| Total Complexity | 68 |
| Total Lines | 1171 |
| Duplicated Lines | 5.64 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like solph.flows._investment_flow_block often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 2 | |||
| 3 | """Creating sets, variables, constraints and parts of the objective function |
||
| 4 | for Flow objects with investment but without nonconvex option. |
||
| 5 | |||
| 6 | SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
||
| 7 | SPDX-FileCopyrightText: Simon Hilpert |
||
| 8 | SPDX-FileCopyrightText: Cord Kaldemeyer |
||
| 9 | SPDX-FileCopyrightText: Patrik Schönfeldt |
||
| 10 | SPDX-FileCopyrightText: Birgit Schachler |
||
| 11 | SPDX-FileCopyrightText: jnnr |
||
| 12 | SPDX-FileCopyrightText: jmloenneberga |
||
| 13 | SPDX-FileCopyrightText: Johannes Kochems |
||
| 14 | |||
| 15 | SPDX-License-Identifier: MIT |
||
| 16 | |||
| 17 | """ |
||
| 18 | from warnings import warn |
||
| 19 | |||
| 20 | import numpy as np |
||
| 21 | from oemof.tools import debugging |
||
| 22 | from oemof.tools import economics |
||
| 23 | from pyomo.core import Binary |
||
| 24 | from pyomo.core import BuildAction |
||
| 25 | from pyomo.core import Constraint |
||
| 26 | from pyomo.core import Expression |
||
| 27 | from pyomo.core import NonNegativeReals |
||
| 28 | from pyomo.core import Set |
||
| 29 | from pyomo.core import Var |
||
| 30 | from pyomo.core.base.block import ScalarBlock |
||
| 31 | |||
| 32 | from oemof.solph._plumbing import valid_sequence |
||
| 33 | |||
| 34 | |||
| 35 | class InvestmentFlowBlock(ScalarBlock): |
||
| 36 | r"""Block for all flows with :attr:`Investment` being not None. |
||
| 37 | |||
| 38 | .. automethod:: _create_constraints |
||
| 39 | .. automethod:: _create_variables |
||
| 40 | .. automethod:: _create_sets |
||
| 41 | |||
| 42 | .. automethod:: _objective_expression |
||
| 43 | |||
| 44 | See :class:`oemof.solph.options.Investment` for all parameters of the |
||
| 45 | *Investment* class. |
||
| 46 | |||
| 47 | See :class:`oemof.solph.flows._simple_flow_block.SimpleFlowBlock` |
||
| 48 | for all parameters of the *SimpleFlowBlock* class. |
||
| 49 | |||
| 50 | The overall summed cost expressions for all *InvestmentFlowBlock* objects |
||
| 51 | can be accessed by |
||
| 52 | |||
| 53 | * :attr:`om.InvestmentFlowBlock.investment_costs`, |
||
| 54 | * :attr:`om.InvestmentFlowBlock.fixed_costs` and |
||
| 55 | * :attr:`om.InvestmentFlowBlock.costs`. |
||
| 56 | |||
| 57 | Their values after optimization can be retrieved by |
||
| 58 | |||
| 59 | * :meth:`om.InvestmentFlowBlock.investment_costs`, |
||
| 60 | * :attr:`om.InvestmentFlowBlock.period_investment_costs` (yielding a dict |
||
| 61 | keyed by periods); note: this is not a Pyomo expression, but calculated, |
||
| 62 | * :meth:`om.InvestmentFlowBlock.fixed_costs` and |
||
| 63 | * :meth:`om.InvestmentFlowBlock.costs`. |
||
| 64 | |||
| 65 | Note |
||
| 66 | ---- |
||
| 67 | In case of a nonconvex investment flow (:attr:`nonconvex=True`), |
||
| 68 | the existing flow capacity :math:`P_{exist}` needs to be zero. |
||
| 69 | |||
| 70 | Note |
||
| 71 | ---- |
||
| 72 | See also :class:`~oemof.solph.flows._flow.Flow`, |
||
| 73 | :class:`~oemof.solph.flows._simple_flow_block.SimpleFlowBlock` and |
||
| 74 | :class:`~oemof.solph._options.Investment` |
||
| 75 | |||
| 76 | """ # noqa: E501 |
||
| 77 | |||
| 78 | def __init__(self, *args, **kwargs): |
||
| 79 | super().__init__(*args, **kwargs) |
||
| 80 | |||
| 81 | def _create(self, group=None): |
||
| 82 | r"""Creates sets, variables and constraints for SimpleFlowBlock |
||
| 83 | with investment attribute of type class:`.Investment`. |
||
| 84 | |||
| 85 | Parameters |
||
| 86 | ---------- |
||
| 87 | group : list |
||
| 88 | List containing tuples containing flow (f) objects that have an |
||
| 89 | attribute investment and the associated source (s) and target (t) |
||
| 90 | of flow e.g. groups=[(s1, t1, f1), (s2, t2, f2),..] |
||
| 91 | """ |
||
| 92 | if group is None: |
||
| 93 | return None |
||
| 94 | |||
| 95 | self._create_sets(group) |
||
| 96 | self._create_variables(group) |
||
| 97 | self._create_constraints() |
||
| 98 | |||
| 99 | def _create_sets(self, group): |
||
| 100 | """ |
||
| 101 | Creates all sets for investment flows. |
||
| 102 | """ |
||
| 103 | self.INVESTFLOWS = Set(initialize=[(g[0], g[1]) for g in group]) |
||
| 104 | |||
| 105 | self.CONVEX_INVESTFLOWS = Set( |
||
| 106 | initialize=[ |
||
| 107 | (g[0], g[1]) |
||
| 108 | for g in group |
||
| 109 | if g[2].investment.nonconvex is False |
||
| 110 | ] |
||
| 111 | ) |
||
| 112 | |||
| 113 | self.NON_CONVEX_INVESTFLOWS = Set( |
||
| 114 | initialize=[ |
||
| 115 | (g[0], g[1]) |
||
| 116 | for g in group |
||
| 117 | if g[2].investment.nonconvex is True |
||
| 118 | ] |
||
| 119 | ) |
||
| 120 | |||
| 121 | self.FIXED_INVESTFLOWS = Set( |
||
| 122 | initialize=[(g[0], g[1]) for g in group if g[2].fix[0] is not None] |
||
| 123 | ) |
||
| 124 | |||
| 125 | self.NON_FIXED_INVESTFLOWS = Set( |
||
| 126 | initialize=[(g[0], g[1]) for g in group if g[2].fix[0] is None] |
||
| 127 | ) |
||
| 128 | |||
| 129 | self.FULL_LOAD_TIME_MAX_INVESTFLOWS = Set( |
||
| 130 | initialize=[ |
||
| 131 | (g[0], g[1]) |
||
| 132 | for g in group |
||
| 133 | if g[2].full_load_time_max is not None |
||
| 134 | ] |
||
| 135 | ) |
||
| 136 | |||
| 137 | self.FULL_LOAD_TIME_MIN_INVESTFLOWS = Set( |
||
| 138 | initialize=[ |
||
| 139 | (g[0], g[1]) |
||
| 140 | for g in group |
||
| 141 | if g[2].full_load_time_min is not None |
||
| 142 | ] |
||
| 143 | ) |
||
| 144 | |||
