors = pd.concat([non_AC_neighbors, c_neighbors]) |
|
1085
|
|
|
|
|
1086
|
|
|
neighbors = pd.concat( |
|
1087
|
|
|
[neighbors[neighbors.carrier == "AC"], non_AC_neighbors] |
|
1088
|
|
|
) |
|
1089
|
|
|
|
|
1090
|
|
|
for i in [ |
|
1091
|
|
|
"new_index", |
|
1092
|
|
|
"control", |
|
1093
|
|
|
"generator", |
|
1094
|
|
|
"location", |
|
1095
|
|
|
"sub_network", |
|
1096
|
|
|
"unit", |
|
1097
|
|
|
"substation_lv", |
|
1098
|
|
|
"substation_off", |
|
1099
|
|
|
]: |
|
1100
|
|
|
neighbors = neighbors.drop(i, axis=1) |
|
1101
|
|
|
|
|
1102
|
|
|
# Add geometry column |
|
1103
|
|
|
neighbors = ( |
|
1104
|
|
|
gpd.GeoDataFrame( |
|
1105
|
|
|
neighbors, geometry=gpd.points_from_xy(neighbors.x, neighbors.y) |
|
1106
|
|
|
) |
|
1107
|
|
|
.rename_geometry("geom") |
|
1108
|
|
|
.set_crs(4326) |
|
1109
|
|
|
) |
|
1110
|
|
|
|
|
1111
|
|
|
# Unify carrier names |
|
1112
|
|
|
neighbors.carrier = neighbors.carrier.str.replace(" ", "_") |
|
1113
|
|
|
neighbors.carrier.replace( |
|
1114
|
|
|
{ |
|
1115
|
|
|
"gas": "CH4", |
|
1116
|
|
|
"gas_for_industry": "CH4_for_industry", |
|
1117
|
|
|
"urban_central_heat": "central_heat", |
|
1118
|
|
|
"EV_battery": "Li_ion", |
|
1119
|
|
|
"urban_central_water_tanks": "central_heat_store", |
|
1120
|
|
|
"rural_water_tanks": "rural_heat_store", |
|
1121
|
|
|
}, |
|
1122
|
|
|
inplace=True, |
|
1123
|
|
|
) |
|
1124
|
|
|
|
|
1125
|
|
|
neighbors[~neighbors.carrier.isin(["AC"])].to_postgis( |
|
1126
|
|
|
"egon_etrago_bus", |
|
1127
|
|
|
engine, |
|
1128
|
|
|
schema="grid", |
|
1129
|
|
|
if_exists="append", |
|
1130
|
|
|
index=True, |
|
1131
|
|
|
index_label="bus_id", |
|
1132
|
|
|
) |
|
1133
|
|
|
|
|
1134
|
|
|
# prepare and write neighboring crossborder lines to etrago tables |
|
1135
|
|
|
def lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE"): |
|
1136
|
|
|
neighbor_lines["scn_name"] = scn |
|
1137
|
|
|
neighbor_lines["cables"] = 3 * neighbor_lines["num_parallel"].astype( |
|
1138
|
|
|
int |
|
1139
|
|
|
) |
|
1140
|
|
|
neighbor_lines["s_nom"] = neighbor_lines["s_nom_min"] |
|
1141
|
|
|
|
|
1142
|
|
|
for i in [ |
|
1143
|
|
|
"Line", |
|
1144
|
|
|
"x_pu_eff", |
|
1145
|
|
|
"r_pu_eff", |
|
1146
|
|
|
"sub_network", |
|
1147
|
|
|
"x_pu", |
|
1148
|
|
|
"r_pu", |
|
1149
|
|
|
"g_pu", |
|
1150
|
|
|
"b_pu", |
|
1151
|
|
|
"s_nom_opt", |
|
1152
|
|
|
"i_nom", |
|
1153
|
|
|
"dc", |
|
1154
|
|
|
]: |
|
1155
|
|
|
neighbor_lines = neighbor_lines.drop(i, axis=1) |
|
1156
|
|
|
|
|
1157
|
|
|
# Define geometry and add to lines dataframe as 'topo' |
|
1158
|
|
|
gdf = gpd.GeoDataFrame(index=neighbor_lines.index) |
|
1159
|
|
|
gdf["geom_bus0"] = neighbors.geom[neighbor_lines.bus0].values |
|
1160
|
|
|
gdf["geom_bus1"] = neighbors.geom[neighbor_lines.bus1].values |
|
1161
|
|
|
gdf["geometry"] = gdf.apply( |
|
1162
|
|
|
lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
|
1163
|
|
|
) |
|
1164
|
|
|
|
|
1165
|
|
|
neighbor_lines = ( |
|
1166
|
|
|
gpd.GeoDataFrame(neighbor_lines, geometry=gdf["geometry"]) |
|
1167
|
|
|
.rename_geometry("topo") |
|
1168
|
|
|
.set_crs(4326) |
|
1169
|
|
|
) |
|
1170
|
|
|
|
|
1171
|
|
|
neighbor_lines["lifetime"] = get_sector_parameters("electricity", scn)[ |
|
1172
|
|
|
"lifetime" |
|
1173
|
|
|
]["ac_ehv_overhead_line"] |
|
1174
|
|
|
|
|
1175
|
|
|
neighbor_lines.to_postgis( |
|
1176
|
|
|
"egon_etrago_line", |
|
1177
|
|
|
engine, |
|
1178
|
|
|
schema="grid", |
|
1179
|
|
|
if_exists="append", |
|
1180
|
|
|
index=True, |
|
1181
|
|
|
index_label="line_id", |
|
1182
|
|
|
) |
|
1183
|
|
|
|
|
1184
|
|
|
lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE") |
|
1185
|
|
|
|
|
1186
|
|
|
def links_to_etrago(neighbor_links, scn="eGon100RE", extendable=True): |
|
1187
|
|
|
"""Prepare and write neighboring crossborder links to eTraGo table |
|
1188
|
|
|
|
|
1189
|
|
|
This function prepare the neighboring crossborder links |
|
1190
|
|
|
generated the PyPSA-eur-sec (p-e-s) run by: |
|
1191
|
|
|
* Delete the useless columns |
|
1192
|
|
|
* If extendable is false only (non default case): |
|
1193
|
|
|
* Replace p_nom = 0 with the p_nom_op values (arrising |
|
1194
|
|
|
from the p-e-s optimisation) |
|
1195
|
|
|
* Setting p_nom_extendable to false |
|
1196
|
|
|
* Add geomtry to the links: 'geom' and 'topo' columns |
|
1197
|
|
|
* Change the name of the carriers to have the consistent in |
|
1198
|
|
|
eGon-data |
|
1199
|
|
|
|
|
1200
|
|
|
The function insert then the link to the eTraGo table and has |
|
1201
|
|
|
no return. |
|
1202
|
|
|
|
|
1203
|
|
|
Parameters |
|
1204
|
|
|
---------- |
|
1205
|
|
|
neighbor_links : pandas.DataFrame |
|
1206
|
|
|
Dataframe containing the neighboring crossborder links |
|
1207
|
|
|
scn_name : str |
|
1208
|
|
|
Name of the scenario |
|
1209
|
|
|
extendable : bool |
|
1210
|
|
|
Boolean expressing if the links should be extendable or not |
|
1211
|
|
|
|
|
1212
|
|
|
Returns |
|
1213
|
|
|
------- |
|
1214
|
|
|
None |
|
1215
|
|
|
|
|
1216
|
|
|
""" |
|
1217
|
|
|
neighbor_links["scn_name"] = scn |
|
1218
|
|
|
|
|
1219
|
|
|
dropped_carriers = [ |
|
1220
|
|
|
"Link", |
|
1221
|
|
|
"geometry", |
|
1222
|
|
|
"tags", |
|
1223
|
|
|
"under_construction", |
|
1224
|
|
|
"underground", |
|
1225
|
|
|
"underwater_fraction", |
|
1226
|
|
|
"bus2", |
|
1227
|
|
|
"bus3", |
|
1228
|
|
|
"bus4", |
|
1229
|
|
|
"efficiency2", |
|
1230
|
|
|
"efficiency3", |
|
1231
|
|
|
"efficiency4", |
|
1232
|
|
|
"lifetime", |
|
1233
|
|
|
"pipe_retrofit", |
|
1234
|
|
|
"committable", |
|
1235
|
|
|
"start_up_cost", |
|
1236
|
|
|
"shut_down_cost", |
|
1237
|
|
|
"min_up_time", |
|
1238
|
|
|
"min_down_time", |
|
1239
|
|
|
"up_time_before", |
|
1240
|
|
|
"down_time_before", |
|
1241
|
|
|
"ramp_limit_up", |
|
1242
|
|
|
"ramp_limit_down", |
|
1243
|
|
|
"ramp_limit_start_up", |
|
1244
|
|
|
"ramp_limit_shut_down", |
|
1245
|
|
|
"length_original", |
|
1246
|
|
|
"reversed", |
|
1247
|
|
|
"location", |
|
1248
|
|
|
"project_status", |
|
1249
|
|
|
"dc", |
|
1250
|
|
|
"voltage", |
|
1251
|
|
|
] |
|
1252
|
|
|
|
|
1253
|
|
|
if extendable: |
|
1254
|
|
|
dropped_carriers.append("p_nom_opt") |
|
1255
|
|
|
neighbor_links = neighbor_links.drop( |
|
1256
|
|
|
columns=dropped_carriers, |
|
1257
|
|
|
errors="ignore", |
|
1258
|
|
|
) |
|
1259
|
|
|
|
|
1260
|
|
|
else: |
|
1261
|
|
|
dropped_carriers.append("p_nom") |
|
1262
|
