1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
"""Creating sets, variables, constraints and parts of the objective function |
4
|
|
|
for Flow objects with investment but without nonconvex option. |
5
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
7
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
8
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
9
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
10
|
|
|
SPDX-FileCopyrightText: Birgit Schachler |
11
|
|
|
SPDX-FileCopyrightText: jnnr |
12
|
|
|
SPDX-FileCopyrightText: jmloenneberga |
13
|
|
|
SPDX-FileCopyrightText: Johannes Kochems |
14
|
|
|
|
15
|
|
|
SPDX-License-Identifier: MIT |
16
|
|
|
|
17
|
|
|
""" |
18
|
|
|
from warnings import warn |
19
|
|
|
|
20
|
|
|
import numpy as np |
21
|
|
|
from oemof.tools import debugging |
22
|
|
|
from oemof.tools import economics |
23
|
|
|
from pyomo.core import Binary |
24
|
|
|
from pyomo.core import BuildAction |
25
|
|
|
from pyomo.core import Constraint |
26
|
|
|
from pyomo.core import Expression |
27
|
|
|
from pyomo.core import NonNegativeReals |
28
|
|
|
from pyomo.core import Set |
29
|
|
|
from pyomo.core import Var |
30
|
|
|
from pyomo.core.base.block import ScalarBlock |
31
|
|
|
|
32
|
|
|
from oemof.solph._plumbing import valid_sequence |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
class InvestmentFlowBlock(ScalarBlock): |
36
|
|
|
r"""Block for all flows with :attr:`Investment` being not None. |
37
|
|
|
|
38
|
|
|
.. automethod:: _create_constraints |
39
|
|
|
.. automethod:: _create_variables |
40
|
|
|
.. automethod:: _create_sets |
41
|
|
|
|
42
|
|
|
.. automethod:: _objective_expression |
43
|
|
|
|
44
|
|
|
See :class:`oemof.solph.options.Investment` for all parameters of the |
45
|
|
|
*Investment* class. |
46
|
|
|
|
47
|
|
|
See :class:`oemof.solph.flows._simple_flow_block.SimpleFlowBlock` |
48
|
|
|
for all parameters of the *SimpleFlowBlock* class. |
49
|
|
|
|
50
|
|
|
The overall summed cost expressions for all *InvestmentFlowBlock* objects |
51
|
|
|
can be accessed by |
52
|
|
|
|
53
|
|
|
* :attr:`om.InvestmentFlowBlock.investment_costs`, |
54
|
|
|
* :attr:`om.InvestmentFlowBlock.fixed_costs` and |
55
|
|
|
* :attr:`om.InvestmentFlowBlock.costs`. |
56
|
|
|
|
57
|
|
|
Their values after optimization can be retrieved by |
58
|
|
|
|
59
|
|
|
* :meth:`om.InvestmentFlowBlock.investment_costs`, |
60
|
|
|
* :attr:`om.InvestmentFlowBlock.period_investment_costs` (yielding a dict |
61
|
|
|
keyed by periods); note: this is not a Pyomo expression, but calculated, |
62
|
|
|
* :meth:`om.InvestmentFlowBlock.fixed_costs` and |
63
|
|
|
* :meth:`om.InvestmentFlowBlock.costs`. |
64
|
|
|
|
65
|
|
|
Note |
66
|
|
|
---- |
67
|
|
|
In case of a nonconvex investment flow (:attr:`nonconvex=True`), |
68
|
|
|
the existing flow capacity :math:`P_{exist}` needs to be zero. |
69
|
|
|
|
70
|
|
|
Note |
71
|
|
|
---- |
72
|
|
|
See also :class:`~oemof.solph.flows._flow.Flow`, |
73
|
|
|
:class:`~oemof.solph.flows._simple_flow_block.SimpleFlowBlock` and |
74
|
|
|
:class:`~oemof.solph._options.Investment` |
75
|
|
|
|
76
|
|
|
""" # noqa: E501 |
77
|
|
|
|
78
|
|
|
def __init__(self, *args, **kwargs): |
79
|
|
|
super().__init__(*args, **kwargs) |
80
|
|
|
|
81
|
|
|
def _create(self, group=None): |
82
|
|
|
r"""Creates sets, variables and constraints for SimpleFlowBlock |
83
|
|
|
with investment attribute of type class:`.Investment`. |
84
|
|
|
|
85
|
|
|
Parameters |
86
|
|
|
---------- |
87
|
|
|
group : list |
88
|
|
|
List containing tuples containing flow (f) objects that have an |
89
|
|
|
attribute investment and the associated source (s) and target (t) |
90
|
|
|
of flow e.g. groups=[(s1, t1, f1), (s2, t2, f2),..] |
91
|
|
|
""" |
92
|
|
|
if group is None: |
93
|
|
|
return None |
94
|
|
|
|
95
|
|
|
self._create_sets(group) |
96
|
|
|
self._create_variables(group) |
97
|
|
|
self._create_constraints() |
98
|
|
|
|
99
|
|
|
def _create_sets(self, group): |
100
|
|
|
""" |
101
|
|
|
Creates all sets for investment flows. |
102
|
|
|
""" |
103
|
|
|
self.INVESTFLOWS = Set(initialize=[(g[0], g[1]) for g in group]) |
104
|
|
|
|
105
|
|
|
self.CONVEX_INVESTFLOWS = Set( |
106
|
|
|
initialize=[ |
107
|
|
|
(g[0], g[1]) |
108
|
|
|
for g in group |
109
|
|
|
if g[2].investment.nonconvex is False |
110
|
|
|
] |
111
|
|
|
) |
112
|
|
|
|
113
|
|
|
self.NON_CONVEX_INVESTFLOWS = Set( |
114
|
|
|
initialize=[ |
115
|
|
|
(g[0], g[1]) |
116
|
|
|
for g in group |
117
|
|
|
if g[2].investment.nonconvex is True |
118
|
|
|
] |
119
|
|
|
) |
120
|
|
|
|
121
|
|
|
self.FIXED_INVESTFLOWS = Set( |
122
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].fix[0] is not None] |
123
|
|
|
) |
124
|
|
|
|
125
|
|
|
self.NON_FIXED_INVESTFLOWS = Set( |
126
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].fix[0] is None] |
127
|
|
|
) |
128
|
|
|
|
129
|
|
|
self.FULL_LOAD_TIME_MAX_INVESTFLOWS = Set( |
130
|
|
|
initialize=[ |
131
|
|
|
(g[0], g[1]) |
132
|
|
|
for g in group |
133
|
|
|
if g[2].full_load_time_max is not None |
134
|
|
|
] |
135
|
|
|
) |
136
|
|
|
|
137
|
|
|
self.FULL_LOAD_TIME_MIN_INVESTFLOWS = Set( |
138
|
|
|
initialize=[ |
139
|
|
|
(g[0], g[1]) |
140
|
|
|
for g in group |
141
|
|
|
if g[2].full_load_time_min is not None |
142
|
|
|
] |
143
|
|
|
) |
144
|
|
|
|
145
|
|
|
self.MIN_INVESTFLOWS = Set( |
146
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].min.min() != 0] |
147
|
|
|