| 145 | self.MIN_INVESTFLOWS = Set( |
||
| 146 | initialize=[(g[0], g[1]) for g in group if g[2].min.min() != 0] |
||
| 147 | ) |
||
| 148 | |||
| 149 | self.EXISTING_INVESTFLOWS = Set( |
||
| 150 | initialize=[ |
||
| 151 | (g[0], g[1]) |
||
| 152 | for g in group |
||
| 153 | if g[2].investment.existing is not None |
||
| 154 | ] |
||
| 155 | ) |
||
| 156 | |||
| 157 | self.OVERALL_MAXIMUM_INVESTFLOWS = Set( |
||
| 158 | initialize=[ |
||
| 159 | (g[0], g[1]) |
||
| 160 | for g in group |
||
| 161 | if g[2].investment.overall_maximum is not None |
||
| 162 | ] |
||
| 163 | ) |
||
| 164 | |||
| 165 | self.OVERALL_MINIMUM_INVESTFLOWS = Set( |
||
| 166 | initialize=[ |
||
| 167 | (g[0], g[1]) |
||
| 168 | for g in group |
||
| 169 | if g[2].investment.overall_minimum is not None |
||
| 170 | ] |
||
| 171 | ) |
||
| 172 | |||
| 173 | def _create_variables(self, _): |
||
| 174 | r"""Creates all variables for investment flows. |
||
| 175 | |||
| 176 | All *InvestmentFlowBlock* objects are indexed by a starting and |
||
| 177 | ending node :math:`(i, o)`, which is omitted in the following |
||
| 178 | for the sake of convenience. The following variables are created: |
||
| 179 | |||
| 180 | * :math:`P(p, t)` |
||
| 181 | |||
| 182 | Actual flow value |
||
| 183 | (created in :class:`oemof.solph.models.Model`), |
||
| 184 | indexed by tuple of periods p and timestep t |
||
| 185 | |||
| 186 | * :math:`P_{invest}(p)` |
||
| 187 | |||
| 188 | Value of the investment variable in period p, |
||
| 189 | equal to what is being invested and equivalent resp. similar to |
||
| 190 | the nominal capacity of the flows after optimization. |
||
| 191 | |||
| 192 | * :math:`P_{total}(p)` |
||
| 193 | |||
| 194 | Total installed capacity / energy in period p, |
||
| 195 | equivalent to the nominal capacity of the flows after optimization. |
||
| 196 | |||
| 197 | * :math:`P_{old}(p)` |
||
| 198 | |||
| 199 | Old capacity / energy to be decommissioned in period p |
||
| 200 | due to reaching its lifetime; applicable only |
||
| 201 | for multi-period models. |
||
| 202 | |||
| 203 | * :math:`P_{old,exo}(p)` |
||
| 204 | |||
| 205 | Old exogenous capacity / energy to be decommissioned in period p |
||
| 206 | due to reaching its lifetime, i.e. the amount that has |
||
| 207 | been specified by :attr:`existing` when it is decommisioned; |
||
| 208 | applicable only for multi-period models. |
||
| 209 | |||
| 210 | * :math:`P_{old,end}(p)` |
||
| 211 | |||
| 212 | Old endogenous capacity / energy to be decommissioned in period p |
||
| 213 | due to reaching its lifetime, i.e. the amount that has been |
||
| 214 | invested in by the model itself that is decommissioned in |
||
| 215 | a later period because of reaching its lifetime; |
||
| 216 | applicable only for multi-period models. |
||
| 217 | |||
| 218 | * :math:`Y_{invest}(p)` |
||
| 219 | |||
| 220 | Binary variable for the status of the investment, if |
||
| 221 | :attr:`nonconvex` is `True`. |
||
| 222 | """ |
||
| 223 | m = self.parent_block() |
||
| 224 | |||
| 225 | def _investvar_bound_rule(block, i, o, p): |
||
| 226 | """Rule definition for bounds of invest variable.""" |
||
| 227 | if (i, o) in self.CONVEX_INVESTFLOWS: |
||
| 228 | return ( |
||
| 229 | m.flows[i, o].investment.minimum[p], |
||
| 230 | m.flows[i, o].investment.maximum[p], |
||
| 231 | ) |
||
| 232 | elif (i, o) in self.NON_CONVEX_INVESTFLOWS: |
||
| 233 | return 0, m.flows[i, o].investment.maximum[p] |
||
| 234 | |||
| 235 | # create invest variable for an investment flow |
||
| 236 | self.invest = Var( |
||
| 237 | self.INVESTFLOWS, |
||
| 238 | m.PERIODS, |
||
| 239 | within=NonNegativeReals, |
||
| 240 | bounds=_investvar_bound_rule, |
||
| 241 | ) |
||
| 242 | |||
| 243 | # Total capacity |
||
| 244 | self.total = Var(self.INVESTFLOWS, m.PERIODS, within=NonNegativeReals) |
||
| 245 | |||
| 246 | if m.es.periods is not None: |
||
| 247 | self.old = Var( |
||
| 248 | self.INVESTFLOWS, m.PERIODS, within=NonNegativeReals |
||
| 249 | ) |
||
| 250 | |||
| 251 | # Old endogenous capacity to be decommissioned (due to lifetime) |
||
| 252 | self.old_end = Var( |
||
| 253 | self.INVESTFLOWS, m.PERIODS, within=NonNegativeReals |
||
| 254 | ) |
||
| 255 | |||
| 256 | # Old exogenous capacity to be decommissioned (due to lifetime) |
||
| 257 | self.old_exo = Var( |
||
| 258 | self.INVESTFLOWS, m.PERIODS, within=NonNegativeReals |
||
| 259 | ) |
||
| 260 | |||
| 261 | # create status variable for a non-convex investment flow |
||
| 262 | self.invest_status = Var( |
||
| 263 | self.NON_CONVEX_INVESTFLOWS, m.PERIODS, within=Binary |
||
| 264 | ) |
||
| 265 | |||
| 266 | def _create_constraints(self): |
||
| 267 | r"""Creates all constraints for standard flows. |
||
| 268 | |||
| 269 | Depending on the attributes of the *InvestmentFlowBlock* |
||
| 270 | and *SimpleFlowBlock*, different constraints are created. |
||
| 271 | The following constraints are created |
||
| 272 | for all *InvestmentFlowBlock* objects:\ |
||
| 273 | |||
| 274 | Total capacity / energy |
||
| 275 | |||
| 276 | .. math:: |
||
| 277 | & |
||
| 278 | if \quad p=0:\\ |
||
| 279 | & |
||
| 280 | P_{total}(p) = P_{invest}(p) + P_{exist}(p) \\ |
||
| 281 | &\\ |
||
| 282 | & |
||
| 283 | else:\\ |
||
| 284 | & |
||
| 285 | P_{total}(p) = P_{total}(p-1) + P_{invest}(p) - P_{old}(p) \\ |
||
| 286 | &\\ |
||
| 287 | & |
||
| 288 | \forall p \in \textrm{PERIODS} |
||
| 289 | |||
| 290 | Upper bound for the flow value |
||
| 291 | |||
| 292 | .. math:: |
||
| 293 | & |
||
| 294 | P(p, t) \le ( P_{total}(p) ) \cdot f_{max}(t) \\ |