|
|
dropped_carriers.append("p_nom_extendable") |
|
1263
|
|
|
neighbor_links = neighbor_links.drop( |
|
1264
|
|
|
columns=dropped_carriers, |
|
1265
|
|
|
errors="ignore", |
|
1266
|
|
|
) |
|
1267
|
|
|
neighbor_links = neighbor_links.rename( |
|
1268
|
|
|
columns={"p_nom_opt": "p_nom"} |
|
1269
|
|
|
) |
|
1270
|
|
|
neighbor_links["p_nom_extendable"] = False |
|
1271
|
|
|
|
|
1272
|
|
|
if neighbor_links.empty: |
|
1273
|
|
|
print("No links selected") |
|
1274
|
|
|
return |
|
1275
|
|
|
|
|
1276
|
|
|
# Define geometry and add to lines dataframe as 'topo' |
|
1277
|
|
|
gdf = gpd.GeoDataFrame( |
|
1278
|
|
|
index=neighbor_links.index, |
|
1279
|
|
|
data={ |
|
1280
|
|
|
"geom_bus0": neighbors.loc[neighbor_links.bus0, "geom"].values, |
|
1281
|
|
|
"geom_bus1": neighbors.loc[neighbor_links.bus1, "geom"].values, |
|
1282
|
|
|
}, |
|
1283
|
|
|
) |
|
1284
|
|
|
|
|
1285
|
|
|
gdf["geometry"] = gdf.apply( |
|
1286
|
|
|
lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
|
1287
|
|
|
) |
|
1288
|
|
|
|
|
1289
|
|
|
neighbor_links = ( |
|
1290
|
|
|
gpd.GeoDataFrame(neighbor_links, geometry=gdf["geometry"]) |
|
1291
|
|
|
.rename_geometry("topo") |
|
1292
|
|
|
.set_crs(4326) |
|
1293
|
|
|
) |
|
1294
|
|
|
|
|
1295
|
|
|
# Unify carrier names |
|
1296
|
|
|
neighbor_links.carrier = neighbor_links.carrier.str.replace(" ", "_") |
|
1297
|
|
|
|
|
1298
|
|
|
neighbor_links.carrier.replace( |
|
1299
|
|
|
{ |
|
1300
|
|
|
"H2_Electrolysis": "power_to_H2", |
|
1301
|
|
|
"H2_Fuel_Cell": "H2_to_power", |
|
1302
|
|
|
"H2_pipeline_retrofitted": "H2_retrofit", |
|
1303
|
|
|
"SMR": "CH4_to_H2", |
|
1304
|
|
|
"Sabatier": "H2_to_CH4", |
|
1305
|
|
|
"gas_for_industry": "CH4_for_industry", |
|
1306
|
|
|
"gas_pipeline": "CH4", |
|
1307
|
|
|
"urban_central_gas_boiler": "central_gas_boiler", |
|
1308
|
|
|
"urban_central_resistive_heater": "central_resistive_heater", |
|
1309
|
|
|
"urban_central_water_tanks_charger": "central_heat_store_charger", |
|
1310
|
|
|
"urban_central_water_tanks_discharger": "central_heat_store_discharger", |
|
1311
|
|
|
"rural_water_tanks_charger": "rural_heat_store_charger", |
|
1312
|
|
|
"rural_water_tanks_discharger": "rural_heat_store_discharger", |
|
1313
|
|
|
"urban_central_gas_CHP": "central_gas_CHP", |
|
1314
|
|
|
"urban_central_air_heat_pump": "central_heat_pump", |
|
1315
|
|
|
"rural_ground_heat_pump": "rural_heat_pump", |
|
1316
|
|
|
}, |
|
1317
|
|
|
inplace=True, |
|
1318
|
|
|
) |
|
1319
|
|
|
|
|
1320
|
|
|
H2_links = { |
|
1321
|
|
|
"H2_to_CH4": "H2_to_CH4", |
|
1322
|
|
|
"H2_to_power": "H2_to_power", |
|
1323
|
|
|
"power_to_H2": "power_to_H2_system", |
|
1324
|
|
|
"CH4_to_H2": "CH4_to_H2", |
|
1325
|
|
|
} |
|
1326
|
|
|
|
|
1327
|
|
|
for c in H2_links.keys(): |
|
1328
|
|
|
|
|
1329
|
|
|
neighbor_links.loc[ |
|
1330
|
|
|
(neighbor_links.carrier == c), |
|
1331
|
|
|
"lifetime", |
|
1332
|
|
|
] = get_sector_parameters("gas", "eGon100RE")["lifetime"][ |
|
1333
|
|
|
H2_links[c] |
|
1334
|
|
|
] |
|
1335
|
|
|
|
|
1336
|
|
|
neighbor_links.to_postgis( |
|
1337
|
|
|
"egon_etrago_link", |
|
1338
|
|
|
engine, |
|
1339
|
|
|
schema="grid", |
|
1340
|
|
|
if_exists="append", |
|
1341
|
|
|
index=True, |
|
1342
|
|
|
index_label="link_id", |
|
1343
|
|
|
) |
|
1344
|
|
|
|
|
1345
|
|
|
extendable_links_carriers = [ |
|
1346
|
|
|
"battery charger", |
|
1347
|
|
|
"battery discharger", |
|
1348
|
|
|
"home battery charger", |
|
1349
|
|
|
"home battery discharger", |
|
1350
|
|
|
"rural water tanks charger", |
|
1351
|
|
|
"rural water tanks discharger", |
|
1352
|
|
|
"urban central water tanks charger", |
|
1353
|
|
|
"urban central water tanks discharger", |
|
1354
|
|
|
"urban decentral water tanks charger", |
|
1355
|
|
|
"urban decentral water tanks discharger", |
|
1356
|
|
|
"H2 Electrolysis", |
|
1357
|
|
|
"H2 Fuel Cell", |
|
1358
|
|
|
"SMR", |
|
1359
|
|
|
"Sabatier", |
|
1360
|
|
|
] |
|
1361
|
|
|
|
|
1362
|
|
|
# delete unwanted carriers for eTraGo |
|
1363
|
|
|
excluded_carriers = [ |
|
1364
|
|
|
"gas for industry CC", |
|
1365
|
|
|
"SMR CC", |
|
1366
|
|
|
"DAC", |
|
1367
|
|
|
] |
|
1368
|
|
|
neighbor_links = neighbor_links[ |
|
1369
|
|
|
~neighbor_links.carrier.isin(excluded_carriers) |
|
1370
|
|
|
] |
|
1371
|
|
|
|
|
1372
|
|
|
# Combine CHP_CC and CHP |
|
1373
|
|
|
chp_cc = neighbor_links[ |
|
1374
|
|
|
neighbor_links.carrier == "urban central gas CHP CC" |
|
1375
|
|
|
] |
|
1376
|
|
|
for index, row in chp_cc.iterrows(): |
|
1377
|
|
|
neighbor_links.loc[ |
|
1378
|
|
|
neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), |
|
1379
|
|
|
"p_nom_opt", |
|
1380
|
|
|
] += row.p_nom_opt |
|
1381
|
|
|
neighbor_links.loc[ |
|
1382
|
|
|
neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), "p_nom" |
|
1383
|
|
|
] += row.p_nom |
|
1384
|
|
|
neighbor_links.drop(index, inplace=True) |
|
1385
|
|
|
|
|
1386
|
|
|
# Combine heat pumps |
|
1387
|
|
|
# Like in Germany, there are air heat pumps in central heat grids |
|
1388
|
|
|
# and ground heat pumps in rural areas |
|
1389
|
|
|
rural_air = neighbor_links[neighbor_links.carrier == "rural air heat pump"] |
|
1390
|
|
|
for index, row in rural_air.iterrows(): |
|
1391
|
|
|
neighbor_links.loc[ |
|
1392
|
|
|
neighbor_links.Link == row.Link.replace("air", "ground"), |
|
1393
|
|
|
"p_nom_opt", |
|
1394
|
|
|
] += row.p_nom_opt |
|
1395
|
|
|
neighbor_links.loc[ |
|
1396
|
|
|
neighbor_links.Link == row.Link.replace("air", "ground"), "p_nom" |
|
1397
|
|
|
] += row.p_nom |
|
1398
|
|
|
neighbor_links.drop(index, inplace=True) |
|
1399
|
|
|
links_to_etrago( |
|
1400
|
|
|
neighbor_links[neighbor_links.carrier.isin(extendable_links_carriers)], |
|
1401
|
|
|
"eGon100RE", |
|
1402
|
|
|
) |
|
1403
|
|
|
links_to_etrago( |
|
1404
|
|
|
neighbor_links[ |
|
1405
|
|
|
~neighbor_links.carrier.isin(extendable_links_carriers) |
|
1406
|
|
|
], |
|
1407
|
|
|
"eGon100RE", |
|
1408
|
|
|
extendable=False, |
|
1409
|
|
|
) |
|
1410
|
|
|
# Include links time-series |
|
1411
|
|
|
# For heat_pumps |
|
1412
|
|
|
hp = neighbor_links[neighbor_links["carrier"].str.contains("heat pump")] |
|
1413
|
|
|
|
|
1414
|
|
|
neighbor_eff_t = network_prepared.links_t["efficiency"][ |
|
1415
|
|
|
hp[hp.Link.isin(network_prepared.links_t["efficiency"].columns)].index |
|
1416
|
|
|
] |
|
1417
|
|
|
|
|
1418
|
|
|
missing_hp = hp[~hp["Link"].isin(neighbor_eff_t.columns)].Link |
