| Conditions | 32 |
| Total Lines | 478 |
| Code Lines | 164 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like solph.flows._investment_flow_block.InvestmentFlowBlock._create_constraints() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 266 | def _create_constraints(self): |
||
| 267 | r"""Creates all constraints for standard flows. |
||
| 268 | |||
| 269 | Depending on the attributes of the *InvestmentFlowBlock* |
||
| 270 | and *SimpleFlowBlock*, different constraints are created. |
||
| 271 | The following constraints are created |
||
| 272 | for all *InvestmentFlowBlock* objects:\ |
||
| 273 | |||
| 274 | Total capacity / energy |
||
| 275 | |||
| 276 | .. math:: |
||
| 277 | & |
||
| 278 | if \quad p=0:\\ |
||
| 279 | & |
||
| 280 | P_{total}(p) = P_{invest}(p) + P_{exist}(p) \\ |
||
| 281 | &\\ |
||
| 282 | & |
||
| 283 | else:\\ |
||
| 284 | & |
||
| 285 | P_{total}(p) = P_{total}(p-1) + P_{invest}(p) - P_{old}(p) \\ |
||
| 286 | &\\ |
||
| 287 | & |
||
| 288 | \forall p \in \textrm{PERIODS} |
||
| 289 | |||
| 290 | Upper bound for the flow value |
||
| 291 | |||
| 292 | .. math:: |
||
| 293 | & |
||
| 294 | P(p, t) \le ( P_{total}(p) ) \cdot f_{max}(t) \\ |
||
| 295 | & |
||
| 296 | \forall p, t \in \textrm{TIMEINDEX} |
||
| 297 | |||
| 298 | For a multi-period model, the old capacity is defined as follows: |
||
| 299 | |||
| 300 | .. math:: |
||
| 301 | & |
||
| 302 | P_{old}(p) = P_{old,exo}(p) + P_{old,end}(p)\\ |
||
| 303 | &\\ |
||
| 304 | & |
||
| 305 | if \quad p=0:\\ |
||
| 306 | & |
||
| 307 | P_{old,end}(p) = 0\\ |
||
| 308 | &\\ |
||
| 309 | & |
||
| 310 | else \quad if \quad l \leq year(p):\\ |
||
| 311 | & |
||
| 312 | P_{old,end}(p) = P_{invest}(p_{comm})\\ |
||
| 313 | &\\ |
||
| 314 | & |
||
| 315 | else:\\ |
||
| 316 | & |
||
| 317 | P_{old,end}(p) = 0\\ |
||
| 318 | &\\ |
||
| 319 | & |
||
| 320 | if \quad p=0:\\ |
||
| 321 | & |
||
| 322 | P_{old,exo}(p) = 0\\ |
||
| 323 | &\\ |
||
| 324 | & |
||
| 325 | else \quad if \quad l - a \leq year(p):\\ |
||
| 326 | & |
||
| 327 | P_{old,exo}(p) = P_{exist} (*)\\ |
||
| 328 | &\\ |
||
| 329 | & |
||
| 330 | else:\\ |
||
| 331 | & |
||
| 332 | P_{old,exo}(p) = 0\\ |
||
| 333 | &\\ |
||
| 334 | & |
||
| 335 | \forall p \in \textrm{PERIODS} |
||
| 336 | |||
| 337 | where: |
||
| 338 | |||
| 339 | * (*) is only performed for the first period the condition |
||
| 340 | is True. A decommissioning flag is then set to True |
||
| 341 | to prevent having falsely added old capacity in future periods. |
||
| 342 | * :math:`year(p)` is the year corresponding to period p |
||
| 343 | * :math:`p_{comm}` is the commissioning period of the flow |
||
| 344 | (which is determined by the model itself) |
||
| 345 | |||
| 346 | Depending on the attribute :attr:`nonconvex`, the constraints for the |
||
| 347 | bounds of the decision variable :math:`P_{invest}(p)` are different:\ |
||
| 348 | |||
| 349 | * :attr:`nonconvex = False` |
||
| 350 | |||
| 351 | .. math:: |
||
| 352 | & |
||
| 353 | P_{invest, min}(p) \le P_{invest}(p) \le P_{invest, max}(p) \\ |
||
| 354 | & |
||
| 355 | \forall p \in \textrm{PERIODS} |
||
| 356 | |||
| 357 | * :attr:`nonconvex = True` |
||
| 358 | |||
| 359 | .. math:: |
||
| 360 | & |
||
| 361 | P_{invest, min}(p) \cdot Y_{invest}(p) \le P_{invest}(p)\\ |
||
| 362 | & |
||
| 363 | P_{invest}(p) \le P_{invest, max}(p) \cdot Y_{invest}(p)\\ |
||
| 364 | &\\ |
||
| 365 | & |
||
| 366 | \forall p \in \textrm{PERIODS} |
||
| 367 | |||
| 368 | For all *InvestmentFlowBlock* objects |
||
| 369 | (independent of the attribute :attr:`nonconvex`), |
||