) |
148
|
|
|
|
149
|
|
|
self.EXISTING_INVESTFLOWS = Set( |
150
|
|
|
initialize=[ |
151
|
|
|
(g[0], g[1]) |
152
|
|
|
for g in group |
153
|
|
|
if g[2].investment.existing is not None |
154
|
|
|
] |
155
|
|
|
) |
156
|
|
|
|
157
|
|
|
self.OVERALL_MAXIMUM_INVESTFLOWS = Set( |
158
|
|
|
initialize=[ |
159
|
|
|
(g[0], g[1]) |
160
|
|
|
for g in group |
161
|
|
|
if g[2].investment.overall_maximum is not None |
162
|
|
|
] |
163
|
|
|
) |
164
|
|
|
|
165
|
|
|
self.OVERALL_MINIMUM_INVESTFLOWS = Set( |
166
|
|
|
initialize=[ |
167
|
|
|
(g[0], g[1]) |
168
|
|
|
for g in group |
169
|
|
|
if g[2].investment.overall_minimum is not None |
170
|
|
|
] |
171
|
|
|
) |
172
|
|
|
|
173
|
|
|
def _create_variables(self, _): |
174
|
|
|
r"""Creates all variables for investment flows. |
175
|
|
|
|
176
|
|
|
All *InvestmentFlowBlock* objects are indexed by a starting and |
177
|
|
|
ending node :math:`(i, o)`, which is omitted in the following |
178
|
|
|
for the sake of convenience. The following variables are created: |
179
|
|
|
|
180
|
|
|
* :math:`P(p, t)` |
181
|
|
|
|
182
|
|
|
Actual flow value |
183
|
|
|
(created in :class:`oemof.solph.models.Model`), |
184
|
|
|
indexed by tuple of periods p and timestep t |
185
|
|
|
|
186
|
|
|
* :math:`P_{invest}(p)` |
187
|
|
|
|
188
|
|
|
Value of the investment variable in period p, |
189
|
|
|
equal to what is being invested and equivalent resp. similar to |
190
|
|
|
the nominal capacity of the flows after optimization. |
191
|
|
|
|
192
|
|
|
* :math:`P_{total}(p)` |
193
|
|
|
|
194
|
|
|
Total installed capacity / energy in period p, |
195
|
|
|
equivalent to the nominal capacity of the flows after optimization. |
196
|
|
|
|
197
|
|
|
* :math:`P_{old}(p)` |
198
|
|
|
|
199
|
|
|
Old capacity / energy to be decommissioned in period p |
200
|
|
|
due to reaching its lifetime; applicable only |
201
|
|
|
for multi-period models. |
202
|
|
|
|
203
|
|
|
* :math:`P_{old,exo}(p)` |
204
|
|
|
|
205
|
|
|
Old exogenous capacity / energy to be decommissioned in period p |
206
|
|
|
due to reaching its lifetime, i.e. the amount that has |
207
|
|
|
been specified by :attr:`existing` when it is decommisioned; |
208
|
|
|
applicable only for multi-period models. |
209
|
|
|
|
210
|
|
|
* :math:`P_{old,end}(p)` |
211
|
|
|
|
212
|
|
|
Old endogenous capacity / energy to be decommissioned in period p |
213
|
|
|
due to reaching its lifetime, i.e. the amount that has been |
214
|
|
|
invested in by the model itself that is decommissioned in |
215
|
|
|
a later period because of reaching its lifetime; |
216
|
|
|
applicable only for multi-period models. |
217
|
|
|
|
218
|
|
|
* :math:`Y_{invest}(p)` |
219
|
|
|
|
220
|
|
|
Binary variable for the status of the investment, if |
221
|
|
|
:attr:`nonconvex` is `True`. |
222
|
|
|
""" |
223
|
|
|
m = self.parent_block() |
224
|
|
|
|
225
|
|
|
def _investvar_bound_rule(block, i, o, p): |
226
|
|
|
"""Rule definition for bounds of invest variable.""" |
227
|
|
|
if (i, o) in self.CONVEX_INVESTFLOWS: |
228
|
|
|
return ( |
229
|
|
|
m.flows[i, o].investment.minimum[p], |
230
|
|
|
m.flows[i, o].investment.maximum[p], |
231
|
|
|
) |
232
|
|
|
elif (i, o) in self.NON_CONVEX_INVESTFLOWS: |
233
|
|
|
return 0, m.flows[i, o].investment.maximum[p] |
234
|
|
|
|
235
|
|
|
# create invest variable for an investment flow |
236
|
|
|
self.invest = Var( |
237
|
|
|
self.INVESTFLOWS, |
238
|
|
|
m.PERIODS, |
239
|
|
|
within=NonNegativeReals, |
240
|
|
|
bounds=_investvar_bound_rule, |
241
|
|
|
) |
242
|
|
|
|
243
|
|
|
# Total capacity |
244
|
|
|
self.total = Var(self.INVESTFLOWS, m.PERIODS, within=NonNegativeReals) |
245
|
|
|
|
246
|
|
|
if m.es.periods is not None: |
247
|
|
|
self.old = Var( |
248
|
|
|
self.INVESTFLOWS, m.PERIODS, within=NonNegativeReals |
249
|
|
|
) |
250
|
|
|
|
251
|
|
|
# Old endogenous capacity to be decommissioned (due to lifetime) |
252
|
|
|
self.old_end = Var( |
253
|
|
|
self.INVESTFLOWS, m.PERIODS, within=NonNegativeReals |
254
|
|
|
) |
255
|
|
|
|
256
|
|
|
# Old exogenous capacity to be decommissioned (due to lifetime) |
257
|
|
|
self.old_exo = Var( |
258
|
|
|
self.INVESTFLOWS, m.PERIODS, within=NonNegativeReals |
259
|
|
|
) |
260
|
|
|
|
261
|
|
|
# create status variable for a non-convex investment flow |
262
|
|
|
self.invest_status = Var( |
263
|
|
|
self.NON_CONVEX_INVESTFLOWS, m.PERIODS, within=Binary |
264
|
|
|
) |
265
|
|
|
|
266
|
|
|
def _create_constraints(self): |
267
|
|
|
r"""Creates all constraints for standard flows. |
268
|
|
|
|
269
|
|
|
Depending on the attributes of the *InvestmentFlowBlock* |
270
|
|
|
and *SimpleFlowBlock*, different constraints are created. |
271
|
|
|
The following constraints are created |
272
|
|
|
for all *InvestmentFlowBlock* objects:\ |
273
|
|
|
|
274
|
|
|
Total capacity / energy |
275
|
|
|
|
276
|
|
|
.. math:: |
277
|
|
|
& |
278
|
|
|
if \quad p=0:\\ |
279
|
|
|
& |
280
|
|
|
P_{total}(p) = P_{invest}(p) + P_{exist}(p) \\ |
281
|
|
|
&\\ |
282
|
|
|
& |
283
|
|
|
else:\\ |
284
|
|
|
& |
285
|
|
|
P_{total}(p) = P_{total}(p-1) + P_{invest}(p) - P_{old}(p) \\ |
286
|
|
|
&\\ |
287
|
|
|
& |
288
|
|
|
\forall p \in \textrm{PERIODS} |
289
|
|
|
|
290
|
|
|
Upper bound for the flow value |
291
|
|
|
|
292
|
|
|
.. math:: |
293
|
|
|
& |
294
|
|
|
P(p, t) \le ( P_{total}(p) ) \cdot f_{max}(t) \\ |
295
|
|
|
& |
296
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
297
|
|
|
|
298
|
|
|