|
1419
|
|
|
|
|
1420
|
|
|
eff_timeseries = network_prepared.links_t["efficiency"].copy() |
|
1421
|
|
|
for met in missing_hp: # met: missing efficiency timeseries |
|
1422
|
|
|
try: |
|
1423
|
|
|
neighbor_eff_t[met] = eff_timeseries.loc[:, met[0:-5]] |
|
1424
|
|
|
except: |
|
1425
|
|
|
print(f"There are not timeseries for heat_pump {met}") |
|
1426
|
|
|
|
|
1427
|
|
|
for i in neighbor_eff_t.columns: |
|
1428
|
|
|
new_index = neighbor_links[neighbor_links["Link"] == i].index |
|
1429
|
|
|
neighbor_eff_t.rename(columns={i: new_index[0]}, inplace=True) |
|
1430
|
|
|
|
|
1431
|
|
|
# Include links time-series |
|
1432
|
|
|
# For ev_chargers |
|
1433
|
|
|
ev = neighbor_links[neighbor_links["carrier"].str.contains("BEV charger")] |
|
1434
|
|
|
|
|
1435
|
|
|
ev_p_max_pu = network_prepared.links_t["p_max_pu"][ |
|
1436
|
|
|
ev[ev.Link.isin(network_prepared.links_t["p_max_pu"].columns)].index |
|
1437
|
|
|
] |
|
1438
|
|
|
|
|
1439
|
|
|
missing_ev = ev[~ev["Link"].isin(ev_p_max_pu.columns)].Link |
|
1440
|
|
|
|
|
1441
|
|
|
ev_p_max_pu_timeseries = network_prepared.links_t["p_max_pu"].copy() |
|
1442
|
|
|
for mct in missing_ev: # evt: missing charger timeseries |
|
1443
|
|
|
try: |
|
1444
|
|
|
ev_p_max_pu[mct] = ev_p_max_pu_timeseries.loc[:, mct[0:-5]] |
|
1445
|
|
|
except: |
|
1446
|
|
|
print(f"There are not timeseries for EV charger {mct}") |
|
1447
|
|
|
|
|
1448
|
|
|
for i in ev_p_max_pu.columns: |
|
1449
|
|
|
new_index = neighbor_links[neighbor_links["Link"] == i].index |
|
1450
|
|
|
ev_p_max_pu.rename(columns={i: new_index[0]}, inplace=True) |
|
1451
|
|
|
|
|
1452
|
|
|
# prepare neighboring generators for etrago tables |
|
1453
|
|
|
neighbor_gens["scn_name"] = "eGon100RE" |
|
1454
|
|
|
neighbor_gens["p_nom"] = neighbor_gens["p_nom_opt"] |
|
1455
|
|
|
neighbor_gens["p_nom_extendable"] = False |
|
1456
|
|
|
|
|
1457
|
|
|
# Unify carrier names |
|
1458
|
|
|
neighbor_gens.carrier = neighbor_gens.carrier.str.replace(" ", "_") |
|
1459
|
|
|
|
|
1460
|
|
|
neighbor_gens.carrier.replace( |
|
1461
|
|
|
{ |
|
1462
|
|
|
"onwind": "wind_onshore", |
|
1463
|
|
|
"ror": "run_of_river", |
|
1464
|
|
|
"offwind-ac": "wind_offshore", |
|
1465
|
|
|
"offwind-dc": "wind_offshore", |
|
1466
|
|
|
"offwind-float": "wind_offshore", |
|
1467
|
|
|
"urban_central_solar_thermal": "urban_central_solar_thermal_collector", |
|
1468
|
|
|
"residential_rural_solar_thermal": "residential_rural_solar_thermal_collector", |
|
1469
|
|
|
"services_rural_solar_thermal": "services_rural_solar_thermal_collector", |
|
1470
|
|
|
"solar-hsat": "solar", |
|
1471
|
|
|
}, |
|
1472
|
|
|
inplace=True, |
|
1473
|
|
|
) |
|
1474
|
|
|
|
|
1475
|
|
|
for i in [ |
|
1476
|
|
|
"Generator", |
|
1477
|
|
|
"weight", |
|
1478
|
|
|
"lifetime", |
|
1479
|
|
|
"p_set", |
|
1480
|
|
|
"q_set", |
|
1481
|
|
|
"p_nom_opt", |
|
1482
|
|
|
"e_sum_min", |
|
1483
|
|
|
"e_sum_max", |
|
1484
|
|
|
]: |
|
1485
|
|
|
neighbor_gens = neighbor_gens.drop(i, axis=1) |
|
1486
|
|
|
|
|
1487
|
|
|
neighbor_gens.to_sql( |
|
1488
|
|
|
"egon_etrago_generator", |
|
1489
|
|
|
engine, |
|
1490
|
|
|
schema="grid", |
|
1491
|
|
|
if_exists="append", |
|
1492
|
|
|
index=True, |
|
1493
|
|
|
index_label="generator_id", |
|
1494
|
|
|
) |
|
1495
|
|
|
|
|
1496
|
|
|
# prepare neighboring loads for etrago tables |
|
1497
|
|
|
neighbor_loads["scn_name"] = "eGon100RE" |
|
1498
|
|
|
|
|
1499
|
|
|
# Unify carrier names |
|
1500
|
|
|
neighbor_loads.carrier = neighbor_loads.carrier.str.replace(" ", "_") |
|
1501
|
|
|
|
|
1502
|
|
|
neighbor_loads.carrier.replace( |
|
1503
|
|
|
{ |
|
1504
|
|
|
"electricity": "AC", |
|
1505
|
|
|
"DC": "AC", |
|
1506
|
|
|
"industry_electricity": "AC", |
|
1507
|
|
|
"H2_pipeline_retrofitted": "H2_system_boundary", |
|
1508
|
|
|
"gas_pipeline": "CH4_system_boundary", |
|
1509
|
|
|
"gas_for_industry": "CH4_for_industry", |
|
1510
|
|
|
"urban_central_heat": "central_heat", |
|
1511
|
|
|
}, |
|
1512
|
|
|
inplace=True, |
|
1513
|
|
|
) |
|
1514
|
|
|
|
|
1515
|
|
|
neighbor_loads = neighbor_loads.drop( |
|
1516
|
|
|
columns=["Load"], |
|
1517
|
|
|
errors="ignore", |
|
1518
|
|
|
) |
|
1519
|
|
|
|
|
1520
|
|
|
neighbor_loads.to_sql( |
|
1521
|
|
|
"egon_etrago_load", |
|
1522
|
|
|
engine, |
|
1523
|
|
|
schema="grid", |
|
1524
|
|
|
if_exists="append", |
|
1525
|
|
|
index=True, |
|
1526
|
|
|
index_label="load_id", |
|
1527
|
|
|
) |
|
1528
|
|
|
|
|
1529
|
|
|
# prepare neighboring stores for etrago tables |
|
1530
|
|
|
neighbor_stores["scn_name"] = "eGon100RE" |
|
1531
|
|
|
|
|
1532
|
|
|
# Unify carrier names |
|
1533
|
|
|
neighbor_stores.carrier = neighbor_stores.carrier.str.replace(" ", "_") |
|
1534
|
|
|
|
|
1535
|
|
|
neighbor_stores.carrier.replace( |
|
1536
|
|
|
{ |
|
1537
|
|
|
"Li_ion": "battery", |
|
1538
|
|
|
"gas": "CH4", |
|
1539
|
|
|
"urban_central_water_tanks": "central_heat_store", |
|
1540
|
|
|
"rural_water_tanks": "rural_heat_store", |
|
1541
|
|
|
"EV_battery": "battery_storage", |
|
1542
|
|
|
}, |
|
1543
|
|
|
inplace=True, |
|
1544
|
|
|
) |
|
1545
|
|
|
neighbor_stores.loc[ |
|
1546
|
|
|
( |
|
1547
|
|
|
(neighbor_stores.e_nom_max <= 1e9) |
|
1548
|
|
|
& (neighbor_stores.carrier == "H2_Store") |
|
1549
|
|
|
), |
|
1550
|
|
|
"carrier", |
|
1551
|
|
|
] = "H2_underground" |
|
1552
|
|
|
neighbor_stores.loc[ |
|
1553
|
|
|
( |
|
1554
|
|
|
(neighbor_stores.e_nom_max > 1e9) |
|
1555
|
|
|
& (neighbor_stores.carrier == "H2_Store") |
|
1556
|
|
|
), |
|
1557
|
|
|
"carrier", |
|
1558
|
|
|
] = "H2_overground" |
|
1559
|
|
|
|
|
1560
|
|
|
for i in [ |
|
1561
|
|
|
"Store", |
|
1562
|
|
|
"p_set", |
|
1563
|
|
|
"q_set", |
|
1564
|
|
|
"e_nom_opt", |
|
1565
|
|
|
"lifetime", |
|
1566
|
|
|
"e_initial_per_period", |
|
1567
|
|
|
"e_cyclic_per_period", |
|
1568
|
|
|
"location", |
|
1569
|
|
|
]: |
|
1570
|
|
|
neighbor_stores = neighbor_stores.drop(i, axis=1, errors="ignore") |
|
1571
|
|
|
|
|
1572
|
|
|
for c in ["H2_underground", "H2_overground"]: |
|
1573
|
|
|
neighbor_stores.loc[ |
|
1574
|
|
|
(neighbor_stores.carrier == c), |
|
1575
|
|
|
"lifetime", |
|
1576
|
|
|
] = get_sector_parameters("gas", "eGon100RE")["lifetime"][c] |
|
1577
|
|
|
|
|
1578
|
|
|
neighbor_stores.to_sql( |
|
1579
|
|
|
"egon_etrago_store", |
|
1580
|
|
|
engine, |
|
1581
|
|
|
schema="grid", |
|
1582
|
|
|
if_exists="append", |