| 370 | the following additional constraints are created, if the appropriate |
||
| 371 | attribute of the *SimpleFlowBlock* |
||
| 372 | (see :class:`oemof.solph.flows._simple_flow_block.SimpleFlowBlock`) |
||
| 373 | is set: |
||
| 374 | |||
| 375 | * :attr:`fix` is not None |
||
| 376 | |||
| 377 | Actual value constraint for investments with fixed flow values |
||
| 378 | |||
| 379 | .. math:: |
||
| 380 | & |
||
| 381 | P(p, t) = P_{total}(p) \cdot f_{fix}(t) \\ |
||
| 382 | &\\ |
||
| 383 | & |
||
| 384 | \forall p, t \in \textrm{TIMEINDEX} |
||
| 385 | |||
| 386 | * :attr:`min != 0` |
||
| 387 | |||
| 388 | Lower bound for the flow values |
||
| 389 | |||
| 390 | .. math:: |
||
| 391 | & |
||
| 392 | P(p, t) \geq P_{total}(p) \cdot f_{min}(t) \\ |
||
| 393 | &\\ |
||
| 394 | & |
||
| 395 | \forall p, t \in \textrm{TIMEINDEX} |
||
| 396 | |||
| 397 | * :attr:`full_load_time_max is not None` |
||
| 398 | |||
| 399 | Upper bound for the sum of all flow values |
||
| 400 | (e.g. maximum full load hours) |
||
| 401 | |||
| 402 | .. math:: |
||
| 403 | \sum_{p, t} P(p, t) \cdot \tau(t) \leq P_{total}(p) |
||
| 404 | \cdot t_{full\_load, min} |
||
| 405 | |||
| 406 | * :attr:`full_load_time_min is not None` |
||
| 407 | |||
| 408 | Lower bound for the sum of all flow values |
||
| 409 | (e.g. minimum full load hours) |
||
| 410 | |||
| 411 | .. math:: |
||
| 412 | \sum_{p, t} P(t) \cdot \tau(t) \geq P_{total} |
||
| 413 | \cdot t_{full\_load, min} |
||
| 414 | |||
| 415 | * :attr:`overall_maximum` is not None |
||
| 416 | (for multi-period model only) |
||
| 417 | |||
| 418 | Overall maximum of total installed capacity / energy for flow |
||
| 419 | |||
| 420 | .. math:: |
||
| 421 | & |
||
| 422 | P_{total}(p) \leq P_{overall,max} \\ |
||
| 423 | &\\ |
||
| 424 | & |
||
| 425 | \forall p \in \textrm{PERIODS} |
||
| 426 | |||
| 427 | * :attr:`overall_minimum` is not None |
||
| 428 | (for multi-period model only) |
||
| 429 | |||
| 430 | Overall minimum of total installed capacity / energy for flow; |
||
| 431 | applicable only in last period |
||
| 432 | |||
| 433 | .. math:: |
||
| 434 | P_{total}(p_{last}) \geq P_{overall,min} |
||
| 435 | """ |
||
| 436 | m = self.parent_block() |
||
| 437 | |||
| 438 | self.minimum_rule = self._minimum_investment_constraint() |
||
| 439 | self.maximum_rule = self._maximum_investment_constraint() |
||
| 440 | |||
| 441 | # Handle unit lifetimes |
||
| 442 | def _total_capacity_rule(block): |
||
| 443 | """Rule definition for determining total installed |
||
| 444 | capacity (taking decommissioning into account) |
||
| 445 | """ |
||
| 446 | for i, o in self.INVESTFLOWS: |
||
| 447 | for p in m.PERIODS: |
||
| 448 | if p == 0: |
||
| 449 | expr = ( |
||
| 450 | self.total[i, o, p] |
||
| 451 | == self.invest[i, o, p] |
||
| 452 | + m.flows[i, o].investment.existing |
||
| 453 | ) |
||
| 454 | self.total_rule.add((i, o, p), expr) |
||
| 455 | # applicable for multi-period model only |
||
| 456 | else: |
||
| 457 | expr = ( |
||
| 458 | self.total[i, o, p] |
||
| 459 | == self.invest[i, o, p] |
||
| 460 | + self.total[i, o, p - 1] |
||
| 461 | - self.old[i, o, p] |
||
| 462 | ) |
||
| 463 | self.total_rule.add((i, o, p), expr) |
||
| 464 | |||
| 465 | self.total_rule = Constraint( |
||
| 466 | self.INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 467 | ) |
||
| 468 | self.total_rule_build = BuildAction(rule=_total_capacity_rule) |
||
| 469 | |||
| 470 | if m.es.periods is not None: |
||
| 471 | |||
| 472 | def _old_capacity_rule_end(block): |
||
| 473 | """Rule definition for determining old endogenously installed |