For a multi-period model, the old capacity is defined as follows: |
299
|
|
|
|
300
|
|
|
.. math:: |
301
|
|
|
& |
302
|
|
|
P_{old}(p) = P_{old,exo}(p) + P_{old,end}(p)\\ |
303
|
|
|
&\\ |
304
|
|
|
& |
305
|
|
|
if \quad p=0:\\ |
306
|
|
|
& |
307
|
|
|
P_{old,end}(p) = 0\\ |
308
|
|
|
&\\ |
309
|
|
|
& |
310
|
|
|
else \quad if \quad l \leq year(p):\\ |
311
|
|
|
& |
312
|
|
|
P_{old,end}(p) = P_{invest}(p_{comm})\\ |
313
|
|
|
&\\ |
314
|
|
|
& |
315
|
|
|
else:\\ |
316
|
|
|
& |
317
|
|
|
P_{old,end}(p) = 0\\ |
318
|
|
|
&\\ |
319
|
|
|
& |
320
|
|
|
if \quad p=0:\\ |
321
|
|
|
& |
322
|
|
|
P_{old,exo}(p) = 0\\ |
323
|
|
|
&\\ |
324
|
|
|
& |
325
|
|
|
else \quad if \quad l - a \leq year(p):\\ |
326
|
|
|
& |
327
|
|
|
P_{old,exo}(p) = P_{exist} (*)\\ |
328
|
|
|
&\\ |
329
|
|
|
& |
330
|
|
|
else:\\ |
331
|
|
|
& |
332
|
|
|
P_{old,exo}(p) = 0\\ |
333
|
|
|
&\\ |
334
|
|
|
& |
335
|
|
|
\forall p \in \textrm{PERIODS} |
336
|
|
|
|
337
|
|
|
where: |
338
|
|
|
|
339
|
|
|
* (*) is only performed for the first period the condition |
340
|
|
|
is True. A decommissioning flag is then set to True |
341
|
|
|
to prevent having falsely added old capacity in future periods. |
342
|
|
|
* :math:`year(p)` is the year corresponding to period p |
343
|
|
|
* :math:`p_{comm}` is the commissioning period of the flow |
344
|
|
|
(which is determined by the model itself) |
345
|
|
|
|
346
|
|
|
Depending on the attribute :attr:`nonconvex`, the constraints for the |
347
|
|
|
bounds of the decision variable :math:`P_{invest}(p)` are different:\ |
348
|
|
|
|
349
|
|
|
* :attr:`nonconvex = False` |
350
|
|
|
|
351
|
|
|
.. math:: |
352
|
|
|
& |
353
|
|
|
P_{invest, min}(p) \le P_{invest}(p) \le P_{invest, max}(p) \\ |
354
|
|
|
& |
355
|
|
|
\forall p \in \textrm{PERIODS} |
356
|
|
|
|
357
|
|
|
* :attr:`nonconvex = True` |
358
|
|
|
|
359
|
|
|
.. math:: |
360
|
|
|
& |
361
|
|
|
P_{invest, min}(p) \cdot Y_{invest}(p) \le P_{invest}(p)\\ |
362
|
|
|
& |
363
|
|
|
P_{invest}(p) \le P_{invest, max}(p) \cdot Y_{invest}(p)\\ |
364
|
|
|
&\\ |
365
|
|
|
& |
366
|
|
|
\forall p \in \textrm{PERIODS} |
367
|
|
|
|
368
|
|
|
For all *InvestmentFlowBlock* objects |
369
|
|
|
(independent of the attribute :attr:`nonconvex`), |
370
|
|
|
the following additional constraints are created, if the appropriate |
371
|
|
|
attribute of the *SimpleFlowBlock* |
372
|
|
|
(see :class:`oemof.solph.flows._simple_flow_block.SimpleFlowBlock`) |
373
|
|
|
is set: |
374
|
|
|
|
375
|
|
|
* :attr:`fix` is not None |
376
|
|
|
|
377
|
|
|
Actual value constraint for investments with fixed flow values |
378
|
|
|
|
379
|
|
|
.. math:: |
380
|
|
|
& |
381
|
|
|
P(p, t) = P_{total}(p) \cdot f_{fix}(t) \\ |
382
|
|
|
&\\ |
383
|
|
|
& |
384
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
385
|
|
|
|
386
|
|
|
* :attr:`min != 0` |
387
|
|
|
|
388
|
|
|
Lower bound for the flow values |
389
|
|
|
|
390
|
|
|
.. math:: |
391
|
|
|
& |
392
|
|
|
P(p, t) \geq P_{total}(p) \cdot f_{min}(t) \\ |
393
|
|
|
&\\ |
394
|
|
|
& |
395
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
396
|
|
|
|
397
|
|
|
* :attr:`full_load_time_max is not None` |
398
|
|
|
|
399
|
|
|
Upper bound for the sum of all flow values |
400
|
|
|
(e.g. maximum full load hours) |
401
|
|
|
|
402
|
|
|
.. math:: |
403
|
|
|
\sum_{p, t} P(p, t) \cdot \tau(t) \leq P_{total}(p) |
404
|
|
|
\cdot t_{full\_load, min} |
405
|
|
|
|
406
|
|
|
* :attr:`full_load_time_min is not None` |
407
|
|
|
|
408
|
|
|
Lower bound for the sum of all flow values |
409
|
|
|
(e.g. minimum full load hours) |
410
|
|
|
|
411
|
|
|
.. math:: |
412
|
|
|
\sum_{p, t} P(t) \cdot \tau(t) \geq P_{total} |
413
|
|
|
\cdot t_{full\_load, min} |
414
|
|
|
|
415
|
|
|
* :attr:`overall_maximum` is not None |
416
|
|
|
(for multi-period model only) |
417
|
|
|
|
418
|
|
|
Overall maximum of total installed capacity / energy for flow |
419
|
|
|
|
420
|
|
|
.. math:: |
421
|
|
|
& |
422
|
|
|
P_{total}(p) \leq P_{overall,max} \\ |
423
|
|
|
&\\ |
424
|
|
|
& |
425
|
|
|
\forall p \in \textrm{PERIODS} |
426
|
|
|
|
427
|
|
|
* :attr:`overall_minimum` is not None |
428
|
|
|
(for multi-period model only) |
429
|
|
|
|
430
|
|
|
Overall minimum of total installed capacity / energy for flow; |
431
|
|
|
applicable only in last period |
432
|
|
|
|
433
|
|
|
.. math:: |
434
|
|
|
P_{total}(p_{last}) \geq P_{overall,min} |
435
|
|
|
""" |
436
|
|
|
m = self.parent_block() |
437
|
|
|
|
438
|
|
|
self.minimum_rule = self._minimum_investment_constraint() |
439
|
|
|
self.maximum_rule = self._maximum_investment_constraint() |
440
|
|
|
|
441
|
|
|
# Handle unit lifetimes |
442
|
|
|
def _total_capacity_rule(block): |
443
|
|
|
"""Rule definition for determining total installed |
444
|
|
|
capacity (taking decommissioning into account) |
445
|
|
|
""" |
446
|
|
|
for i, o in self.INVESTFLOWS: |
447
|
|
|
for p in m.PERIODS: |
448
|
|
|
if p == 0: |
449
|
|
|
expr = ( |
450
|
|
|
self.total[i, o, p] |
451
|
|
|
== self.invest[i, o, p] |
452
|
|
|
+ m.flows[i, o].investment.existing |
453
|
|
|
) |
454
|
|
|
self.total_rule.add((i, o, p), expr) |
455
|
|
|
# applicable for multi-period model only |
456
|
|
|
else: |
457
|
|
|
expr = ( |
458
|
|
|
self.total[i, o, p] |
459
|
|
|
== self.invest[i, o, p] |
460
|
|
|
+ self.total[i, o, p - 1] |
461
|
|
|
- self.old[i, o, p] |
462
|
|
|
) |
463
|
|
|
self.total_rule.add((i, o, p), expr) |
464
|
|
|
|
465
|
|
|
self.total_rule = Constraint( |