|
1583
|
|
|
index=True, |
|
1584
|
|
|
index_label="store_id", |
|
1585
|
|
|
) |
|
1586
|
|
|
|
|
1587
|
|
|
# prepare neighboring storage_units for etrago tables |
|
1588
|
|
|
neighbor_storage["scn_name"] = "eGon100RE" |
|
1589
|
|
|
|
|
1590
|
|
|
# Unify carrier names |
|
1591
|
|
|
neighbor_storage.carrier = neighbor_storage.carrier.str.replace(" ", "_") |
|
1592
|
|
|
|
|
1593
|
|
|
neighbor_storage.carrier.replace( |
|
1594
|
|
|
{"PHS": "pumped_hydro", "hydro": "reservoir"}, inplace=True |
|
1595
|
|
|
) |
|
1596
|
|
|
|
|
1597
|
|
|
for i in [ |
|
1598
|
|
|
"StorageUnit", |
|
1599
|
|
|
"p_nom_opt", |
|
1600
|
|
|
"state_of_charge_initial_per_period", |
|
1601
|
|
|
"cyclic_state_of_charge_per_period", |
|
1602
|
|
|
]: |
|
1603
|
|
|
neighbor_storage = neighbor_storage.drop(i, axis=1, errors="ignore") |
|
1604
|
|
|
|
|
1605
|
|
|
neighbor_storage.to_sql( |
|
1606
|
|
|
"egon_etrago_storage", |
|
1607
|
|
|
engine, |
|
1608
|
|
|
schema="grid", |
|
1609
|
|
|
if_exists="append", |
|
1610
|
|
|
index=True, |
|
1611
|
|
|
index_label="storage_id", |
|
1612
|
|
|
) |
|
1613
|
|
|
|
|
1614
|
|
|
# writing neighboring loads_t p_sets to etrago tables |
|
1615
|
|
|
|
|
1616
|
|
|
neighbor_loads_t_etrago = pd.DataFrame( |
|
1617
|
|
|
columns=["scn_name", "temp_id", "p_set"], |
|
1618
|
|
|
index=neighbor_loads_t.columns, |
|
1619
|
|
|
) |
|
1620
|
|
|
neighbor_loads_t_etrago["scn_name"] = "eGon100RE" |
|
1621
|
|
|
neighbor_loads_t_etrago["temp_id"] = 1 |
|
1622
|
|
|
for i in neighbor_loads_t.columns: |
|
1623
|
|
|
neighbor_loads_t_etrago["p_set"][i] = neighbor_loads_t[ |
|
1624
|
|
|
i |
|
1625
|
|
|
].values.tolist() |
|
1626
|
|
|
|
|
1627
|
|
|
neighbor_loads_t_etrago.to_sql( |
|
1628
|
|
|
"egon_etrago_load_timeseries", |
|
1629
|
|
|
engine, |
|
1630
|
|
|
schema="grid", |
|
1631
|
|
|
if_exists="append", |
|
1632
|
|
|
index=True, |
|
1633
|
|
|
index_label="load_id", |
|
1634
|
|
|
) |
|
1635
|
|
|
|
|
1636
|
|
|
# writing neighboring link_t efficiency and p_max_pu to etrago tables |
|
1637
|
|
|
neighbor_link_t_etrago = pd.DataFrame( |
|
1638
|
|
|
columns=["scn_name", "temp_id", "p_max_pu", "efficiency"], |
|
1639
|
|
|
index=neighbor_eff_t.columns.to_list() + ev_p_max_pu.columns.to_list(), |
|
1640
|
|
|
) |
|
1641
|
|
|
neighbor_link_t_etrago["scn_name"] = "eGon100RE" |
|
1642
|
|
|
neighbor_link_t_etrago["temp_id"] = 1 |
|
1643
|
|
|
for i in neighbor_eff_t.columns: |
|
1644
|
|
|
neighbor_link_t_etrago["efficiency"][i] = neighbor_eff_t[ |
|
1645
|
|
|
i |
|
1646
|
|
|
].values.tolist() |
|
1647
|
|
|
for i in ev_p_max_pu.columns: |
|
1648
|
|
|
neighbor_link_t_etrago["p_max_pu"][i] = ev_p_max_pu[i].values.tolist() |
|
1649
|
|
|
|
|
1650
|
|
|
neighbor_link_t_etrago.to_sql( |
|
1651
|
|
|
"egon_etrago_link_timeseries", |
|
1652
|
|
|
engine, |
|
1653
|
|
|
schema="grid", |
|
1654
|
|
|
if_exists="append", |
|
1655
|
|
|
index=True, |
|
1656
|
|
|
index_label="link_id", |
|
1657
|
|
|
) |
|
1658
|
|
|
|
|
1659
|
|
|
# writing neighboring generator_t p_max_pu to etrago tables |
|
1660
|
|
|
neighbor_gens_t_etrago = pd.DataFrame( |
|
1661
|
|
|
columns=["scn_name", "temp_id", "p_max_pu"], |
|
1662
|
|
|
index=neighbor_gens_t.columns, |
|
1663
|
|
|
) |
|
1664
|
|
|
neighbor_gens_t_etrago["scn_name"] = "eGon100RE" |
|
1665
|
|
|
neighbor_gens_t_etrago["temp_id"] = 1 |
|
1666
|
|
|
for i in neighbor_gens_t.columns: |
|
1667
|
|
|
neighbor_gens_t_etrago["p_max_pu"][i] = neighbor_gens_t[ |
|
1668
|
|
|
i |
|
1669
|
|
|
].values.tolist() |
|
1670
|
|
|
|
|
1671
|
|
|
neighbor_gens_t_etrago.to_sql( |
|
1672
|
|
|
"egon_etrago_generator_timeseries", |
|
1673
|
|
|
engine, |
|
1674
|
|
|
schema="grid", |
|
1675
|
|
|
if_exists="append", |
|
1676
|
|
|
index=True, |
|
1677
|
|
|
index_label="generator_id", |
|
1678
|
|
|
) |
|
1679
|
|
|
|
|
1680
|
|
|
# writing neighboring stores_t e_min_pu to etrago tables |
|
1681
|
|
|
neighbor_stores_t_etrago = pd.DataFrame( |
|
1682
|
|
|
columns=["scn_name", "temp_id", "e_min_pu"], |
|
1683
|
|
|
index=neighbor_stores_t.columns, |
|
1684
|
|
|
) |
|
1685
|
|
|
neighbor_stores_t_etrago["scn_name"] = "eGon100RE" |
|
1686
|
|
|
neighbor_stores_t_etrago["temp_id"] = 1 |
|
1687
|
|
|
for i in neighbor_stores_t.columns: |
|
1688
|
|
|
neighbor_stores_t_etrago["e_min_pu"][i] = neighbor_stores_t[ |
|
1689
|
|
|
i |
|
1690
|
|
|
].values.tolist() |
|
1691
|
|
|
|
|
1692
|
|
|
neighbor_stores_t_etrago.to_sql( |
|
1693
|
|
|
"egon_etrago_store_timeseries", |
|
1694
|
|
|
engine, |
|
1695
|
|
|
schema="grid", |
|
1696
|
|
|
if_exists="append", |
|
1697
|
|
|
index=True, |
|
1698
|
|
|
index_label="store_id", |
|
1699
|
|
|
) |
|
1700
|
|
|
|
|
1701
|
|
|
# writing neighboring storage_units inflow to etrago tables |
|
1702
|
|
|
neighbor_storage_t_etrago = pd.DataFrame( |
|
1703
|
|
|
columns=["scn_name", "temp_id", "inflow"], |
|
1704
|
|
|
index=neighbor_storage_t.columns, |
|
1705
|
|
|
) |
|
1706
|
|
|
neighbor_storage_t_etrago["scn_name"] = "eGon100RE" |
|
1707
|
|
|
neighbor_storage_t_etrago["temp_id"] = 1 |
|
1708
|
|
|
for i in neighbor_storage_t.columns: |
|
1709
|
|
|
neighbor_storage_t_etrago["inflow"][i] = neighbor_storage_t[ |
|
1710
|
|
|
i |
|
1711
|
|
|
].values.tolist() |
|
1712
|
|
|
|
|
1713
|
|
|
neighbor_storage_t_etrago.to_sql( |
|
1714
|
|
|
"egon_etrago_storage_timeseries", |
|
1715
|
|
|
engine, |
|
1716
|
|
|
schema="grid", |
|
1717
|
|
|
if_exists="append", |
|
1718
|
|
|
index=True, |
|
1719
|
|
|
index_label="storage_id", |
|
1720
|
|
|
) |
|
1721
|
|
|
|
|
1722
|
|
|
# writing neighboring lines_t s_max_pu to etrago tables |
|
1723
|
|
|
if not network_solved.lines_t["s_max_pu"].empty: |
|
1724
|
|
|
neighbor_lines_t_etrago = pd.DataFrame( |
|
1725
|
|
|
columns=["scn_name", "s_max_pu"], index=neighbor_lines_t.columns |
|
1726
|
|
|
) |
|
1727
|
|
|
neighbor_lines_t_etrago["scn_name"] = "eGon100RE" |
|
1728
|
|
|
|
|
1729
|
|
|
for i in neighbor_lines_t.columns: |
|
1730
|
|
|
neighbor_lines_t_etrago["s_max_pu"][i] = neighbor_lines_t[ |
|
1731
|
|
|
i |
|
1732
|
|
|
].values.tolist() |
|
1733
|
|
|
|
|
1734
|
|
|
neighbor_lines_t_etrago.to_sql( |
|
1735
|
|
|
"egon_etrago_line_timeseries", |
|
1736
|
|
|
engine, |
|
1737
|
|
|
schema="grid", |
|
1738
|
|
|
if_exists="append", |
|
1739
|
|
|
index=True, |
|
1740
|
|
|
index_label="line_id", |
|
1741
|
|
|
) |
|
1742
|
|
|
|
|
1743
|
|
|
|
|