||
| 474 | capacity to be decommissioned due to reaching its lifetime. |
||
| 475 | Investment and decommissioning periods are linked within |
||
| 476 | the constraint. The respective decommissioning period is |
||
| 477 | determined for every investment period based on the components |
||
| 478 | lifetime and a matrix describing its age of each endogenous |
||
| 479 | investment. Decommissioning can only occur at the beginning of |
||
| 480 | each period. |
||
| 481 | |||
| 482 | Note |
||
| 483 | ---- |
||
| 484 | For further information on the implementation check |
||
| 485 | PR#957 https://github.com/oemof/oemof-solph/pull/957 |
||
| 486 | """ |
||
| 487 | for i, o in self.INVESTFLOWS: |
||
| 488 | lifetime = m.flows[i, o].investment.lifetime |
||
| 489 | if lifetime is None: |
||
| 490 | msg = ( |
||
| 491 | "You have to specify a lifetime " |
||
| 492 | "for a Flow with an associated " |
||
| 493 | "investment object in " |
||
| 494 | f"a multi-period model! Value for {(i, o)} " |
||
| 495 | "is missing." |
||
| 496 | ) |
||
| 497 | raise ValueError(msg) |
||
| 498 | |||
| 499 | # get the period matrix describing the temporal distance |
||
| 500 | # between all period combinations. |
||
| 501 | periods_matrix = m.es.periods_matrix |
||
| 502 | |||
| 503 | # get the index of the minimum value in each row greater |
||
| 504 | # equal than the lifetime. This value equals the |
||
| 505 | # decommissioning period if not zero. The index of this |
||
| 506 | # value represents the investment period. If np.where |
||
| 507 | # condition is not met in any row, min value will be zero |
||
| 508 | decomm_periods = np.argmin( |
||
| 509 | np.where( |
||
| 510 | (periods_matrix >= lifetime), |
||
| 511 | periods_matrix, |
||
| 512 | np.inf, |
||
| 513 | ), |
||
| 514 | axis=1, |
||
| 515 | ) |
||
| 516 | |||
| 517 | # no decommissioning in first period |
||
| 518 | expr = self.old_end[i, o, 0] == 0 |
||
| 519 | self.old_rule_end.add((i, o, 0), expr) |
||
| 520 | |||
| 521 | # all periods not in decomm_periods have no decommissioning |
||
| 522 | # zero is excluded |
||
| 523 | for p in m.PERIODS: |
||
| 524 | if p not in decomm_periods and p != 0: |
||
| 525 | expr = self.old_end[i, o, p] == 0 |
||
| 526 | self.old_rule_end.add((i, o, p), expr) |
||
| 527 | |||
| 528 | # multiple invests can be decommissioned in the same period |
||
| 529 | # but only sequential ones, thus a bookkeeping is |
||
| 530 | # introduced and constraints are added to equation one |
||
| 531 | # iteration later. |
||
| 532 | last_decomm_p = np.nan |
||
| 533 | # loop over invest periods (values are decomm_periods) |
||
| 534 | for invest_p, decomm_p in enumerate(decomm_periods): |
||
| 535 | # Add constraint of iteration before |
||
| 536 | # (skipped in first iteration by last_decomm_p = nan) |
||
| 537 | if (decomm_p != last_decomm_p) and ( |
||
| 538 | last_decomm_p is not np.nan |
||
| 539 | ): |
||
| 540 | expr = self.old_end[i, o, last_decomm_p] == expr |
||
| 541 | self.old_rule_end.add((i, o, last_decomm_p), expr) |
||
| 542 | |||
| 543 | # no decommissioning if decomm_p is zero |
||
| 544 | if decomm_p == 0: |
||
| 545 | # overwrite decomm_p with zero to avoid |
||
| 546 | # chaining invest periods in next iteration |
||
| 547 | last_decomm_p = 0 |
||
| 548 | |||
| 549 | # if decomm_p is the same as the last one chain invest |
||
| 550 | # period |
||
| 551 | elif decomm_p == last_decomm_p: |
||
| 552 | expr += self.invest[i, o, invest_p] |
||
| 553 | # overwrite decomm_p |
||
| 554 | last_decomm_p = decomm_p |
||
| 555 | |||