466
|
|
|
self.INVESTFLOWS, m.PERIODS, noruleinit=True |
467
|
|
|
) |
468
|
|
|
self.total_rule_build = BuildAction(rule=_total_capacity_rule) |
469
|
|
|
|
470
|
|
|
if m.es.periods is not None: |
471
|
|
|
|
472
|
|
|
def _old_capacity_rule_end(block): |
473
|
|
|
"""Rule definition for determining old endogenously installed |
474
|
|
|
capacity to be decommissioned due to reaching its lifetime. |
475
|
|
|
Investment and decommissioning periods are linked within |
476
|
|
|
the constraint. The respective decommissioning period is |
477
|
|
|
determined for every investment period based on the components |
478
|
|
|
lifetime and a matrix describing its age of each endogenous |
479
|
|
|
investment. Decommissioning can only occur at the beginning of |
480
|
|
|
each period. |
481
|
|
|
|
482
|
|
|
Note |
483
|
|
|
---- |
484
|
|
|
For further information on the implementation check |
485
|
|
|
PR#957 https://github.com/oemof/oemof-solph/pull/957 |
486
|
|
|
""" |
487
|
|
|
for i, o in self.INVESTFLOWS: |
488
|
|
|
lifetime = m.flows[i, o].investment.lifetime |
489
|
|
|
if lifetime is None: |
490
|
|
|
msg = ( |
491
|
|
|
"You have to specify a lifetime " |
492
|
|
|
"for a Flow with an associated " |
493
|
|
|
"investment object in " |
494
|
|
|
f"a multi-period model! Value for {(i, o)} " |
495
|
|
|
"is missing." |
496
|
|
|
) |
497
|
|
|
raise ValueError(msg) |
498
|
|
|
|
499
|
|
|
# get the period matrix describing the temporal distance |
500
|
|
|
# between all period combinations. |
501
|
|
|
periods_matrix = m.es.periods_matrix |
502
|
|
|
|
503
|
|
|
# get the index of the minimum value in each row greater |
504
|
|
|
# equal than the lifetime. This value equals the |
505
|
|
|
# decommissioning period if not zero. The index of this |
506
|
|
|
# value represents the investment period. If np.where |
507
|
|
|
# condition is not met in any row, min value will be zero |
508
|
|
|
decomm_periods = np.argmin( |
509
|
|
|
np.where( |
510
|
|
|
(periods_matrix >= lifetime), |
511
|
|
|
periods_matrix, |
512
|
|
|
np.inf, |
513
|
|
|
), |
514
|
|
|
axis=1, |
515
|
|
|
) |
516
|
|
|
|
517
|
|
|
# no decommissioning in first period |
518
|
|
|
expr = self.old_end[i, o, 0] == 0 |
519
|
|
|
self.old_rule_end.add((i, o, 0), expr) |
520
|
|
|
|
521
|
|
|
# all periods not in decomm_periods have no decommissioning |
522
|
|
|
# zero is excluded |
523
|
|
|
for p in m.PERIODS: |
524
|
|
|
if p not in decomm_periods and p != 0: |
525
|
|
|
expr = self.old_end[i, o, p] == 0 |
526
|
|
|
self.old_rule_end.add((i, o, p), expr) |
527
|
|
|
|
528
|
|
|
# multiple invests can be decommissioned in the same period |
529
|
|
|
# but only sequential ones, thus a bookkeeping is |
530
|
|
|
# introduced and constraints are added to equation one |
531
|
|
|
# iteration later. |
532
|
|
|
last_decomm_p = np.nan |
533
|
|
|
# loop over invest periods (values are decomm_periods) |
534
|
|
|
for invest_p, decomm_p in enumerate(decomm_periods): |
535
|
|
|
# Add constraint of iteration before |
536
|
|
|
# (skipped in first iteration by last_decomm_p = nan) |
537
|
|
|
if (decomm_p != last_decomm_p) and ( |
538
|
|
|
last_decomm_p is not np.nan |
539
|
|
|
): |
540
|
|
|
expr = self.old_end[i, o, last_decomm_p] == expr |
541
|
|
|
self.old_rule_end.add((i, o, last_decomm_p), expr) |
542
|
|
|
|
543
|
|
|
# no decommissioning if decomm_p is zero |
544
|
|
|
if decomm_p == 0: |
545
|
|
|
# overwrite decomm_p with zero to avoid |
546
|
|
|
# chaining invest periods in next iteration |
547
|
|
|
last_decomm_p = 0 |
548
|
|
|
|
549
|
|
|
# if decomm_p is the same as the last one chain invest |
550
|
|
|
# period |
551
|
|
|
elif decomm_p == last_decomm_p: |
552
|
|
|
expr += self.invest[i, o, invest_p] |
553
|
|
|
# overwrite decomm_p |
554
|
|
|
last_decomm_p = decomm_p |
555
|
|
|
|
556
|
|
|
# if decomm_p is not zero, not the same as the last one |
557
|
|
|
# and it's not the first period |
558
|
|
|
else: |
559
|
|
|
expr = self.invest[i, o, invest_p] |
560
|
|
|
# overwrite decomm_p |
561
|
|
|
last_decomm_p = decomm_p |
562
|
|
|
|
563
|
|
|
# Add constraint of very last iteration |
564
|
|
|
if last_decomm_p != 0: |
565
|
|
|
expr = self.old_end[i, o, last_decomm_p] == expr |
566
|
|
|
self.old_rule_end.add((i, o, last_decomm_p), expr) |
567
|
|
|
|
568
|
|
|
self.old_rule_end = Constraint( |
569
|
|
|
self.INVESTFLOWS, m.PERIODS, noruleinit=True |
570
|
|
|
) |
571
|
|
|
self.old_rule_end_build = BuildAction(rule=_old_capacity_rule_end) |
572
|
|
|
|
573
|
|
|
def _old_capacity_rule_exo(block): |
574
|
|
|
"""Rule definition for determining old exogenously given |
575
|
|
|
capacity to be decommissioned due to reaching its lifetime |
576
|
|
|
""" |
577
|
|
|
for i, o in self.INVESTFLOWS: |
578
|
|
|
age = m.flows[i, o].investment.age |
579
|
|
|
lifetime = m.flows[i, o].investment.lifetime |
580
|
|
|
is_decommissioned = False |
581
|
|
|
for p in m.PERIODS: |
582
|
|
|
# No shutdown in first period |
583
|
|
|
if p == 0: |
584
|
|
|
expr = self.old_exo[i, o, p] == 0 |
585
|
|
|
self.old_rule_exo.add((i, o, p), expr) |
586
|
|
|
elif lifetime - age <= m.es.periods_years[p]: |
587
|
|
|
# Track decommissioning status |
588
|
|
|
if not is_decommissioned: |
589
|
|
|
expr = ( |
590
|
|
|
self.old_exo[i, o, p] |
591
|
|
|
== m.flows[i, o].investment.existing |
592
|
|
|
) |
593
|
|
|
is_decommissioned = True |
594
|
|
|
else: |
595
|
|
|
expr = self.old_exo[i, o, p] == 0 |