1744
|
|
View Code Duplication |
def prepared_network(planning_horizon=3): |
|
|
|
|
|
|
1745
|
|
|
if egon.data.config.settings()["egon-data"]["--run-pypsa-eur"]: |
|
1746
|
|
|
with open( |
|
1747
|
|
|
__path__[0] + "/datasets/pypsaeur/config_prepare.yaml", "r" |
|
1748
|
|
|
) as stream: |
|
1749
|
|
|
data_config = yaml.safe_load(stream) |
|
1750
|
|
|
|
|
1751
|
|
|
target_file = ( |
|
1752
|
|
|
Path(".") |
|
1753
|
|
|
/ "run-pypsa-eur" |
|
1754
|
|
|
/ "pypsa-eur" |
|
1755
|
|
|
/ "results" |
|
1756
|
|
|
/ data_config["run"]["name"] |
|
1757
|
|
|
/ "prenetworks" |
|
1758
|
|
|
/ f"base_s_{data_config['scenario']['clusters'][0]}" |
|
1759
|
|
|
f"_l{data_config['scenario']['ll'][0]}" |
|
1760
|
|
|
f"_{data_config['scenario']['opts'][0]}" |
|
1761
|
|
|
f"_{data_config['scenario']['sector_opts'][0]}" |
|
1762
|
|
|
f"_{data_config['scenario']['planning_horizons'][planning_horizon]}.nc" |
|
1763
|
|
|
) |
|
1764
|
|
|
|
|
1765
|
|
|
else: |
|
1766
|
|
|
target_file = ( |
|
1767
|
|
|
Path(".") |
|
1768
|
|
|
/ "data_bundle_egon_data" |
|
1769
|
|
|
/ "pypsa_eur" |
|
1770
|
|
|
/ "prenetworks" |
|
1771
|
|
|
/ "prenetwork_post-manipulate_pre-solve" |
|
1772
|
|
|
/ "base_s_39_lc1.25__cb40ex0-T-H-I-B-solar+p3-dist1_2045.nc" |
|
1773
|
|
|
) |
|
1774
|
|
|
|
|
1775
|
|
|
return pypsa.Network(target_file.absolute().as_posix()) |
|
1776
|
|
|
|
|
1777
|
|
|
|
|
1778
|
|
|
def overwrite_H2_pipeline_share(): |
|
1779
|
|
|
"""Overwrite retrofitted_CH4pipeline-to-H2pipeline_share value |
|
1780
|
|
|
|
|
1781
|
|
|
Overwrite retrofitted_CH4pipeline-to-H2pipeline_share in the |
|
1782
|
|
|
scenario parameter table if p-e-s is run. |
|
1783
|
|
|
This function write in the database and has no return. |
|
1784
|
|
|
|
|
1785
|
|
|
""" |
|
1786
|
|
|
scn_name = "eGon100RE" |
|
1787
|
|
|
# Select source and target from dataset configuration |
|
1788
|
|
|
target = egon.data.config.datasets()["pypsa-eur-sec"]["target"] |
|
1789
|
|
|
|
|
1790
|
|
|
n = read_network(planning_horizon=2045) |
|
1791
|
|
|
|
|
1792
|
|
|
H2_pipelines = n.links[n.links["carrier"] == "H2 pipeline retrofitted"] |
|
1793
|
|
|
CH4_pipelines = n.links[n.links["carrier"] == "gas pipeline"] |
|
1794
|
|
|
H2_pipes_share = np.mean( |
|
1795
|
|
|
[ |
|
1796
|
|
|
(i / j) |
|
1797
|
|
|
for i, j in zip( |
|
1798
|
|
|
H2_pipelines.p_nom_opt.to_list(), CH4_pipelines.p_nom.to_list() |
|
1799
|
|
|
) |
|
1800
|
|
|
] |
|
1801
|
|
|
) |
|
1802
|
|
|
logger.info( |
|
1803
|
|
|
"retrofitted_CH4pipeline-to-H2pipeline_share = " + str(H2_pipes_share) |
|
1804
|
|
|
) |
|
1805
|
|
|
|
|
1806
|
|
|
parameters = db.select_dataframe( |
|
1807
|
|
|
f""" |
|
1808
|
|
|
SELECT * |
|
1809
|
|
|
FROM {target['scenario_parameters']['schema']}.{target['scenario_parameters']['table']} |
|
1810
|
|
|
WHERE name = '{scn_name}' |
|
1811
|
|
|
""" |
|
1812
|
|
|
) |
|
1813
|
|
|
|
|
1814
|
|
|
gas_param = parameters.loc[0, "gas_parameters"] |
|
1815
|
|
|
gas_param["retrofitted_CH4pipeline-to-H2pipeline_share"] = H2_pipes_share |
|
1816
|
|
|
gas_param = json.dumps(gas_param) |
|
1817
|
|
|
|
|
1818
|
|
|
# Update data in db |
|
1819
|
|
|
db.execute_sql( |
|
1820
|
|
|
f""" |
|
1821
|
|
|
UPDATE {target['scenario_parameters']['schema']}.{target['scenario_parameters']['table']} |
|
1822
|
|
|
SET gas_parameters = '{gas_param}' |
|
1823
|
|
|
WHERE name = '{scn_name}'; |
|
1824
|
|
|
""" |
|
1825
|
|
|
) |
|
1826
|
|
|
|
|
1827
|
|
|
|
|
1828
|
|
|
def update_electrical_timeseries_germany(network): |
|
1829
|
|
|
"""Replace electrical demand time series in Germany with data from egon-data |
|
1830
|
|
|
|
|
1831
|
|
|
Parameters |
|
1832
|
|
|
---------- |
|
1833
|
|
|
network : pypsa.Network |
|
1834
|
|
|
Network including demand time series from pypsa-eur |
|
1835
|
|
|
|
|
1836
|
|
|
Returns |
|
1837
|
|
|
------- |
|
1838
|
|
|
network : pypsa.Network |
|
1839
|
|
|
Network including electrical demand time series in Germany from egon-data |
|
1840
|
|
|
|
|
1841
|
|
|
""" |
|
1842
|
|
|
year = network.year |
|
1843
|
|
|
skip = network.snapshot_weightings.objective.iloc[0].astype("int") |
|
1844
|
|
|
df = pd.read_csv( |
|
1845
|
|
|
"input-pypsa-eur-sec/electrical_demand_timeseries_DE_eGon100RE.csv" |
|
1846
|
|
|
) |
|
1847
|
|
|
|
|
1848
|
|
|
annual_demand = pd.Series(index=[2019, 2037]) |
|
1849
|
|
|
annual_demand_industry = pd.Series(index=[2019, 2037]) |
|
1850
|
|
|
# Define values from status2019 for interpolation |
|
1851
|
|
|
# Residential and service (in TWh) |
|
1852
|
|
|
annual_demand.loc[2019] = 124.71 + 143.26 |
|
1853
|
|
|
# Industry (in TWh) |
|
1854
|
|
|
annual_demand_industry.loc[2019] = 241.925 |
|
1855
|
|
|
|
|
1856
|
|
|
# Define values from NEP 2023 scenario B 2037 for interpolation |
|
1857
|
|
|
# Residential and service (in TWh) |
|
1858
|
|
|
annual_demand.loc[2037] = 104 + 153.1 |
|
1859
|
|
|
# Industry (in TWh) |
|
1860
|
|
|
annual_demand_industry.loc[2037] = 334.0 |
|
1861
|
|
|
|
|
1862
|
|
|
# Set interpolated demands for years between 2019 and 2045 |
|
1863
|
|
|
if year < 2037: |
|
1864
|
|
|
# Calculate annual demands for year by linear interpolating between |
|
1865
|
|
|
# 2019 and 2037 |
|
1866
|
|
|
# Done seperatly for industry and residential and service to fit |
|
1867
|
|
|
# to pypsa-eurs structure |
|
1868
|
|
|
annual_rate = (annual_demand.loc[2037] - annual_demand.loc[2019]) / ( |
|
1869
|
|
|
2037 - 2019 |
|
1870
|
|
|
) |
|
1871
|
|
|
annual_demand_year = annual_demand.loc[2019] + annual_rate * ( |
|
1872
|
|
|
year - 2019 |
|
1873
|
|
|
) |
|
1874
|
|
|
|
|
1875
|
|
|
annual_rate_industry = ( |
|
1876
|
|
|
annual_demand_industry.loc[2037] - annual_demand_industry.loc[2019] |
|
1877
|
|
|
) / (2037 - 2019) |
|
1878
|
|
|
annual_demand_year_industry = annual_demand_industry.loc[ |
|
1879
|
|
|
2019 |
|
1880
|
|
|
] + annual_rate_industry * (year - 2019) |
|
1881
|
|
|
|
|
1882
|
|
|
# Scale time series for 100% scenario with the annual demands |
|
1883
|
|
|
# The shape of the curve is taken from the 100% scenario since the |
|
1884
|
|
|
# same weather and calender year is used there |
|
1885
|
|
|
network.loads_t.p_set.loc[:, "DE0 0"] = ( |
|
1886
|
|
|
df["residential_and_service"].loc[::skip] |
|
1887
|
|
|
/ df["residential_and_service"].sum() |
|
1888
|
|
|
* annual_demand_year |
|
1889
|
|
|
* 1e6 |
|
1890
|
|
|
).values |
|
1891
|
|
|
|
|
1892
|
|