||
| 295 | & |
||
| 296 | \forall p, t \in \textrm{TIMEINDEX} |
||
| 297 | |||
| 298 | For a multi-period model, the old capacity is defined as follows: |
||
| 299 | |||
| 300 | .. math:: |
||
| 301 | & |
||
| 302 | P_{old}(p) = P_{old,exo}(p) + P_{old,end}(p)\\ |
||
| 303 | &\\ |
||
| 304 | & |
||
| 305 | if \quad p=0:\\ |
||
| 306 | & |
||
| 307 | P_{old,end}(p) = 0\\ |
||
| 308 | &\\ |
||
| 309 | & |
||
| 310 | else \quad if \quad l \leq year(p):\\ |
||
| 311 | & |
||
| 312 | P_{old,end}(p) = P_{invest}(p_{comm})\\ |
||
| 313 | &\\ |
||
| 314 | & |
||
| 315 | else:\\ |
||
| 316 | & |
||
| 317 | P_{old,end}(p) = 0\\ |
||
| 318 | &\\ |
||
| 319 | & |
||
| 320 | if \quad p=0:\\ |
||
| 321 | & |
||
| 322 | P_{old,exo}(p) = 0\\ |
||
| 323 | &\\ |
||
| 324 | & |
||
| 325 | else \quad if \quad l - a \leq year(p):\\ |
||
| 326 | & |
||
| 327 | P_{old,exo}(p) = P_{exist} (*)\\ |
||
| 328 | &\\ |
||
| 329 | & |
||
| 330 | else:\\ |
||
| 331 | & |
||
| 332 | P_{old,exo}(p) = 0\\ |
||
| 333 | &\\ |
||
| 334 | & |
||
| 335 | \forall p \in \textrm{PERIODS} |
||
| 336 | |||
| 337 | where: |
||
| 338 | |||
| 339 | * (*) is only performed for the first period the condition |
||
| 340 | is True. A decommissioning flag is then set to True |
||
| 341 | to prevent having falsely added old capacity in future periods. |
||
| 342 | * :math:`year(p)` is the year corresponding to period p |
||
| 343 | * :math:`p_{comm}` is the commissioning period of the flow |
||
| 344 | (which is determined by the model itself) |
||
| 345 | |||
| 346 | Depending on the attribute :attr:`nonconvex`, the constraints for the |
||
| 347 | bounds of the decision variable :math:`P_{invest}(p)` are different:\ |
||
| 348 | |||
| 349 | * :attr:`nonconvex = False` |
||
| 350 | |||
| 351 | .. math:: |
||
| 352 | & |
||
| 353 | P_{invest, min}(p) \le P_{invest}(p) \le P_{invest, max}(p) \\ |
||
| 354 | & |
||
| 355 | \forall p \in \textrm{PERIODS} |
||
| 356 | |||
| 357 | * :attr:`nonconvex = True` |
||
| 358 | |||
| 359 | .. math:: |
||
| 360 | & |
||
| 361 | P_{invest, min}(p) \cdot Y_{invest}(p) \le P_{invest}(p)\\ |
||
| 362 | & |
||
| 363 | P_{invest}(p) \le P_{invest, max}(p) \cdot Y_{invest}(p)\\ |
||
| 364 | &\\ |
||
| 365 | & |
||
| 366 | \forall p \in \textrm{PERIODS} |
||
| 367 | |||
| 368 | For all *InvestmentFlowBlock* objects |
||
| 369 | (independent of the attribute :attr:`nonconvex`), |
||
| 370 | the following additional constraints are created, if the appropriate |
||
| 371 | attribute of the *SimpleFlowBlock* |
||
| 372 | (see :class:`oemof.solph.flows._simple_flow_block.SimpleFlowBlock`) |
||
| 373 | is set: |
||
| 374 | |||
| 375 | * :attr:`fix` is not None |
||
| 376 | |||
| 377 | Actual value constraint for investments with fixed flow values |
||
| 378 | |||
| 379 | .. math:: |
||
| 380 | & |
||
| 381 | P(p, t) = P_{total}(p) \cdot f_{fix}(t) \\ |
||
| 382 | &\\ |
||
| 383 | & |
||
| 384 | \forall p, t \in \textrm{TIMEINDEX} |
||
| 385 | |||
| 386 | * :attr:`min != 0` |
||
| 387 | |||
| 388 | Lower bound for the flow values |
||
| 389 | |||
| 390 | .. math:: |
||
| 391 | & |
||
| 392 | P(p, t) \geq P_{total}(p) \cdot f_{min}(t) \\ |
||
| 393 | &\\ |
||
| 394 | & |
||
| 395 | \forall p, t \in \textrm{TIMEINDEX} |
||
| 396 | |||
| 397 | * :attr:`full_load_time_max is not None` |
||
| 398 | |||
| 399 | Upper bound for the sum of all flow values |
||
| 400 | (e.g. maximum full load hours) |
||
| 401 | |||
| 402 | .. math:: |
||
| 403 | \sum_{p, t} P(p, t) \cdot \tau(t) \leq P_{total}(p) |
||
| 404 | \cdot t_{full\_load, min} |
||
| 405 | |||
| 406 | * :attr:`full_load_time_min is not None` |
||
| 407 | |||
| 408 | Lower bound for the sum of all flow values |
||
| 409 | (e.g. minimum full load hours) |
||
| 410 | |||
| 411 | .. math:: |
||
| 412 | \sum_{p, t} P(t) \cdot \tau(t) \geq P_{total} |
||
| 413 | \cdot t_{full\_load, min} |
||
| 414 | |||
| 415 | * :attr:`overall_maximum` is not None |
||
| 416 | (for multi-period model only) |
||
| 417 | |||
| 418 | Overall maximum of total installed capacity / energy for flow |
||
| 419 | |||
| 420 | .. math:: |
||
| 421 | & |
||
| 422 | P_{total}(p) \leq P_{overall,max} \\ |
||
| 423 | &\\ |
||
| 424 | & |
||
| 425 | \forall p \in \textrm{PERIODS} |
||
| 426 | |||
| 427 | * :attr:`overall_minimum` is not None |
||
| 428 | (for multi-period model only) |
||
| 429 | |||
| 430 | Overall minimum of total installed capacity / energy for flow; |
||
| 431 | applicable only in last period |
||
| 432 | |||
| 433 | .. math:: |
||
| 434 | P_{total}(p_{last}) \geq P_{overall,min} |
||
| 435 | """ |
||
| 436 | m = self.parent_block() |
||
| 437 | |||
| 438 | self.minimum_rule = self._minimum_investment_constraint() |
||
| 439 | self.maximum_rule = self._maximum_investment_constraint() |
||
| 440 | |||
| 441 | # Handle unit lifetimes |
||
| 442 | def _total_capacity_rule(block): |
||
| 443 | """Rule definition for determining total installed |
||
| 444 | capacity (taking decommissioning into account) |
||
| 445 | """ |
||
| 446 | for i, o in self.INVESTFLOWS: |
||
| 447 | for p in m.PERIODS: |
||
| 448 | if p == 0: |
||
| 449 | expr = ( |
||
| 450 | self.total[i, o, p] |
||
| 451 | == self.invest[i, o, p] |
||
| 452 | + m.flows[i, o].investment.existing |
||
| 453 | ) |
||
| 454 | self.total_rule.add((i, o, p), expr) |
||
| 455 | # applicable for multi-period model only |
||
| 456 | else: |
||
| 457 | expr = ( |
||
| 458 | self.total[i, o, p] |
||
| 459 | == self.invest[i, o, p] |
||
| 460 | + self.total[i, o, p - 1] |
||
| 461 | - self.old[i, o, p] |
||
| 462 | ) |
||
| 463 | self.total_rule.add((i, o, p), expr) |