596
|
|
|
self.old_rule_exo.add((i, o, p), expr) |
597
|
|
|
else: |
598
|
|
|
expr = self.old_exo[i, o, p] == 0 |
599
|
|
|
self.old_rule_exo.add((i, o, p), expr) |
600
|
|
|
|
601
|
|
|
self.old_rule_exo = Constraint( |
602
|
|
|
self.INVESTFLOWS, m.PERIODS, noruleinit=True |
603
|
|
|
) |
604
|
|
|
self.old_rule_exo_build = BuildAction(rule=_old_capacity_rule_exo) |
605
|
|
|
|
606
|
|
|
def _old_capacity_rule(block): |
607
|
|
|
"""Rule definition for determining (overall) old capacity |
608
|
|
|
to be decommissioned due to reaching its lifetime |
609
|
|
|
""" |
610
|
|
|
for i, o in self.INVESTFLOWS: |
611
|
|
|
for p in m.PERIODS: |
612
|
|
|
expr = ( |
613
|
|
|
self.old[i, o, p] |
614
|
|
|
== self.old_end[i, o, p] + self.old_exo[i, o, p] |
615
|
|
|
) |
616
|
|
|
self.old_rule.add((i, o, p), expr) |
617
|
|
|
|
618
|
|
|
self.old_rule = Constraint( |
619
|
|
|
self.INVESTFLOWS, m.PERIODS, noruleinit=True |
620
|
|
|
) |
621
|
|
|
self.old_rule_build = BuildAction(rule=_old_capacity_rule) |
622
|
|
|
|
623
|
|
|
def _investflow_fixed_rule(block): |
624
|
|
|
"""Rule definition of constraint to fix flow variable |
625
|
|
|
of investment flow to (normed) actual value |
626
|
|
|
""" |
627
|
|
|
for i, o in self.FIXED_INVESTFLOWS: |
628
|
|
|
for p, t in m.TIMEINDEX: |
629
|
|
|
expr = ( |
630
|
|
|
m.flow[i, o, t] |
631
|
|
|
== self.total[i, o, p] * m.flows[i, o].fix[t] |
632
|
|
|
) |
633
|
|
|
self.fixed.add((i, o, p, t), expr) |
634
|
|
|
|
635
|
|
|
self.fixed = Constraint( |
636
|
|
|
self.FIXED_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
637
|
|
|
) |
638
|
|
|
self.fixed_build = BuildAction(rule=_investflow_fixed_rule) |
639
|
|
|
|
640
|
|
|
def _max_investflow_rule(block): |
641
|
|
|
"""Rule definition of constraint setting an upper bound of flow |
642
|
|
|
variable in investment case. |
643
|
|
|
""" |
644
|
|
|
for i, o in self.NON_FIXED_INVESTFLOWS: |
645
|
|
|
for p, t in m.TIMEINDEX: |
646
|
|
|
expr = ( |
647
|
|
|
m.flow[i, o, t] |
648
|
|
|
<= self.total[i, o, p] * m.flows[i, o].max[t] |
649
|
|
|
) |
650
|
|
|
self.max.add((i, o, p, t), expr) |
651
|
|
|
|
652
|
|
|
self.max = Constraint( |
653
|
|
|
self.NON_FIXED_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
654
|
|
|
) |
655
|
|
|
self.max_build = BuildAction(rule=_max_investflow_rule) |
656
|
|
|
|
657
|
|
|
def _min_investflow_rule(block): |
658
|
|
|
"""Rule definition of constraint setting a lower bound on flow |
659
|
|
|
variable in investment case. |
660
|
|
|
""" |
661
|
|
|
for i, o in self.MIN_INVESTFLOWS: |
662
|
|
|
for p, t in m.TIMEINDEX: |
663
|
|
|
expr = ( |
664
|
|
|
m.flow[i, o, t] |
665
|
|
|
>= self.total[i, o, p] * m.flows[i, o].min[t] |
666
|
|
|
) |
667
|
|
|
self.min.add((i, o, p, t), expr) |
668
|
|
|
|
669
|
|
|
self.min = Constraint( |
670
|
|
|
self.MIN_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
671
|
|
|
) |
672
|
|
|
self.min_build = BuildAction(rule=_min_investflow_rule) |
673
|
|
|
|
674
|
|
|
def _full_load_time_max_investflow_rule(_, i, o): |
675
|
|
|
"""Rule definition for build action of max. sum flow constraint |
676
|
|
|
in investment case. |
677
|
|
|
""" |
678
|
|
|
expr = sum( |
679
|
|
|
m.flow[i, o, t] * m.timeincrement[t] for t in m.TIMESTEPS |
680
|
|
|
) <= ( |
681
|
|
|
m.flows[i, o].full_load_time_max |
682
|
|
|
* sum(self.total[i, o, p] for p in m.PERIODS) |
683
|
|
|
) |
684
|
|
|
return expr |
685
|
|
|
|
686
|
|
|
self.full_load_time_max = Constraint( |
687
|
|
|
self.FULL_LOAD_TIME_MAX_INVESTFLOWS, |
688
|
|
|
rule=_full_load_time_max_investflow_rule, |
689
|
|
|
) |
690
|
|
|
|
691
|
|
|
def _full_load_time_min_investflow_rule(_, i, o): |
692
|
|
|
"""Rule definition for build action of min. sum flow constraint |
693
|
|
|
in investment case. |
694
|
|
|
""" |
695
|
|
|
expr = sum( |
696
|
|
|
m.flow[i, o, t] * m.timeincrement[t] for t in m.TIMESTEPS |
697
|
|
|
) >= ( |
698
|
|
|
sum(self.total[i, o, p] for p in m.PERIODS) |
699
|
|
|
* m.flows[i, o].full_load_time_min |
700
|
|
|
) |
701
|
|
|
return expr |
702
|
|
|
|
703
|
|
|
self.full_load_time_min = Constraint( |
704
|
|
|
self.FULL_LOAD_TIME_MIN_INVESTFLOWS, |
705
|
|
|
rule=_full_load_time_min_investflow_rule, |
706
|
|
|
) |
707
|
|
|
|
708
|
|
|
if m.es.periods is not None: |
709
|
|
|
|
710
|
|
|
def _overall_maximum_investflow_rule(block): |
711
|
|
|
"""Rule definition for maximum overall investment |
712
|
|
|
in investment case. |
713
|
|
|
""" |
714
|
|
|
for i, o in self.OVERALL_MAXIMUM_INVESTFLOWS: |
715
|
|
|
for p in m.PERIODS: |
716
|
|
|
expr = ( |
717
|
|
|
self.total[i, o, p] |
718
|
|
|
<= m.flows[i, o].investment.overall_maximum |
719
|
|
|
) |
720
|
|
|
self.overall_maximum.add((i, o, p), expr) |
721
|
|
|
|
722
|
|
|
self.overall_maximum = Constraint( |
723
|
|
|
self.OVERALL_MAXIMUM_INVESTFLOWS, m.PERIODS, noruleinit=True |
724
|
|
|
) |
725
|
|
|
self.overall_maximum_build = BuildAction( |
726
|
|
|
rule=_overall_maximum_investflow_rule |
727
|
|
|
) |
728
|
|
|
|
729
|
|
|
def _overall_minimum_investflow_rule(block, i, o): |
730
|
|
|
"""Rule definition for minimum overall investment |
731
|
|
|
in investment case. |
732
|
|
|
|
733
|
|
|
Note: This is only applicable for the last period |
734
|
|
|
""" |
735
|
|
|
expr = ( |
736
|
|
|
m.flows[i, o].investment.overall_minimum |
737
|
|
|
<= self.total[i, o, m.PERIODS[-1]] |
738
|
|
|
) |
739
|
|
|
return expr |
740
|
|
|
|
741
|
|
|