|
network.loads_t.p_set.loc[:, "DE0 0 industry electricity"] = ( |
|
1893
|
|
|
df["industry"].loc[::skip] |
|
1894
|
|
|
/ df["industry"].sum() |
|
1895
|
|
|
* annual_demand_year_industry |
|
1896
|
|
|
* 1e6 |
|
1897
|
|
|
).values |
|
1898
|
|
|
|
|
1899
|
|
|
elif year == 2045: |
|
1900
|
|
|
network.loads_t.p_set.loc[:, "DE0 0"] = df[ |
|
1901
|
|
|
"residential_and_service" |
|
1902
|
|
|
].loc[::skip] |
|
1903
|
|
|
|
|
1904
|
|
|
network.loads_t.p_set.loc[:, "DE0 0 industry electricity"] = ( |
|
1905
|
|
|
df["industry"].loc[::skip].values |
|
1906
|
|
|
) |
|
1907
|
|
|
|
|
1908
|
|
|
else: |
|
1909
|
|
|
print( |
|
1910
|
|
|
"Scaling not implemented for years between 2037 and 2045 and beyond." |
|
1911
|
|
|
) |
|
1912
|
|
|
return |
|
1913
|
|
|
|
|
1914
|
|
|
network.loads.loc["DE0 0 industry electricity", "p_set"] = 0.0 |
|
1915
|
|
|
|
|
1916
|
|
|
return network |
|
1917
|
|
|
|
|
1918
|
|
|
|
|
1919
|
|
|
def geothermal_district_heating(network): |
|
1920
|
|
|
"""Add the option to build geothermal power plants in district heating in Germany |
|
1921
|
|
|
|
|
1922
|
|
|
Parameters |
|
1923
|
|
|
---------- |
|
1924
|
|
|
network : pypsa.Network |
|
1925
|
|
|
Network from pypsa-eur without geothermal generators |
|
1926
|
|
|
|
|
1927
|
|
|
Returns |
|
1928
|
|
|
------- |
|
1929
|
|
|
network : pypsa.Network |
|
1930
|
|
|
Updated network with geothermal generators |
|
1931
|
|
|
|
|
1932
|
|
|
""" |
|
1933
|
|
|
|
|
1934
|
|
|
costs_and_potentials = pd.read_csv( |
|
1935
|
|
|
"input-pypsa-eur-sec/geothermal_potential_germany.csv" |
|
1936
|
|
|
) |
|
1937
|
|
|
|
|
1938
|
|
|
network.add("Carrier", "urban central geo thermal") |
|
1939
|
|
|
|
|
1940
|
|
|
for i, row in costs_and_potentials.iterrows(): |
|
1941
|
|
|
# Set lifetime of geothermal plant to 30 years based on: |
|
1942
|
|
|
# Ableitung eines Korridors für den Ausbau der erneuerbaren Wärme im Gebäudebereich, |
|
1943
|
|
|
# Beuth Hochschule für Technik, Berlin ifeu – Institut für Energie- und Umweltforschung Heidelberg GmbH |
|
1944
|
|
|
# Februar 2017 |
|
1945
|
|
|
lifetime_geothermal = 30 |
|
1946
|
|
|
|
|
1947
|
|
|
network.add( |
|
1948
|
|
|
"Generator", |
|
1949
|
|
|
f"DE0 0 urban central geo thermal {i}", |
|
1950
|
|
|
bus="DE0 0 urban central heat", |
|
1951
|
|
|
carrier="urban central geo thermal", |
|
1952
|
|
|
p_nom_extendable=True, |
|
1953
|
|
|
p_nom_max=row["potential [MW]"], |
|
1954
|
|
|
capital_cost=annualize_capital_costs( |
|
1955
|
|
|
row["cost [EUR/kW]"] * 1e6, lifetime_geothermal, 0.07 |
|
1956
|
|
|
), |
|
1957
|
|
|
) |
|
1958
|
|
|
return network |
|
1959
|
|
|
|
|
1960
|
|
|
|
|
1961
|
|
|
def h2_overground_stores(network): |
|
1962
|
|
|
"""Add hydrogen overground stores to each hydrogen node |
|
1963
|
|
|
|
|
1964
|
|
|
In pypsa-eur, only countries without the potential of underground hydrogen |
|
1965
|
|
|
stores have to option to build overground hydrogen tanks. |
|
1966
|
|
|
Overground stores are more expensive, but are not resitcted by the geological |
|
1967
|
|
|
potential. To allow higher hydrogen store capacities in each country, optional |
|
1968
|
|
|
hydogen overground tanks are also added to node with a potential for |
|
1969
|
|
|
underground stores. |
|
1970
|
|
|
|
|
1971
|
|
|
Parameters |
|
1972
|
|
|
---------- |
|
1973
|
|
|
network : pypsa.Network |
|
1974
|
|
|
Network without hydrogen overground stores at each hydrogen node |
|
1975
|
|
|
|
|
1976
|
|
|
Returns |
|
1977
|
|
|
------- |
|
1978
|
|
|
network : pypsa.Network |
|
1979
|
|
|
Network with hydrogen overground stores at each hydrogen node |
|
1980
|
|
|
|
|
1981
|
|
|
""" |
|
1982
|
|
|
|
|
1983
|
|
|
underground_h2_stores = network.stores[ |
|
1984
|
|
|
(network.stores.carrier == "H2 Store") |
|
1985
|
|
|
& (network.stores.e_nom_max != np.inf) |
|
1986
|
|
|
] |
|
1987
|
|
|
|
|
1988
|
|
|
overground_h2_stores = network.stores[ |
|
1989
|
|
|
(network.stores.carrier == "H2 Store") |
|
1990
|
|
|
& (network.stores.e_nom_max == np.inf) |
|
1991
|
|
|
] |
|
1992
|
|
|
|
|
1993
|
|
|
network.madd( |
|
1994
|
|
|
"Store", |
|
1995
|
|
|
underground_h2_stores.bus + " overground Store", |
|
1996
|
|
|
bus=underground_h2_stores.bus.values, |
|
1997
|
|
|
e_nom_extendable=True, |
|
1998
|
|
|
e_cyclic=True, |
|
1999
|
|
|
carrier="H2 Store", |
|
2000
|
|
|
capital_cost=overground_h2_stores.capital_cost.mean(), |
|
2001
|
|
|
) |
|
2002
|
|
|
|
|
2003
|
|
|
return network |
|
2004
|
|
|
|
|
2005
|
|
|
|
|
2006
|
|
|
def update_heat_timeseries_germany(network): |
|
2007
|
|
|
network.loads |
|
2008
|
|
|
# Import heat demand curves for Germany from eGon-data |
|
2009
|
|
|
df_egon_heat_demand = pd.read_csv( |
|
2010
|
|
|
"input-pypsa-eur-sec/heat_demand_timeseries_DE_eGon100RE.csv" |
|
2011
|
|
|
) |
|
2012
|
|
|
|
|
2013
|
|
|
# Replace heat demand curves in Germany with values from eGon-data |
|
2014
|
|
|
network.loads_t.p_set.loc[:, "DE1 0 rural heat"] = ( |
|
2015
|
|
|
df_egon_heat_demand.loc[:, "residential rural"].values |
|
2016
|
|
|
+ df_egon_heat_demand.loc[:, "service rural"].values |
|
2017
|
|
|
) |
|
2018
|
|
|
|
|
2019
|
|
|
network.loads_t.p_set.loc[:, "DE1 0 urban central heat"] = ( |
|
2020
|
|
|
df_egon_heat_demand.loc[:, "urban central"].values |
|
2021
|
|
|
) |
|
2022
|
|
|
|
|
2023
|
|
|
return network |
|
2024
|
|
|
|
|
2025
|
|
|
|
|
2026
|
|
|
def drop_biomass(network): |
|
2027
|
|
|
carrier = "biomass" |
|
2028
|
|
|
|
|
2029
|
|
|
for c in network.iterate_components(): |
|
2030
|
|
|
network.mremove(c.name, c.df[c.df.index.str.contains(carrier)].index) |
|
2031
|
|
|
return network |
|
2032
|
|
|
|
|
2033
|
|
|
|
|
2034
|
|
|
def postprocessing_biomass_2045(): |
|
2035
|
|
|
|
|
2036
|
|
|
network = read_network(planning_horizon=2045) |
|
2037
|
|
|
network = drop_biomass(network) |
|
2038
|
|
|
|
|
2039
|
|
|
with open( |
|
2040
|
|
|
__path__[0] + "/datasets/pypsaeur/config_solve.yaml", "r" |
|
2041
|
|
|
) as stream: |
|
2042
|
|
|
data_config = yaml.safe_load(stream) |
|
2043
|
|
|
|
|
2044
|
|
|
target_file = ( |
|
2045
|
|
|
Path(".") |
|
2046
|
|
|
/ "run-pypsa-eur" |
|
2047
|
|
|
/ "pypsa-eur" |
|
2048
|
|
|
/ "results" |
|
2049
|
|
|
/ data_config["run"]["name"] |
|
2050
|
|
|
/ "postnetworks" |
|
2051
|
|
|
/ f"base_s_{data_config['scenario']['clusters'][0]}" |
|
2052
|
|
|
f"_l{data_config['scenario']['ll'][0]}" |
|
2053