||
| 464 | |||
| 465 | self.total_rule = Constraint( |
||
| 466 | self.INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 467 | ) |
||
| 468 | self.total_rule_build = BuildAction(rule=_total_capacity_rule) |
||
| 469 | |||
| 470 | if m.es.periods is not None: |
||
| 471 | |||
| 472 | def _old_capacity_rule_end(block): |
||
| 473 | """Rule definition for determining old endogenously installed |
||
| 474 | capacity to be decommissioned due to reaching its lifetime. |
||
| 475 | Investment and decommissioning periods are linked within |
||
| 476 | the constraint. The respective decommissioning period is |
||
| 477 | determined for every investment period based on the components |
||
| 478 | lifetime and a matrix describing its age of each endogenous |
||
| 479 | investment. Decommissioning can only occur at the beginning of |
||
| 480 | each period. |
||
| 481 | |||
| 482 | Note |
||
| 483 | ---- |
||
| 484 | For further information on the implementation check |
||
| 485 | PR#957 https://github.com/oemof/oemof-solph/pull/957 |
||
| 486 | """ |
||
| 487 | for i, o in self.INVESTFLOWS: |
||
| 488 | lifetime = m.flows[i, o].investment.lifetime |
||
| 489 | if lifetime is None: |
||
| 490 | msg = ( |
||
| 491 | "You have to specify a lifetime " |
||
| 492 | "for a Flow with an associated " |
||
| 493 | "investment object in " |
||
| 494 | f"a multi-period model! Value for {(i, o)} " |
||
| 495 | "is missing." |
||
| 496 | ) |
||
| 497 | raise ValueError(msg) |
||
| 498 | |||
| 499 | # get the period matrix describing the temporal distance |
||
| 500 | # between all period combinations. |
||
| 501 | periods_matrix = m.es.periods_matrix |
||
| 502 | |||
| 503 | # get the index of the minimum value in each row greater |
||
| 504 | # equal than the lifetime. This value equals the |
||
| 505 | # decommissioning period if not zero. The index of this |
||
| 506 | # value represents the investment period. If np.where |
||
| 507 | # condition is not met in any row, min value will be zero |
||
| 508 | decomm_periods = np.argmin( |
||
| 509 | np.where( |
||
| 510 | (periods_matrix >= lifetime), |
||
| 511 | periods_matrix, |
||
| 512 | np.inf, |
||
| 513 | ), |
||
| 514 | axis=1, |
||
| 515 | ) |
||
| 516 | |||
| 517 | # no decommissioning in first period |
||
| 518 | expr = self.old_end[i, o, 0] == 0 |
||
| 519 | self.old_rule_end.add((i, o, 0), expr) |
||
| 520 | |||
| 521 | # all periods not in decomm_periods have no decommissioning |
||
| 522 | # zero is excluded |
||
| 523 | for p in m.PERIODS: |
||
| 524 | if p not in decomm_periods and p != 0: |
||
| 525 | expr = self.old_end[i, o, p] == 0 |
||
| 526 | self.old_rule_end.add((i, o, p), expr) |
||
| 527 | |||
| 528 | # multiple invests can be decommissioned in the same period |
||
| 529 | # but only sequential ones, thus a bookkeeping is |
||
| 530 | # introduced and constraints are added to equation one |
||
| 531 | # iteration later. |
||
| 532 | last_decomm_p = np.nan |
||
| 533 | # loop over invest periods (values are decomm_periods) |
||
| 534 | for invest_p, decomm_p in enumerate(decomm_periods): |
||
| 535 | # Add constraint of iteration before |
||
| 536 | # (skipped in first iteration by last_decomm_p = nan) |
||
| 537 | if (decomm_p != last_decomm_p) and ( |
||
| 538 | last_decomm_p is not np.nan |
||
| 539 | ): |
||
| 540 | expr = self.old_end[i, o, last_decomm_p] == expr |
||
| 541 | self.old_rule_end.add((i, o, last_decomm_p), expr) |
||
| 542 | |||
| 543 | # no decommissioning if decomm_p is zero |
||
| 544 | if decomm_p == 0: |
||
| 545 | # overwrite decomm_p with zero to avoid |
||
| 546 | # chaining invest periods in next iteration |
||
| 547 | last_decomm_p = 0 |
||
| 548 | |||
| 549 | # if decomm_p is the same as the last one chain invest |
||
| 550 | # period |
||
| 551 | elif decomm_p == last_decomm_p: |
||
| 552 | expr += self.invest[i, o, invest_p] |
||
| 553 | # overwrite decomm_p |
||
| 554 | last_decomm_p = decomm_p |
||
| 555 | |||
| 556 | # if decomm_p is not zero, not the same as the last one |
||
| 557 | # and it's not the first period |
||
| 558 | else: |
||
| 559 | expr = self.invest[i, o, invest_p] |
||
| 560 | # overwrite decomm_p |
||
| 561 | last_decomm_p = decomm_p |
||
| 562 | |||
| 563 | # Add constraint of very last iteration |
||
| 564 | if last_decomm_p != 0: |
||
| 565 | expr = self.old_end[i, o, last_decomm_p] == expr |
||
| 566 | self.old_rule_end.add((i, o, last_decomm_p), expr) |
||
| 567 | |||
| 568 | self.old_rule_end = Constraint( |
||
| 569 | self.INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 570 | ) |
||
| 571 | self.old_rule_end_build = BuildAction(rule=_old_capacity_rule_end) |
||
| 572 | |||
| 573 | def _old_capacity_rule_exo(block): |
||
| 574 | """Rule definition for determining old exogenously given |
||
| 575 | capacity to be decommissioned due to reaching its lifetime |
||
| 576 | """ |
||
| 577 | for i, o in self.INVESTFLOWS: |
||
| 578 | age = m.flows[i, o].investment.age |
||
| 579 | lifetime = m.flows[i, o].investment.lifetime |
||
| 580 | is_decommissioned = False |
||
| 581 | for p in m.PERIODS: |
||
| 582 | # No shutdown in first period |
||
| 583 | if p == 0: |
||
| 584 | expr = self.old_exo[i, o, p] == 0 |
||
| 585 | self.old_rule_exo.add((i, o, p), expr) |
||
| 586 | elif lifetime - age <= m.es.periods_years[p]: |
||
| 587 | # Track decommissioning status |
||
| 588 | if not is_decommissioned: |
||
| 589 | expr = ( |
||
| 590 | self.old_exo[i, o, p] |
||
| 591 | == m.flows[i, o].investment.existing |
||
| 592 | ) |
||
| 593 | is_decommissioned = True |