self.overall_minimum = Constraint( |
742
|
|
|
self.OVERALL_MINIMUM_INVESTFLOWS, |
743
|
|
|
rule=_overall_minimum_investflow_rule, |
744
|
|
|
) |
745
|
|
|
|
746
|
|
|
def _objective_expression(self): |
747
|
|
|
r"""Objective expression for flows with investment attribute of type |
748
|
|
|
class:`.Investment`. The returned costs are fixed and |
749
|
|
|
investment costs. Variable costs are added from the standard flow |
750
|
|
|
objective expression. |
751
|
|
|
|
752
|
|
|
Objective terms for a standard model and a multi-period model differ |
753
|
|
|
quite strongly. Besides, the part of the objective function added by |
754
|
|
|
the *InvestmentFlowBlock* also depends on whether a convex |
755
|
|
|
or nonconvex *InvestmentFlowBlock* is selected. |
756
|
|
|
The following parts of the objective function are created: |
757
|
|
|
|
758
|
|
|
*Standard model* |
759
|
|
|
|
760
|
|
|
* :attr:`nonconvex = False` |
761
|
|
|
|
762
|
|
|
.. math:: |
763
|
|
|
P_{invest}(0) \cdot c_{invest,var}(0) |
764
|
|
|
|
765
|
|
|
* :attr:`nonconvex = True` |
766
|
|
|
|
767
|
|
|
.. math:: |
768
|
|
|
P_{invest}(0) \cdot c_{invest,var}(0) |
769
|
|
|
+ c_{invest,fix}(0) \cdot Y_{invest}(0) \\ |
770
|
|
|
|
771
|
|
|
Where 0 denotes the 0th (investment) period since |
772
|
|
|
in a standard model, there is only this one period. |
773
|
|
|
|
774
|
|
|
*Multi-period model* |
775
|
|
|
|
776
|
|
|
* :attr:`nonconvex = False` |
777
|
|
|
|
778
|
|
|
.. math:: |
779
|
|
|
& |
780
|
|
|
P_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
781
|
|
|
\cdot \frac {1}{ANF(d, ir)} \cdot DF^{-p}\\ |
782
|
|
|
&\\ |
783
|
|
|
& |
784
|
|
|
\forall p \in \textrm{PERIODS} |
785
|
|
|
|
786
|
|
|
In case, the remaining lifetime of an asset is greater than 0 and |
787
|
|
|
attribute `use_remaining_value` of the energy system is True, |
788
|
|
|
the difference in value for the investment period compared to the |
789
|
|
|
last period of the optimization horizon is accounted for |
790
|
|
|
as an adder to the investment costs: |
791
|
|
|
|
792
|
|
|
.. math:: |
793
|
|
|
& |
794
|
|
|
P_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
795
|
|
|
A(c_{invest,var}(|P|), l_{r}, ir)\\ |
796
|
|
|
& \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
797
|
|
|
&\\ |
798
|
|
|
& |
799
|
|
|
\forall p \in \textrm{PERIODS} |
800
|
|
|
|
801
|
|
|
* :attr:`nonconvex = True` |
802
|
|
|
|
803
|
|
|
.. math:: |
804
|
|
|
& |
805
|
|
|
(P_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
806
|
|
|
\cdot \frac {1}{ANF(d, ir)}\\ |
807
|
|
|
& |
808
|
|
|
+ c_{invest,fix}(p) \cdot b_{invest}(p)) \cdot DF^{-p}\\ |
809
|
|
|
&\\ |
810
|
|
|
& |
811
|
|
|
\forall p \in \textrm{PERIODS} |
812
|
|
|
|
813
|
|
|
In case, the remaining lifetime of an asset is greater than 0 and |
814
|
|
|
attribute `use_remaining_value` of the energy system is True, |
815
|
|
|
the difference in value for the investment period compared to the |
816
|
|
|
last period of the optimization horizon is accounted for |
817
|
|
|
as an adder to the investment costs: |
818
|
|
|
|
819
|
|
|
.. math:: |
820
|
|
|
& |
821
|
|
|
(P_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
822
|
|
|
A(c_{invest,var}(|P|), l_{r}, ir)\\ |
823
|
|
|
& \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
824
|
|
|
& |
825
|
|
|
+ (c_{invest,fix}(p) - c_{invest,fix}(|P|)) |
826
|
|
|
\cdot b_{invest}(p)) \cdot DF^{-p}\\ |
827
|
|
|
&\\ |
828
|
|
|
& |
829
|
|
|
\forall p \in \textrm{PERIODS} |
830
|
|
|
|
831
|
|
|
* :attr:`fixed_costs` not None for investments |
832
|
|
|
|
833
|
|
|
.. math:: |
834
|
|
|
& |
835
|
|
|
(\sum_{pp=year(p)}^{limit_{end}} |
836
|
|
|
P_{invest}(p) \cdot c_{fixed}(pp) \cdot DF^{-pp}) |
837
|
|
|
\cdot DF^{-p}\\ |
838
|
|
|
&\\ |
839
|
|
|
& |
840
|
|
|
\forall p \in \textrm{PERIODS} |
841
|
|
|
|
842
|
|
|
* :attr:`fixed_costs` not None for existing capacity |
843
|
|
|
|
844
|
|
|
.. math:: |
845
|
|
|
\sum_{pp=0}^{limit_{exo}} P_{exist} \cdot c_{fixed}(pp) |
846
|
|
|
\cdot DF^{-pp} |
847
|
|
|
|
848
|
|
|
|
849
|
|
|
where: |
850
|
|
|
|
851
|
|
|
* :math:`A(c_{invest,var}(p), l, ir)` A is the annuity for |
852
|
|
|
investment expenses :math:`c_{invest,var}(p)`, lifetime :math:`l` |
853
|
|
|
and interest rate :math:`ir`. |
854
|
|
|
* :math:`l_{r}` is the remaining lifetime at the end of the |
855
|
|
|
optimization horizon (in case it is greater than 0 and |
856
|
|
|
smaller than the actual lifetime). |
857
|
|
|
* :math:`ANF(d, ir)` is the annuity factor for duration :math:`d` |
858
|
|
|
and interest rate :math:`ir`. |
859
|
|
|
* :math:`d=min\{year_{max} - year(p), l\}` defines the |
860
|
|
|
number of years within the optimization horizon that investment |
861
|
|
|
annuities are accounted for. |
862
|
|
|
* :math:`year(p)` denotes the start year of period :math:`p`. |
863
|
|
|
* :math:`year_{max}` denotes the last year of the optimization |
864
|
|
|
horizon, i.e. at the end of the last period. |
865
|
|
|
* :math:`limit_{end}=min\{year_{max}, year(p) + l\}` is used as an |
866
|
|
|
upper bound to ensure fixed costs for endogenous investments |
867
|
|
|
to occur within the optimization horizon. |
868
|
|
|
* :math:`limit_{exo}=min\{year_{max}, l - a\}` is used as an |
869
|
|
|
upper bound to ensure fixed costs for existing capacities to occur |
870
|
|
|
within the optimization horizon. :math:`a` is the initial age |
871
|
|
|
of an asset. |
872
|
|
|
* :math:`DF=(1+dr)` is the discount factor. |