|
|
|
f"_{data_config['scenario']['opts'][0]}" |
|
2054
|
|
|
f"_{data_config['scenario']['sector_opts'][0]}" |
|
2055
|
|
|
f"_{data_config['scenario']['planning_horizons'][3]}.nc" |
|
2056
|
|
|
) |
|
2057
|
|
|
|
|
2058
|
|
|
network.export_to_netcdf(target_file) |
|
2059
|
|
|
|
|
2060
|
|
|
|
|
2061
|
|
|
def drop_urban_decentral_heat(network): |
|
2062
|
|
|
carrier = "urban decentral heat" |
|
2063
|
|
|
|
|
2064
|
|
|
# Add urban decentral heat demand to urban central heat demand |
|
2065
|
|
|
for country in network.loads.loc[ |
|
2066
|
|
|
network.loads.carrier == carrier, "bus" |
|
2067
|
|
|
].str[:5]: |
|
2068
|
|
|
|
|
2069
|
|
|
if f"{country} {carrier}" in network.loads_t.p_set.columns: |
|
2070
|
|
|
network.loads_t.p_set[ |
|
2071
|
|
|
f"{country} rural heat" |
|
2072
|
|
|
] += network.loads_t.p_set[f"{country} {carrier}"] |
|
2073
|
|
|
else: |
|
2074
|
|
|
print( |
|
2075
|
|
|
f"""No time series available for {country} {carrier}. |
|
2076
|
|
|
Using static p_set.""" |
|
2077
|
|
|
) |
|
2078
|
|
|
|
|
2079
|
|
|
network.loads_t.p_set[ |
|
2080
|
|
|
f"{country} rural heat" |
|
2081
|
|
|
] += network.loads.loc[f"{country} {carrier}", "p_set"] |
|
2082
|
|
|
|
|
2083
|
|
|
# In some cases low-temperature heat for industry is connected to the urban |
|
2084
|
|
|
# decentral heat bus since there is no urban central heat bus. |
|
2085
|
|
|
# These loads are connected to the representatiive rural heat bus: |
|
2086
|
|
|
network.loads.loc[ |
|
2087
|
|
|
(network.loads.bus.str.contains(carrier)) |
|
2088
|
|
|
& (~network.loads.carrier.str.contains(carrier.replace(" heat", ""))), |
|
2089
|
|
|
"bus", |
|
2090
|
|
|
] = network.loads.loc[ |
|
2091
|
|
|
(network.loads.bus.str.contains(carrier)) |
|
2092
|
|
|
& (~network.loads.carrier.str.contains(carrier.replace(" heat", ""))), |
|
2093
|
|
|
"bus", |
|
2094
|
|
|
].str.replace( |
|
2095
|
|
|
"urban decentral", "rural" |
|
2096
|
|
|
) |
|
2097
|
|
|
|
|
2098
|
|
|
# Drop componentents attached to urban decentral heat |
|
2099
|
|
|
for c in network.iterate_components(): |
|
2100
|
|
|
network.mremove( |
|
2101
|
|
|
c.name, c.df[c.df.index.str.contains("urban decentral")].index |
|
2102
|
|
|
) |
|
2103
|
|
|
|
|
2104
|
|
|
return network |
|
2105
|
|
|
|
|
2106
|
|
|
|
|
2107
|
|
|
def district_heating_shares(network): |
|
2108
|
|
|
df = pd.read_csv( |
|
2109
|
|
|
"data_bundle_powerd_data/district_heating_shares_egon.csv" |
|
2110
|
|
|
).set_index("country_code") |
|
2111
|
|
|
|
|
2112
|
|
|
heat_demand_per_country = ( |
|
2113
|
|
|
network.loads_t.p_set[ |
|
2114
|
|
|
network.loads[ |
|
2115
|
|
|
(network.loads.carrier.str.contains("heat")) |
|
2116
|
|
|
& network.loads.index.isin(network.loads_t.p_set.columns) |
|
2117
|
|
|
].index |
|
2118
|
|
|
] |
|
2119
|
|
|
.groupby(network.loads.bus.str[:5], axis=1) |
|
2120
|
|
|
.sum() |
|
2121
|
|
|
) |
|
2122
|
|
|
|
|
2123
|
|
|
for country in heat_demand_per_country.columns: |
|
2124
|
|
|
network.loads_t.p_set[f"{country} urban central heat"] = ( |
|
2125
|
|
|
heat_demand_per_country.loc[:, country].mul( |
|
2126
|
|
|
df.loc[country[:2]].values[0] |
|
2127
|
|
|
) |
|
2128
|
|
|
) |
|
2129
|
|
|
network.loads_t.p_set[f"{country} rural heat"] = ( |
|
2130
|
|
|
heat_demand_per_country.loc[:, country].mul( |
|
2131
|
|
|
(1 - df.loc[country[:2]].values[0]) |
|
2132
|
|
|
) |
|
2133
|
|
|
) |
|
2134
|
|
|
|
|
2135
|
|
|
# Drop links with undefined buses or carrier |
|
2136
|
|
|
network.mremove( |
|
2137
|
|
|
"Link", |
|
2138
|
|
|
network.links[ |
|
2139
|
|
|
~network.links.bus0.isin(network.buses.index.values) |
|
2140
|
|
|
].index, |
|
2141
|
|
|
) |
|
2142
|
|
|
network.mremove( |
|
2143
|
|
|
"Link", |
|
2144
|
|
|
network.links[network.links.carrier == ""].index, |
|
2145
|
|
|
) |
|
2146
|
|
|
|
|
2147
|
|
|
return network |
|
2148
|
|
|
|
|
2149
|
|
|
|
|
2150
|
|
|
def drop_new_gas_pipelines(network): |
|
2151
|
|
|
network.mremove( |
|
2152
|
|
|
"Link", |
|
2153
|
|
|
network.links[ |
|
2154
|
|
|
network.links.index.str.contains("gas pipeline new") |
|
2155
|
|
|
].index, |
|
2156
|
|
|
) |
|
2157
|
|
|
|
|
2158
|
|
|
return network |
|
2159
|
|
|
|
|
2160
|
|
|
|
|
2161
|
|
|
def drop_fossil_gas(network): |
|
2162
|
|
|
network.mremove( |
|
2163
|
|
|
"Generator", |
|
2164
|
|
|
network.generators[network.generators.carrier == "gas"].index, |
|
2165
|
|
|
) |
|
2166
|
|
|
|
|
2167
|
|
|
return network |
|
2168
|
|
|
|
|
2169
|
|
|
|
|
2170
|
|
|
def drop_conventional_power_plants(network): |
|
2171
|
|
|
|
|
2172
|
|
|
# Drop lignite and coal power plants in Germany |
|
2173
|
|
|
network.mremove( |
|
2174
|
|
|
"Link", |
|
2175
|
|
|
network.links[ |
|
2176
|
|
|
(network.links.carrier.isin(["coal", "lignite"])) |
|
2177
|
|
|
& (network.links.bus1.str.startswith("DE")) |
|
2178
|
|
|
].index, |
|
2179
|
|
|
) |
|
2180
|
|
|
|
|
2181
|
|
|
return network |
|
2182
|
|
|
|
|
2183
|
|
|
|
|
2184
|
|
|
def rual_heat_technologies(network): |
|
2185
|
|
|
network.mremove( |
|
2186
|
|
|
"Link", |
|
2187
|
|
|
network.links[ |
|
2188
|
|
|
network.links.index.str.contains("rural gas boiler") |
|
2189
|
|
|
].index, |
|
2190
|
|
|
) |
|
2191
|
|
|
|
|
2192
|
|
|
network.mremove( |
|
2193
|
|
|
"Generator", |
|
2194
|
|
|
network.generators[ |
|
2195
|
|
|
network.generators.carrier.str.contains("rural solar thermal") |
|
2196
|
|
|
].index, |
|
2197
|
|
|
) |
|
2198
|
|
|
|
|
2199
|
|
|
return network |
|
2200
|
|
|
|
|
2201
|
|
|
|
|
2202
|
|
|
def coal_exit_D(): |
|
2203
|
|
|
|
|
2204
|
|
|
df = pd.read_csv( |
|
2205
|
|
|
"run-pypsa-eur/pypsa-eur/resources/powerplants_s_39.csv", index_col=0 |
|
2206
|
|
|
) |
|
2207
|
|
|
df_de_coal = df[ |
|
2208
|
|
|
(df.Country == "DE") |
|
2209
|
|
|
& ((df.Fueltype == "Lignite") | (df.Fueltype == "Hard Coal")) |
|
2210
|
|
|
] |
|
2211
|
|
|
df_de_coal.loc[df_de_coal.DateOut.values >= 2035, "DateOut"] = 2034 |
|
2212
|
|
|
df.loc[df_de_coal.index] = df_de_coal |
|
2213
|
|
|
|
|
2214
|
|
|
df.to_csv("run-pypsa-eur/pypsa-eur/resources/powerplants_s_39.csv") |
|
2215
|
|
|
|
|
2216
|
|
|
|
|
2217
|
|
|
def offwind_potential_D(network, capacity_per_sqkm=4): |
|
2218
|
|
|
|
|
2219
|
|
|
offwind_ac_factor = 1942 |
|
2220
|
|
|
offwind_dc_factor = 10768 |
|
2221
|
|
|
offwind_float_factor = 134 |
|
2222
|
|
|
|
|
2223
|
|
|