||
| 594 | else: |
||
| 595 | expr = self.old_exo[i, o, p] == 0 |
||
| 596 | self.old_rule_exo.add((i, o, p), expr) |
||
| 597 | else: |
||
| 598 | expr = self.old_exo[i, o, p] == 0 |
||
| 599 | self.old_rule_exo.add((i, o, p), expr) |
||
| 600 | |||
| 601 | self.old_rule_exo = Constraint( |
||
| 602 | self.INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 603 | ) |
||
| 604 | self.old_rule_exo_build = BuildAction(rule=_old_capacity_rule_exo) |
||
| 605 | |||
| 606 | def _old_capacity_rule(block): |
||
| 607 | """Rule definition for determining (overall) old capacity |
||
| 608 | to be decommissioned due to reaching its lifetime |
||
| 609 | """ |
||
| 610 | for i, o in self.INVESTFLOWS: |
||
| 611 | for p in m.PERIODS: |
||
| 612 | expr = ( |
||
| 613 | self.old[i, o, p] |
||
| 614 | == self.old_end[i, o, p] + self.old_exo[i, o, p] |
||
| 615 | ) |
||
| 616 | self.old_rule.add((i, o, p), expr) |
||
| 617 | |||
| 618 | self.old_rule = Constraint( |
||
| 619 | self.INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 620 | ) |
||
| 621 | self.old_rule_build = BuildAction(rule=_old_capacity_rule) |
||
| 622 | |||
| 623 | def _investflow_fixed_rule(block): |
||
| 624 | """Rule definition of constraint to fix flow variable |
||
| 625 | of investment flow to (normed) actual value |
||
| 626 | """ |
||
| 627 | for i, o in self.FIXED_INVESTFLOWS: |
||
| 628 | for p, t in m.TIMEINDEX: |
||
| 629 | expr = ( |
||
| 630 | m.flow[i, o, t] |
||
| 631 | == self.total[i, o, p] * m.flows[i, o].fix[t] |
||
| 632 | ) |
||
| 633 | self.fixed.add((i, o, p, t), expr) |
||
| 634 | |||
| 635 | self.fixed = Constraint( |
||
| 636 | self.FIXED_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
||
| 637 | ) |
||
| 638 | self.fixed_build = BuildAction(rule=_investflow_fixed_rule) |
||
| 639 | |||
| 640 | def _max_investflow_rule(block): |
||
| 641 | """Rule definition of constraint setting an upper bound of flow |
||
| 642 | variable in investment case. |
||
| 643 | """ |
||
| 644 | for i, o in self.NON_FIXED_INVESTFLOWS: |
||
| 645 | for p, t in m.TIMEINDEX: |
||
| 646 | expr = ( |
||
| 647 | m.flow[i, o, t] |
||
| 648 | <= self.total[i, o, p] * m.flows[i, o].max[t] |
||
| 649 | ) |
||
| 650 | self.max.add((i, o, p, t), expr) |
||
| 651 | |||
| 652 | self.max = Constraint( |
||
| 653 | self.NON_FIXED_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
||
| 654 | ) |
||
| 655 | self.max_build = BuildAction(rule=_max_investflow_rule) |
||
| 656 | |||
| 657 | def _min_investflow_rule(block): |
||
| 658 | """Rule definition of constraint setting a lower bound on flow |
||
| 659 | variable in investment case. |
||
| 660 | """ |
||
| 661 | for i, o in self.MIN_INVESTFLOWS: |
||
| 662 | for p, t in m.TIMEINDEX: |
||
| 663 | expr = ( |
||
| 664 | m.flow[i, o, t] |
||
| 665 | >= self.total[i, o, p] * m.flows[i, o].min[t] |
||
| 666 | ) |
||
| 667 | self.min.add((i, o, p, t), expr) |
||
| 668 | |||
| 669 | self.min = Constraint( |
||
| 670 | self.MIN_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
||
| 671 | ) |
||
| 672 | self.min_build = BuildAction(rule=_min_investflow_rule) |
||
| 673 | |||
| 674 | def _full_load_time_max_investflow_rule(_, i, o): |
||
| 675 | """Rule definition for build action of max. sum flow constraint |
||
| 676 | in investment case. |
||
| 677 | """ |
||
| 678 | expr = sum( |
||
| 679 | m.flow[i, o, t] * m.timeincrement[t] for t in m.TIMESTEPS |
||
| 680 | ) <= ( |
||
| 681 | m.flows[i, o].full_load_time_max |
||
| 682 | * sum(self.total[i, o, p] for p in m.PERIODS) |
||
| 683 | ) |
||
| 684 | return expr |
||
| 685 | |||
| 686 | self.full_load_time_max = Constraint( |
||
| 687 | self.FULL_LOAD_TIME_MAX_INVESTFLOWS, |
||
| 688 | rule=_full_load_time_max_investflow_rule, |
||
| 689 | ) |
||
| 690 | |||
| 691 | def _full_load_time_min_investflow_rule(_, i, o): |
||
| 692 | """Rule definition for build action of min. sum flow constraint |
||
| 693 | in investment case. |
||
| 694 | """ |
||
| 695 | expr = sum( |
||
| 696 | m.flow[i, o, t] * m.timeincrement[t] for t in m.TIMESTEPS |
||
| 697 | ) >= ( |
||
| 698 | sum(self.total[i, o, p] for p in m.PERIODS) |
||
| 699 | * m.flows[i, o].full_load_time_min |
||
| 700 | ) |
||
| 701 | return expr |
||
| 702 | |||
| 703 | self.full_load_time_min = Constraint( |
||
| 704 | self.FULL_LOAD_TIME_MIN_INVESTFLOWS, |
||
| 705 | rule=_full_load_time_min_investflow_rule, |
||
| 706 | ) |
||
| 707 | |||
| 708 | if m.es.periods is not None: |
||
| 709 | |||
| 710 | def _overall_maximum_investflow_rule(block): |
||
| 711 | """Rule definition for maximum overall investment |
||
| 712 | in investment case. |
||
| 713 | """ |
||
| 714 | for i, o in self.OVERALL_MAXIMUM_INVESTFLOWS: |
||
| 715 | for p in m.PERIODS: |
||
| 716 | expr = ( |
||
| 717 | self.total[i, o, p] |
||
| 718 | <= m.flows[i, o].investment.overall_maximum |
||
| 719 | ) |
||
| 720 | self.overall_maximum.add((i, o, p), expr) |
||
| 721 | |||
| 722 | self.overall_maximum = Constraint( |
||
| 723 | self.OVERALL_MAXIMUM_INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 724 | ) |
||
| 725 | self.overall_maximum_build = BuildAction( |
||
| 726 | rule=_overall_maximum_investflow_rule |
||
| 727 | ) |
||
| 728 | |||
| 729 | def _overall_minimum_investflow_rule(block, i, o): |
||
| 730 | """Rule definition for minimum overall investment |
||
| 731 | in investment case. |
||
| 732 | |||
| 733 | Note: This is only applicable for the last period |
||
| 734 | """ |
||
| 735 | expr = ( |
||
| 736 | m.flows[i, o].investment.overall_minimum |
||
| 737 | <= self.total[i, o, m.PERIODS[-1]] |
||