873
|
|
|
|
874
|
|
|
The annuity / annuity factor hereby is: |
875
|
|
|
|
876
|
|
|
.. math:: |
877
|
|
|
& |
878
|
|
|
A(c_{invest,var}(p), l, ir) = c_{invest,var}(p) \cdot |
879
|
|
|
\frac {(1+ir)^l \cdot ir} {(1+ir)^l - 1}\\ |
880
|
|
|
&\\ |
881
|
|
|
& |
882
|
|
|
ANF(d, ir)=\frac {(1+ir)^d \cdot ir} {(1+ir)^d - 1} |
883
|
|
|
|
884
|
|
|
They are derived using the reciprocal of the oemof.tools.economics |
885
|
|
|
annuity function with a capex of 1. |
886
|
|
|
The interest rate :math:`ir` for the annuity is defined as weighted |
887
|
|
|
average costs of capital (wacc) and assumed constant over time. |
888
|
|
|
""" |
889
|
|
|
if not hasattr(self, "INVESTFLOWS"): |
890
|
|
|
return 0 |
891
|
|
|
|
892
|
|
|
m = self.parent_block() |
893
|
|
|
investment_costs = 0 |
894
|
|
|
period_investment_costs = {p: 0 for p in m.PERIODS} |
895
|
|
|
fixed_costs = 0 |
896
|
|
|
|
897
|
|
|
if m.es.periods is None: |
898
|
|
|
for i, o in self.CONVEX_INVESTFLOWS: |
899
|
|
|
for p in m.PERIODS: |
900
|
|
|
investment_costs += ( |
901
|
|
|
self.invest[i, o, p] |
902
|
|
|
* m.flows[i, o].investment.ep_costs[p] |
903
|
|
|
) |
904
|
|
|
|
905
|
|
|
for i, o in self.NON_CONVEX_INVESTFLOWS: |
906
|
|
|
for p in m.PERIODS: |
907
|
|
|
investment_costs += ( |
908
|
|
|
self.invest[i, o, p] |
909
|
|
|
* m.flows[i, o].investment.ep_costs[p] |
910
|
|
|
+ self.invest_status[i, o, p] |
911
|
|
|
* m.flows[i, o].investment.offset[p] |
912
|
|
|
) |
913
|
|
|
|
914
|
|
|
else: |
915
|
|
|
msg = ( |
916
|
|
|
"You did not specify an interest rate.\n" |
917
|
|
|
"It will be set equal to the discount_rate of {} " |
918
|
|
|
"of the model as a default.\nThis corresponds to a " |
919
|
|
|
"social planner point of view and does not reflect " |
920
|
|
|
"microeconomic interest requirements." |
921
|
|
|
) |
922
|
|
|
for i, o in self.CONVEX_INVESTFLOWS: |
923
|
|
|
lifetime = m.flows[i, o].investment.lifetime |
924
|
|
|
interest = 0 |
925
|
|
|
if interest == 0: |
926
|
|
|
warn( |
927
|
|
|
msg.format(m.discount_rate), |
928
|
|
|
debugging.SuspiciousUsageWarning, |
929
|
|
|
) |
930
|
|
|
interest = m.discount_rate |
931
|
|
|
for p in m.PERIODS: |
932
|
|
|
annuity = economics.annuity( |
933
|
|
|
capex=m.flows[i, o].investment.ep_costs[p], |
934
|
|
|
n=lifetime, |
935
|
|
|
wacc=interest, |
936
|
|
|
) |
937
|
|
|
duration = min( |
938
|
|
|
m.es.end_year_of_optimization - m.es.periods_years[p], |
939
|
|
|
lifetime, |
940
|
|
|
) |
941
|
|
|
present_value_factor_remaining = 1 / economics.annuity( |
942
|
|
|
capex=1, n=duration, wacc=interest |
943
|
|
|
) |
944
|
|
|
investment_costs_increment = ( |
945
|
|
|
self.invest[i, o, p] |
946
|
|
|
* annuity |
947
|
|
|
* present_value_factor_remaining |
948
|
|
|
) |
949
|
|
|
remaining_value_difference = ( |
950
|
|
|
self._evaluate_remaining_value_difference( |
951
|
|
|
m, |
952
|
|
|
p, |
953
|
|
|
i, |
954
|
|
|
o, |
955
|
|
|
m.es.end_year_of_optimization, |
956
|
|
|
lifetime, |
957
|
|
|
interest, |
958
|
|
|
) |
959
|
|
|
) |
960
|
|
|
investment_costs += ( |
961
|
|
|
investment_costs_increment + remaining_value_difference |
962
|
|
|
) |
963
|
|
|
period_investment_costs[p] += investment_costs_increment |
964
|
|
|
|
965
|
|
|
for i, o in self.NON_CONVEX_INVESTFLOWS: |
966
|
|
|
lifetime = m.flows[i, o].investment.lifetime |
967
|
|
|
interest = 0 |
968
|
|
|
if interest == 0: |
969
|
|
|
warn( |
970
|
|
|
msg.format(m.discount_rate), |
971
|
|
|
debugging.SuspiciousUsageWarning, |
972
|
|
|
) |
973
|
|
|
interest = m.discount_rate |
974
|
|
|
for p in m.PERIODS: |
975
|
|
|
annuity = economics.annuity( |
976
|
|
|
capex=m.flows[i, o].investment.ep_costs[p], |
977
|
|
|
n=lifetime, |
978
|
|
|
wacc=interest, |
979
|
|
|
) |
980
|
|
|
duration = min( |
981
|
|
|
m.es.end_year_of_optimization - m.es.periods_years[p], |
982
|
|
|
lifetime, |
983
|
|
|
) |
984
|
|
|
present_value_factor_remaining = 1 / economics.annuity( |
985
|
|
|
capex=1, n=duration, wacc=interest |
986
|
|
|
) |
987
|
|
|
investment_costs_increment = ( |
988
|
|
|
self.invest[i, o, p] |
989
|
|
|
* annuity |
990
|
|
|
* present_value_factor_remaining |
991
|
|
|
+ self.invest_status[i, o, p] |
992
|
|
|
* m.flows[i, o].investment.offset[p] |
993
|
|
|
) |
994
|
|
|
remaining_value_difference = ( |
995
|
|
|
self._evaluate_remaining_value_difference( |
996
|
|
|
m, |
997
|
|
|
p, |
998
|
|
|
i, |
999
|
|
|
o, |
1000
|
|
|
m.es.end_year_of_optimization, |
1001
|
|
|
lifetime, |
1002
|
|
|
interest, |
1003
|
|
|
nonconvex=True, |
1004
|
|
|
) |
1005
|
|
|
) |
1006
|
|
|
investment_costs += ( |
1007
|
|
|
investment_costs_increment + remaining_value_difference |
1008
|
|
|
) |
1009
|
|
|
period_investment_costs[p] += investment_costs_increment |
1010
|
|
|
|
1011
|
|
|
for i, o in self.INVESTFLOWS: |
1012
|
|
View Code Duplication |
if valid_sequence( |
|
|
|
|
1013
|
|
|
m.flows[i, o].investment.fixed_costs, len(m.PERIODS) |
1014
|
|
|
): |
1015
|
|
|
lifetime = m.flows[i, o].investment.lifetime |
1016
|
|
|
for p in m.PERIODS: |
1017
|
|
|
range_limit = min( |
1018
|
|
|
m.es.end_year_of_optimization, |
1019
|
|
|
m.es.periods_years[p] + lifetime, |
1020
|
|
|
) |
1021
|
|
|
fixed_costs += sum( |
1022
|
|
|
self.invest[i, o, p] |
1023
|
|
|
* m.flows[i, o].investment.fixed_costs[pp] |
1024
|
|
|
for pp in range(m.es.periods_years[p], range_limit) |
1025
|
|
|
) |
1026
|
|
|
|
1027
|
|
|
for i, o in self.EXISTING_INVESTFLOWS: |