# set p_nom_max for German offshore with respect to capacity_per_sqkm = 4 instead of default 2 (which is applied for the rest of Europe) |
|
2224
|
|
|
network.generators.loc[ |
|
2225
|
|
|
(network.generators.bus == "DE0 0") |
|
2226
|
|
|
& (network.generators.carrier == "offwind-ac"), |
|
2227
|
|
|
"p_nom_max", |
|
2228
|
|
|
] = ( |
|
2229
|
|
|
offwind_ac_factor * capacity_per_sqkm |
|
2230
|
|
|
) |
|
2231
|
|
|
network.generators.loc[ |
|
2232
|
|
|
(network.generators.bus == "DE0 0") |
|
2233
|
|
|
& (network.generators.carrier == "offwind-dc"), |
|
2234
|
|
|
"p_nom_max", |
|
2235
|
|
|
] = ( |
|
2236
|
|
|
offwind_dc_factor * capacity_per_sqkm |
|
2237
|
|
|
) |
|
2238
|
|
|
network.generators.loc[ |
|
2239
|
|
|
(network.generators.bus == "DE0 0") |
|
2240
|
|
|
& (network.generators.carrier == "offwind-float"), |
|
2241
|
|
|
"p_nom_max", |
|
2242
|
|
|
] = ( |
|
2243
|
|
|
offwind_float_factor * capacity_per_sqkm |
|
2244
|
|
|
) |
|
2245
|
|
|
|
|
2246
|
|
|
return network |
|
2247
|
|
|
|
|
2248
|
|
|
|
|
2249
|
|
|
def additional_grid_expansion_2045(network): |
|
2250
|
|
|
|
|
2251
|
|
|
network.global_constraints.loc["lc_limit", "constant"] *= 1.05 |
|
2252
|
|
|
|
|
2253
|
|
|
return network |
|
2254
|
|
|
|
|
2255
|
|
|
|
|
2256
|
|
|
def execute(): |
|
2257
|
|
|
if egon.data.config.settings()["egon-data"]["--run-pypsa-eur"]: |
|
2258
|
|
|
with open( |
|
2259
|
|
|
__path__[0] + "/datasets/pypsaeur/config.yaml", "r" |
|
2260
|
|
|
) as stream: |
|
2261
|
|
|
data_config = yaml.safe_load(stream) |
|
2262
|
|
|
|
|
2263
|
|
|
if data_config["foresight"] == "myopic": |
|
2264
|
|
|
|
|
2265
|
|
|
print("Adjusting scenarios on the myopic pathway...") |
|
2266
|
|
|
|
|
2267
|
|
|
coal_exit_D() |
|
2268
|
|
|
|
|
2269
|
|
|
networks = pd.Series() |
|
2270
|
|
|
|
|
2271
|
|
|
for i in range( |
|
2272
|
|
|
0, len(data_config["scenario"]["planning_horizons"]) |
|
2273
|
|
|
): |
|
2274
|
|
|
nc_file = pd.Series( |
|
2275
|
|
|
f"base_s_{data_config['scenario']['clusters'][0]}" |
|
2276
|
|
|
f"_l{data_config['scenario']['ll'][0]}" |
|
2277
|
|
|
f"_{data_config['scenario']['opts'][0]}" |
|
2278
|
|
|
f"_{data_config['scenario']['sector_opts'][0]}" |
|
2279
|
|
|
f"_{data_config['scenario']['planning_horizons'][i]}.nc" |
|
2280
|
|
|
) |
|
2281
|
|
|
networks = networks._append(nc_file) |
|
2282
|
|
|
|
|
2283
|
|
|
scn_path = pd.DataFrame( |
|
2284
|
|
|
index=["2025", "2030", "2035", "2045"], |
|
2285
|
|
|
columns=["prenetwork", "functions"], |
|
2286
|
|
|
) |
|
2287
|
|
|
|
|
2288
|
|
|
for year in scn_path.index: |
|
2289
|
|
|
scn_path.at[year, "prenetwork"] = networks[ |
|
2290
|
|
|
networks.str.contains(year) |
|
2291
|
|
|
].values |
|
2292
|
|
|
|
|
2293
|
|
|
for year in ["2025", "2030", "2035"]: |
|
2294
|
|
|
scn_path.loc[year, "functions"] = [ |
|
2295
|
|
|
# drop_urban_decentral_heat, |
|
2296
|
|
|
update_electrical_timeseries_germany, |
|
2297
|
|
|
geothermal_district_heating, |
|
2298
|
|
|
h2_overground_stores, |
|
2299
|
|
|
drop_new_gas_pipelines, |
|
2300
|
|
|
offwind_potential_D, |
|
2301
|
|
|
] |
|
2302
|
|
|
|
|
2303
|
|
|
scn_path.loc["2045", "functions"] = [ |
|
2304
|
|
|
drop_biomass, |
|
2305
|
|
|
# drop_urban_decentral_heat, |
|
2306
|
|
|
update_electrical_timeseries_germany, |
|
2307
|
|
|
geothermal_district_heating, |
|
2308
|
|
|
h2_overground_stores, |
|
2309
|
|
|
drop_new_gas_pipelines, |
|
2310
|
|
|
drop_fossil_gas, |
|
2311
|
|
|
offwind_potential_D, |
|
2312
|
|
|
additional_grid_expansion_2045, |
|
2313
|
|
|
# drop_conventional_power_plants, |
|
2314
|
|
|
# rual_heat_technologies, #To be defined |
|
2315
|
|
|
] |
|
2316
|
|
|
|
|
2317
|
|
|
network_path = ( |
|
2318
|
|
|
Path(".") |
|
2319
|
|
|
/ "run-pypsa-eur" |
|
2320
|
|
|
/ "pypsa-eur" |
|
2321
|
|
|
/ "results" |
|
2322
|
|
|
/ data_config["run"]["name"] |
|
2323
|
|
|
/ "prenetworks" |
|
2324
|
|
|
) |
|
2325
|
|
|
|
|
2326
|
|
|
for scn in scn_path.index: |
|
2327
|
|
|
path = network_path / scn_path.at[scn, "prenetwork"] |
|
2328
|
|
|
network = pypsa.Network(path) |
|
2329
|
|
|
network.year = int(scn) |
|
2330
|
|
|
for manipulator in scn_path.at[scn, "functions"]: |
|
2331
|
|
|
network = manipulator(network) |
|
2332
|
|
|
network.export_to_netcdf(path) |
|
2333
|
|
|
|
|
2334
|
|
|
elif (data_config["foresight"] == "overnight") & ( |
|
2335
|
|
|
int(data_config["scenario"]["planning_horizons"][0]) > 2040 |
|
2336
|
|
|
): |
|
2337
|
|
|
|
|
2338
|
|
|
print("Adjusting overnight long-term scenario...") |
|
2339
|
|
|
|
|
2340
|
|
|
network_path = ( |
|
2341
|
|
|
Path(".") |
|
2342
|
|
|
/ "run-pypsa-eur" |
|
2343
|
|
|
/ "pypsa-eur" |
|
2344
|
|
|
/ "results" |
|
2345
|
|
|
/ data_config["run"]["name"] |
|
2346
|
|
|
/ "prenetworks" |
|
2347
|
|
|
/ f"elec_s_{data_config['scenario']['clusters'][0]}" |
|
2348
|
|
|
f"_l{data_config['scenario']['ll'][0]}" |
|
2349
|
|
|
f"_{data_config['scenario']['opts'][0]}" |
|
2350
|
|
|
f"_{data_config['scenario']['sector_opts'][0]}" |
|
2351
|
|
|
f"_{data_config['scenario']['planning_horizons'][0]}.nc" |
|
2352
|
|
|
) |
|
2353
|
|
|
|
|
2354
|
|
|
network = pypsa.Network(network_path) |
|
2355
|
|
|
|
|
2356
|
|
|
network = drop_biomass(network) |
|
2357
|
|
|
|
|
2358
|
|
|
network = drop_urban_decentral_heat(network) |
|
2359
|
|
|
|
|
2360
|
|
|
network = district_heating_shares(network) |
|
2361
|
|
|
|
|
2362
|
|
|
network = update_heat_timeseries_germany(network) |
|
2363
|
|
|
|
|
2364
|
|
|
network = update_electrical_timeseries_germany(network) |
|
2365
|
|
|
|
|
2366
|
|
|
network = geothermal_district_heating(network) |
|
2367
|
|
|
|
|
2368
|
|
|
network = h2_overground_stores(network) |
|
2369
|
|
|
|
|
2370
|
|
|
network = drop_new_gas_pipelines(network) |
|
2371
|
|
|
|
|
2372
|
|
|
network = drop_fossil_gas(network) |
|
2373
|
|
|
|
|
2374
|
|
|
network = rual_heat_technologies(network) |
|
2375
|
|
|
|
|
2376
|
|
|
network.export_to_netcdf(network_path) |
|
2377
|
|
|
|
|
2378
|
|
|
else: |
|
2379
|
|
|
print( |
|
2380
|
|
|
f"""Adjustments on prenetworks are not implemented for |
|
2381
|
|
|
foresight option {data_config['foresight']} and |
|
2382
|
|
|
year int(data_config['scenario']['planning_horizons'][0]. |
|
2383
|
|
|
Please check the pypsaeur.execute function. |
|
2384
|
|
|
""" |
|
2385
|
|
|
) |
|
2386
|
|
|
else: |
|
2387
|
|
|
print("Pypsa-eur is not executed due to the settings of egon-data") |
|
2388
|
|
|
|