| 738 | ) |
||
| 739 | return expr |
||
| 740 | |||
| 741 | self.overall_minimum = Constraint( |
||
| 742 | self.OVERALL_MINIMUM_INVESTFLOWS, |
||
| 743 | rule=_overall_minimum_investflow_rule, |
||
| 744 | ) |
||
| 745 | |||
| 746 | def _objective_expression(self): |
||
| 747 | r"""Objective expression for flows with investment attribute of type |
||
| 748 | class:`.Investment`. The returned costs are fixed and |
||
| 749 | investment costs. Variable costs are added from the standard flow |
||
| 750 | objective expression. |
||
| 751 | |||
| 752 | Objective terms for a standard model and a multi-period model differ |
||
| 753 | quite strongly. Besides, the part of the objective function added by |
||
| 754 | the *InvestmentFlowBlock* also depends on whether a convex |
||
| 755 | or nonconvex *InvestmentFlowBlock* is selected. |
||
| 756 | The following parts of the objective function are created: |
||
| 757 | |||
| 758 | *Standard model* |
||
| 759 | |||
| 760 | * :attr:`nonconvex = False` |
||
| 761 | |||
| 762 | .. math:: |
||
| 763 | P_{invest}(0) \cdot c_{invest,var}(0) |
||
| 764 | |||
| 765 | * :attr:`nonconvex = True` |
||
| 766 | |||
| 767 | .. math:: |
||
| 768 | P_{invest}(0) \cdot c_{invest,var}(0) |
||
| 769 | + c_{invest,fix}(0) \cdot Y_{invest}(0) \\ |
||
| 770 | |||
| 771 | Where 0 denotes the 0th (investment) period since |
||
| 772 | in a standard model, there is only this one period. |
||
| 773 | |||
| 774 | *Multi-period model* |
||
| 775 | |||
| 776 | * :attr:`nonconvex = False` |
||
| 777 | |||
| 778 | .. math:: |
||
| 779 | & |
||
| 780 | P_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
||
| 781 | \cdot \frac {1}{ANF(d, ir)} \cdot DF^{-p}\\ |
||
| 782 | &\\ |
||
| 783 | & |
||
| 784 | \forall p \in \textrm{PERIODS} |
||
| 785 | |||
| 786 | In case, the remaining lifetime of an asset is greater than 0 and |
||
| 787 | attribute `use_remaining_value` of the energy system is True, |
||
| 788 | the difference in value for the investment period compared to the |
||
| 789 | last period of the optimization horizon is accounted for |
||
| 790 | as an adder to the investment costs: |
||
| 791 | |||
| 792 | .. math:: |
||
| 793 | & |
||
| 794 | P_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
||
| 795 | A(c_{invest,var}(|P|), l_{r}, ir)\\ |
||
| 796 | & \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
||
| 797 | &\\ |
||
| 798 | & |
||
| 799 | \forall p \in \textrm{PERIODS} |
||
| 800 | |||
| 801 | * :attr:`nonconvex = True` |
||
| 802 | |||
| 803 | .. math:: |
||
| 804 | & |
||
| 805 | (P_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
||
| 806 | \cdot \frac {1}{ANF(d, ir)}\\ |
||
| 807 | & |
||
| 808 | + c_{invest,fix}(p) \cdot b_{invest}(p)) \cdot DF^{-p}\\ |
||
| 809 | &\\ |
||
| 810 | & |
||
| 811 | \forall p \in \textrm{PERIODS} |
||
| 812 | |||
| 813 | In case, the remaining lifetime of an asset is greater than 0 and |
||
| 814 | attribute `use_remaining_value` of the energy system is True, |
||
| 815 | the difference in value for the investment period compared to the |
||
| 816 | last period of the optimization horizon is accounted for |
||
| 817 | as an adder to the investment costs: |
||
| 818 | |||
| 819 | .. math:: |
||
| 820 | & |
||
| 821 | (P_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
||
| 822 | A(c_{invest,var}(|P|), l_{r}, ir)\\ |
||
| 823 | & \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
||
| 824 | & |
||
| 825 | + (c_{invest,fix}(p) - c_{invest,fix}(|P|)) |
||
| 826 | \cdot b_{invest}(p)) \cdot DF^{-p}\\ |
||
| 827 | &\\ |
||
| 828 | & |
||
| 829 | \forall p \in \textrm{PERIODS} |
||
| 830 | |||
| 831 | * :attr:`fixed_costs` not None for investments |
||
| 832 | |||
| 833 | .. math:: |
||
| 834 | & |
||
| 835 | (\sum_{pp=year(p)}^{limit_{end}} |
||
| 836 | P_{invest}(p) \cdot c_{fixed}(pp) \cdot DF^{-pp}) |
||
| 837 | \cdot DF^{-p}\\ |
||
| 838 | &\\ |
||
| 839 | & |
||
| 840 | \forall p \in \textrm{PERIODS} |
||
| 841 | |||
| 842 | * :attr:`fixed_costs` not None for existing capacity |
||
| 843 | |||
| 844 | .. math:: |
||
| 845 | \sum_{pp=0}^{limit_{exo}} P_{exist} \cdot c_{fixed}(pp) |
||
| 846 | \cdot DF^{-pp} |
||
| 847 | |||
| 848 | |||
| 849 | where: |
||
| 850 | |||
| 851 | * :math:`A(c_{invest,var}(p), l, ir)` A is the annuity for |
||
| 852 | investment expenses :math:`c_{invest,var}(p)`, lifetime :math:`l` |
||
| 853 | and interest rate :math:`ir`. |
||
| 854 | * :math:`l_{r}` is the remaining lifetime at the end of the |
||
| 855 | optimization horizon (in case it is greater than 0 and |
||
| 856 | smaller than the actual lifetime). |
||
| 857 | * :math:`ANF(d, ir)` is the annuity factor for duration :math:`d` |
||
| 858 | and interest rate :math:`ir`. |
||
| 859 | * :math:`d=min\{year_{max} - year(p), l\}` defines the |
||
| 860 | number of years within the optimization horizon that investment |
||
| 861 | annuities are accounted for. |
||
| 862 | * :math:`year(p)` denotes the start year of period :math:`p`. |
||
| 863 | * :math:`year_{max}` denotes the last year of the optimization |
||
| 864 | horizon, i.e. at the end of the last period. |
||
| 865 | * :math:`limit_{end}=min\{year_{max}, year(p) + l\}` is used as an |
||
| 866 | upper bound to ensure fixed costs for endogenous investments |
||
| 867 | to occur within the optimization horizon. |
||
| 868 | * :math:`limit_{exo}=min\{year_{max}, l - a\}` is used as an |
||
| 869 | upper bound to ensure fixed costs for existing capacities to occur |
||
| 870 | within the optimization horizon. :math:`a` is the initial age |
||
| 871 | of an asset. |
||