1028
|
|
View Code Duplication |
if valid_sequence( |
|
|
|
|
1029
|
|
|
m.flows[i, o].investment.fixed_costs, len(m.PERIODS) |
1030
|
|
|
): |
1031
|
|
|
lifetime = m.flows[i, o].investment.lifetime |
1032
|
|
|
age = m.flows[i, o].investment.age |
1033
|
|
|
range_limit = min( |
1034
|
|
|
m.es.end_year_of_optimization, lifetime - age |
1035
|
|
|
) |
1036
|
|
|
fixed_costs += sum( |
1037
|
|
|
m.flows[i, o].investment.existing |
1038
|
|
|
* m.flows[i, o].investment.fixed_costs[pp] |
1039
|
|
|
for pp in range(range_limit) |
1040
|
|
|
) |
1041
|
|
|
|
1042
|
|
|
self.investment_costs = Expression(expr=investment_costs) |
1043
|
|
|
self.period_investment_costs = period_investment_costs |
1044
|
|
|
self.fixed_costs = Expression(expr=fixed_costs) |
1045
|
|
|
self.costs = Expression(expr=investment_costs + fixed_costs) |
1046
|
|
|
|
1047
|
|
|
return self.costs |
1048
|
|
|
|
1049
|
|
|
def _evaluate_remaining_value_difference( |
1050
|
|
|
self, |
1051
|
|
|
m, |
1052
|
|
|
p, |
1053
|
|
|
i, |
1054
|
|
|
o, |
1055
|
|
|
end_year_of_optimization, |
1056
|
|
|
lifetime, |
1057
|
|
|
interest, |
1058
|
|
|
nonconvex=False, |
1059
|
|
|
): |
1060
|
|
|
"""Evaluate and return the remaining value difference of an investment |
1061
|
|
|
|
1062
|
|
|
The remaining value difference in the net present values if the asset |
1063
|
|
|
was to be liquidated at the end of the optimization horizon and the |
1064
|
|
|
net present value using the original investment expenses. |
1065
|
|
|
|
1066
|
|
|
Parameters |
1067
|
|
|
---------- |
1068
|
|
|
m : oemof.solph.models.Model |
1069
|
|
|
Optimization model |
1070
|
|
|
|
1071
|
|
|
p : int |
1072
|
|
|
Period in which investment occurs |
1073
|
|
|
|
1074
|
|
|
i : any instance of oemof.solph.components |
1075
|
|
|
start node of flow |
1076
|
|
|
|
1077
|
|
|
o : any instance of oemof.solph.components |
1078
|
|
|
end node of flow |
1079
|
|
|
|
1080
|
|
|
end_year_of_optimization : int |
1081
|
|
|
Last year of the optimization horizon |
1082
|
|
|
|
1083
|
|
|
lifetime : int |
1084
|
|
|
lifetime of investment considered |
1085
|
|
|
|
1086
|
|
|
interest : float |
1087
|
|
|
Demanded interest rate for investment |
1088
|
|
|
|
1089
|
|
|
nonconvex : bool |
1090
|
|
|
Indicating whether considered flow is nonconvex. |
1091
|
|
|
""" |
1092
|
|
|
if m.es.use_remaining_value: |
1093
|
|
|
if end_year_of_optimization - m.es.periods_years[p] < lifetime: |
1094
|
|
|
remaining_lifetime = lifetime - ( |
1095
|
|
|
end_year_of_optimization - m.es.periods_years[p] |
1096
|
|
|
) |
1097
|
|
|
remaining_annuity = economics.annuity( |
1098
|
|
|
capex=m.flows[i, o].investment.ep_costs[-1], |
1099
|
|
|
n=remaining_lifetime, |
1100
|
|
|
wacc=interest, |
1101
|
|
|
) |
1102
|
|
|
original_annuity = economics.annuity( |
1103
|
|
|
capex=m.flows[i, o].investment.ep_costs[p], |
1104
|
|
|
n=remaining_lifetime, |
1105
|
|
|
wacc=interest, |
1106
|
|
|
) |
1107
|
|
|
present_value_factor_remaining = 1 / economics.annuity( |
1108
|
|
|
capex=1, n=remaining_lifetime, wacc=interest |
1109
|
|
|
) |
1110
|
|
|
convex_investment_costs = ( |
1111
|
|
|
self.invest[i, o, p] |
1112
|
|
|
* (remaining_annuity - original_annuity) |
1113
|
|
|
* present_value_factor_remaining |
1114
|
|
|
) |
1115
|
|
|
if nonconvex: |
1116
|
|
|
return convex_investment_costs + self.invest_status[ |
1117
|
|
|
i, o, p |
1118
|
|
|
] * ( |
1119
|
|
|
m.flows[i, o].investment.offset[-1] |
1120
|
|
|
- m.flows[i, o].investment.offset[p] |
1121
|
|
|
) |
1122
|
|
|
else: |
1123
|
|
|
return convex_investment_costs |
1124
|
|
|
else: |
1125
|
|
|
return 0 |
1126
|
|
|
else: |
1127
|
|
|
return 0 |
1128
|
|
|
|
1129
|
|
View Code Duplication |
def _minimum_investment_constraint(self): |
|
|
|
|
1130
|
|
|
"""Constraint factory for a minimum investment""" |
1131
|
|
|
m = self.parent_block() |
1132
|
|
|
|
1133
|
|
|
def _min_invest_rule(_): |
1134
|
|
|
"""Rule definition for applying a minimum investment""" |
1135
|
|
|
for i, o in self.NON_CONVEX_INVESTFLOWS: |
1136
|
|
|
for p in m.PERIODS: |
1137
|
|
|
expr = ( |
1138
|
|
|
m.flows[i, o].investment.minimum[p] |
1139
|
|
|
* self.invest_status[i, o, p] |
1140
|
|
|
<= self.invest[i, o, p] |
1141
|
|
|
) |
1142
|
|
|
self.minimum_rule.add((i, o, p), expr) |
1143
|
|
|
|
1144
|
|
|
self.minimum_rule = Constraint( |
1145
|
|
|
self.NON_CONVEX_INVESTFLOWS, m.PERIODS, noruleinit=True |
1146
|
|
|
) |
1147
|
|
|
self.minimum_rule_build = BuildAction(rule=_min_invest_rule) |
1148
|
|
|
|
1149
|
|
|
return self.minimum_rule |
1150
|
|
|
|
1151
|
|
View Code Duplication |
def _maximum_investment_constraint(self): |
|
|
|
|
1152
|
|
|
"""Constraint factory for a maximum investment""" |
1153
|
|
|
m = self.parent_block() |
1154
|
|
|
|
1155
|
|
|
def _max_invest_rule(_): |
1156
|
|
|
"""Rule definition for applying a minimum investment""" |
1157
|
|
|
for i, o in self.NON_CONVEX_INVESTFLOWS: |
1158
|
|
|
for p in m.PERIODS: |
1159
|
|
|
expr = self.invest[i, o, p] <= ( |
1160
|
|
|
m.flows[i, o].investment.maximum[p] |
1161
|
|
|
* self.invest_status[i, o, p] |
1162
|
|
|
) |
1163
|
|
|
self.maximum_rule.add((i, o, p), expr) |
1164
|
|
|
|
1165
|
|
|
self.maximum_rule = Constraint( |
1166
|
|
|
self.NON_CONVEX_INVESTFLOWS, m.PERIODS, noruleinit=True |
1167
|
|
|
) |
1168
|
|
|
self.maximum_rule_build = BuildAction(rule=_max_invest_rule) |
1169
|
|
|
|
1170
|
|
|
return self.maximum_rule |
1171
|
|
|
|