| 872 | * :math:`DF=(1+dr)` is the discount factor. |
||
| 873 | |||
| 874 | The annuity / annuity factor hereby is: |
||
| 875 | |||
| 876 | .. math:: |
||
| 877 | & |
||
| 878 | A(c_{invest,var}(p), l, ir) = c_{invest,var}(p) \cdot |
||
| 879 | \frac {(1+ir)^l \cdot ir} {(1+ir)^l - 1}\\ |
||
| 880 | &\\ |
||
| 881 | & |
||
| 882 | ANF(d, ir)=\frac {(1+ir)^d \cdot ir} {(1+ir)^d - 1} |
||
| 883 | |||
| 884 | They are derived using the reciprocal of the oemof.tools.economics |
||
| 885 | annuity function with a capex of 1. |
||
| 886 | The interest rate :math:`ir` for the annuity is defined as weighted |
||
| 887 | average costs of capital (wacc) and assumed constant over time. |
||
| 888 | """ |
||
| 889 | if not hasattr(self, "INVESTFLOWS"): |
||
| 890 | return 0 |
||
| 891 | |||
| 892 | m = self.parent_block() |
||
| 893 | investment_costs = 0 |
||
| 894 | period_investment_costs = {p: 0 for p in m.PERIODS} |
||
| 895 | fixed_costs = 0 |
||
| 896 | |||
| 897 | if m.es.periods is None: |
||
| 898 | for i, o in self.CONVEX_INVESTFLOWS: |
||
| 899 | for p in m.PERIODS: |
||
| 900 | investment_costs += ( |
||
| 901 | self.invest[i, o, p] |
||
| 902 | * m.flows[i, o].investment.ep_costs[p] |
||
| 903 | ) |
||
| 904 | |||
| 905 | for i, o in self.NON_CONVEX_INVESTFLOWS: |
||
| 906 | for p in m.PERIODS: |
||
| 907 | investment_costs += ( |
||
| 908 | self.invest[i, o, p] |
||
| 909 | * m.flows[i, o].investment.ep_costs[p] |
||
| 910 | + self.invest_status[i, o, p] |
||
| 911 | * m.flows[i, o].investment.offset[p] |
||
| 912 | ) |
||
| 913 | |||
| 914 | else: |
||
| 915 | msg = ( |
||
| 916 | "You did not specify an interest rate.\n" |
||
| 917 | "It will be set equal to the discount_rate of {} " |
||
| 918 | "of the model as a default.\nThis corresponds to a " |
||
| 919 | "social planner point of view and does not reflect " |
||
| 920 | "microeconomic interest requirements." |
||
| 921 | ) |
||
| 922 | for i, o in self.CONVEX_INVESTFLOWS: |
||
| 923 | lifetime = m.flows[i, o].investment.lifetime |
||
| 924 | interest = 0 |
||
| 925 | if interest == 0: |
||
| 926 | warn( |
||
| 927 | msg.format(m.discount_rate), |
||
| 928 | debugging.SuspiciousUsageWarning, |
||
| 929 | ) |
||
| 930 | interest = m.discount_rate |
||
| 931 | for p in m.PERIODS: |
||
| 932 | annuity = economics.annuity( |
||
| 933 | capex=m.flows[i, o].investment.ep_costs[p], |
||
| 934 | n=lifetime, |
||
| 935 | wacc=interest, |
||
| 936 | ) |
||
| 937 | duration = min( |
||
| 938 | m.es.end_year_of_optimization - m.es.periods_years[p], |
||
| 939 | lifetime, |
||
| 940 | ) |
||
| 941 | present_value_factor_remaining = 1 / economics.annuity( |
||
| 942 | capex=1, n=duration, wacc=interest |
||
| 943 | ) |
||
| 944 | investment_costs_increment = ( |
||
| 945 | self.invest[i, o, p] |
||
| 946 | * annuity |
||
| 947 | * present_value_factor_remaining |
||
| 948 | ) |
||
| 949 | remaining_value_difference = ( |
||
| 950 | self._evaluate_remaining_value_difference( |
||
| 951 | m, |
||
| 952 | p, |
||
| 953 | i, |
||
| 954 | o, |
||
| 955 | m.es.end_year_of_optimization, |
||
| 956 | lifetime, |
||
| 957 | interest, |
||
| 958 | ) |
||
| 959 | ) |
||
| 960 | investment_costs += ( |
||
| 961 | investment_costs_increment + remaining_value_difference |
||
| 962 | ) |
||
| 963 | period_investment_costs[p] += investment_costs_increment |
||
| 964 | |||
| 965 | for i, o in self.NON_CONVEX_INVESTFLOWS: |
||
| 966 | lifetime = m.flows[i, o].investment.lifetime |
||
| 967 | interest = 0 |
||
| 968 | if interest == 0: |
||
| 969 | warn( |
||
| 970 | msg.format(m.discount_rate), |
||
| 971 | debugging.SuspiciousUsageWarning, |
||
| 972 | ) |
||
| 973 | interest = m.discount_rate |
||
| 974 | for p in m.PERIODS: |
||
| 975 | annuity = economics.annuity( |
||
| 976 | capex=m.flows[i, o].investment.ep_costs[p], |
||
| 977 | n=lifetime, |
||
| 978 | wacc=interest, |
||
| 979 | ) |
||
| 980 | duration = min( |
||
| 981 | m.es.end_year_of_optimization - m.es.periods_years[p], |
||
| 982 | lifetime, |
||
| 983 | ) |
||
| 984 | present_value_factor_remaining = 1 / economics.annuity( |
||
| 985 | capex=1, n=duration, wacc=interest |
||
| 986 | ) |
||
| 987 | investment_costs_increment = ( |
||
| 988 | self.invest[i, o, p] |
||
| 989 | * annuity |
||
| 990 | * present_value_factor_remaining |
||
| 991 | + self.invest_status[i, o, p] |
||
| 992 | * m.flows[i, o].investment.offset[p] |
||
| 993 | ) |
||
| 994 | remaining_value_difference = ( |
||
| 995 | self._evaluate_remaining_value_difference( |
||
| 996 | m, |
||
| 997 | p, |
||
| 998 | i, |
||
| 999 | o, |
||
| 1000 | m.es.end_year_of_optimization, |
||
| 1001 | lifetime, |
||
| 1002 | interest, |
||
| 1003 | nonconvex=True, |
||
| 1004 | ) |
||
| 1005 | ) |
||
| 1006 | investment_costs += ( |
||
| 1007 | investment_costs_increment + remaining_value_difference |
||
| 1008 | ) |
||
| 1009 | period_investment_costs[p] += investment_costs_increment |
||
| 1010 | |||
| 1011 | for i, o in self.INVESTFLOWS: |
||
| 1012 | View Code Duplication | if valid_sequence( |
|
|
|
|||
| 1013 | m.flows[i, o].investment.fixed_costs, len(m.PERIODS) |
||
| 1014 | ): |
||
| 1015 | lifetime = m.flows[i, o].investment.lifetime |
||
| 1016 | for p in m.PERIODS: |
||
| 1017 | range_limit = min( |
||
| 1018 | m.es.end_year_of_optimization, |
||
| 1019 | m.es.periods_years[p] + lifetime, |
||
| 1020 | ) |
||
| 1021 | fixed_costs += sum( |
||
| 1022 | self.invest[i, o, p] |
||
| 1023 | * m.flows[i, o].investment.fixed_costs[pp] |
||
| 1024 | for pp in range(m.es.periods_years[p], range_limit) |
||
| 1025 | ) |
||
| 1026 | |||
| 1027 | for i, o in self.EXISTING_INVESTFLOWS: |
||
| 1028 | View Code Duplication | if valid_sequence( |
|
| 1029 | m.flows[i, o].investment.fixed_costs, len(m.PERIODS) |
||
| 1030 | ): |
||
| 1031 | lifetime = m.flows[i, o].investment.lifetime |
||
| 1032 | age = m.flows[i, o].investment.age |
||
| 1033 | range_limit = min( |
||
| 1034 | m.es.end_year_of_optimization, lifetime - age |
||
| 1035 | ) |
||
| 1036 | fixed_costs += sum( |
||
| 1037 | m.flows[i, o].investment.existing |
||
| 1038 | * m.flows[i, o].investment.fixed_costs[pp] |
||
| 1039 | for pp in range(range_limit) |
||
| 1040 | ) |
||
| 1041 | |||
| 1042 | self.investment_costs = Expression(expr=investment_costs) |
||
| 1043 | self.period_investment_costs = period_investment_costs |
||
| 1044 | self.fixed_costs = Expression(expr=fixed_costs) |
||
| 1045 | self.costs = Expression(expr=investment_costs + fixed_costs) |
||
| 1046 | |||
| 1047 | return self.costs |
||
| 1048 | |||
| 1049 | def _evaluate_remaining_value_difference( |
||
| 1050 | self, |
||
| 1051 | m, |
||
| 1052 | p, |
||
| 1053 | i, |
||
| 1054 | o, |
||
| 1055 | end_year_of_optimization, |
||
| 1056 | lifetime, |
||
| 1057 | interest, |
||
| 1058 | nonconvex=False, |
||
| 1059 | ): |
||
| 1060 | """Evaluate and return the remaining value difference of an investment |
||
| 1061 | |||
| 1062 | The remaining value difference in the net present values if the asset |
||
| 1063 | was to be liquidated at the end of the optimization horizon and the |
||
| 1064 | net present value using the original investment expenses. |
||
| 1065 | |||
| 1066 | Parameters |
||
| 1067 | ---------- |
||
| 1068 | m : oemof.solph.models.Model |
||
| 1069 | Optimization model |
||
| 1070 | |||
| 1071 | p : int |
||
| 1072 | Period in which investment occurs |
||
| 1073 | |||
| 1074 | i : any instance of oemof.solph.components |
||
| 1075 | start node of flow |
||
| 1076 | |||
| 1077 | o : any instance of oemof.solph.components |
||
| 1078 | end node of flow |
||
| 1079 | |||
| 1080 | end_year_of_optimization : int |
||
| 1081 | Last year of the optimization horizon |
||
| 1082 | |||
| 1083 | lifetime : int |
||
| 1084 | lifetime of investment considered |
||
| 1085 | |||
| 1086 | interest : float |
||
| 1087 | Demanded interest rate for investment |
||
| 1088 | |||
| 1089 | nonconvex : bool |
||
| 1090 | Indicating whether considered flow is nonconvex. |
||
| 1091 | """ |
||
| 1092 | if m.es.use_remaining_value: |
||
| 1093 | if end_year_of_optimization - m.es.periods_years[p] < lifetime: |
||
| 1094 | remaining_lifetime = lifetime - ( |
||
| 1095 | end_year_of_optimization - m.es.periods_years[p] |
||
| 1096 | ) |
||
| 1097 | remaining_annuity = economics.annuity( |
||
| 1098 | capex=m.flows[i, o].investment.ep_costs[-1], |
||
| 1099 | n=remaining_lifetime, |
||
| 1100 | wacc=interest, |
||
| 1101 | ) |
||
| 1102 | original_annuity = economics.annuity( |
||
| 1103 | capex=m.flows[i, o].investment.ep_costs[p], |
||
| 1104 | n=remaining_lifetime, |
||
| 1105 | wacc=interest, |
||
| 1106 | ) |
||
| 1107 | present_value_factor_remaining = 1 / economics.annuity( |
||
| 1108 | capex=1, n=remaining_lifetime, wacc=interest |
||
| 1109 | ) |
||
| 1110 | convex_investment_costs = ( |
||
| 1111 | self.invest[i, o, p] |
||
| 1112 | * (remaining_annuity - original_annuity) |
||
| 1113 | * present_value_factor_remaining |
||
| 1114 | ) |
||
| 1115 | if nonconvex: |
||
| 1116 | return convex_investment_costs + self.invest_status[ |
||
| 1117 | i, o, p |
||
| 1118 | ] * ( |
||
| 1119 | m.flows[i, o].investment.offset[-1] |
||
| 1120 | - m.flows[i, o].investment.offset[p] |
||
| 1121 | ) |
||
| 1122 | else: |
||
| 1123 | return convex_investment_costs |
||
| 1124 | else: |
||
| 1125 | return 0 |
||
| 1126 | else: |
||
| 1127 | return 0 |
||
| 1128 | |||
| 1129 | View Code Duplication | def _minimum_investment_constraint(self): |
|
| 1130 | """Constraint factory for a minimum investment""" |
||
| 1131 | m = self.parent_block() |
||
| 1132 | |||
| 1133 | def _min_invest_rule(_): |
||
| 1134 | """Rule definition for applying a minimum investment""" |
||
| 1135 | for i, o in self.NON_CONVEX_INVESTFLOWS: |
||
| 1136 | for p in m.PERIODS: |
||
| 1137 | expr = ( |
||
| 1138 | m.flows[i, o].investment.minimum[p] |
||
| 1139 | * self.invest_status[i, o, p] |
||
| 1140 | <= self.invest[i, o, p] |
||
| 1141 | ) |
||
| 1142 | self.minimum_rule.add((i, o, p), expr) |
||
| 1143 | |||
| 1144 | self.minimum_rule = Constraint( |
||
| 1145 | self.NON_CONVEX_INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 1146 | ) |
||
| 1147 | self.minimum_rule_build = BuildAction(rule=_min_invest_rule) |
||
| 1148 | |||
| 1149 | return self.minimum_rule |
||
| 1150 | |||
| 1151 | View Code Duplication | def _maximum_investment_constraint(self): |
|
| 1152 | """Constraint factory for a maximum investment""" |
||
| 1153 | m = self.parent_block() |
||
| 1154 | |||
| 1155 | def _max_invest_rule(_): |
||
| 1156 | """Rule definition for applying a minimum investment""" |
||
| 1157 | for i, o in self.NON_CONVEX_INVESTFLOWS: |
||
| 1158 | for p in m.PERIODS: |
||
| 1159 | expr = self.invest[i, o, p] <= ( |
||
| 1160 | m.flows[i, o].investment.maximum[p] |
||
| 1161 | * self.invest_status[i, o, p] |
||
| 1162 | ) |
||
| 1163 | self.maximum_rule.add((i, o, p), expr) |
||
| 1164 | |||
| 1165 | self.maximum_rule = Constraint( |
||
| 1166 | self.NON_CONVEX_INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 1167 | ) |
||
| 1168 | self.maximum_rule_build = BuildAction(rule=_max_invest_rule) |
||
| 1169 | |||
| 1170 | return self.maximum_rule |
||
| 1171 |