| 556 | # if decomm_p is not zero, not the same as the last one |
||
| 557 | # and it's not the first period |
||
| 558 | else: |
||
| 559 | expr = self.invest[i, o, invest_p] |
||
| 560 | # overwrite decomm_p |
||
| 561 | last_decomm_p = decomm_p |
||
| 562 | |||
| 563 | # Add constraint of very last iteration |
||
| 564 | if last_decomm_p != 0: |
||
| 565 | expr = self.old_end[i, o, last_decomm_p] == expr |
||
| 566 | self.old_rule_end.add((i, o, last_decomm_p), expr) |
||
| 567 | |||
| 568 | self.old_rule_end = Constraint( |
||
| 569 | self.INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 570 | ) |
||
| 571 | self.old_rule_end_build = BuildAction(rule=_old_capacity_rule_end) |
||
| 572 | |||
| 573 | def _old_capacity_rule_exo(block): |
||
| 574 | """Rule definition for determining old exogenously given |
||
| 575 | capacity to be decommissioned due to reaching its lifetime |
||
| 576 | """ |
||
| 577 | for i, o in self.INVESTFLOWS: |
||
| 578 | age = m.flows[i, o].investment.age |
||
| 579 | lifetime = m.flows[i, o].investment.lifetime |
||
| 580 | is_decommissioned = False |
||
| 581 | for p in m.PERIODS: |
||
| 582 | # No shutdown in first period |
||
| 583 | if p == 0: |
||
| 584 | expr = self.old_exo[i, o, p] == 0 |
||
| 585 | self.old_rule_exo.add((i, o, p), expr) |
||
| 586 | elif lifetime - age <= m.es.periods_years[p]: |
||
| 587 | # Track decommissioning status |
||
| 588 | if not is_decommissioned: |
||
| 589 | expr = ( |
||
| 590 | self.old_exo[i, o, p] |
||
| 591 | == m.flows[i, o].investment.existing |
||
| 592 | ) |
||
| 593 | is_decommissioned = True |
||
| 594 | else: |
||
| 595 | expr = self.old_exo[i, o, p] == 0 |
||
| 596 | self.old_rule_exo.add((i, o, p), expr) |
||
| 597 | else: |
||
| 598 | expr = self.old_exo[i, o, p] == 0 |
||
| 599 | self.old_rule_exo.add((i, o, p), expr) |
||
| 600 | |||
| 601 | self.old_rule_exo = Constraint( |
||
| 602 | self.INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 603 | ) |
||
| 604 | self.old_rule_exo_build = BuildAction(rule=_old_capacity_rule_exo) |
||
| 605 | |||
| 606 | def _old_capacity_rule(block): |
||
| 607 | """Rule definition for determining (overall) old capacity |
||
| 608 | to be decommissioned due to reaching its lifetime |
||
| 609 | """ |
||
| 610 | for i, o in self.INVESTFLOWS: |
||
| 611 | for p in m.PERIODS: |
||
| 612 | expr = ( |
||
| 613 | self.old[i, o, p] |
||
| 614 | == self.old_end[i, o, p] + self.old_exo[i, o, p] |
||
| 615 | ) |
||
| 616 | self.old_rule.add((i, o, p), expr) |
||
| 617 | |||
| 618 | self.old_rule = Constraint( |
||
| 619 | self.INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 620 | ) |
||
| 621 | self.old_rule_build = BuildAction(rule=_old_capacity_rule) |
||
| 622 | |||
| 623 | def _investflow_fixed_rule(block): |
||
| 624 | """Rule definition of constraint to fix flow variable |
||
| 625 | of investment flow to (normed) actual value |
||
| 626 | """ |
||
| 627 | for i, o in self.FIXED_INVESTFLOWS: |
||
| 628 | for p, t in m.TIMEINDEX: |
||
| 629 | expr = ( |
||
| 630 | m.flow[i, o, t] |
||
| 631 | == self.total[i, o, p] * m.flows[i, o].fix[t] |
||
| 632 | ) |
||
| 633 | self.fixed.add((i, o, p, t), expr) |
||
| 634 | |||
| 635 | self.fixed = Constraint( |
||
| 636 | self.FIXED_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
||
| 637 | ) |
||
| 638 | self.fixed_build = BuildAction(rule=_investflow_fixed_rule) |
||
| 639 | |||
| 640 | def _max_investflow_rule(block): |
||
| 641 | """Rule definition of constraint setting an upper bound of flow |
||
| 642 | variable in investment case. |
||
| 643 | """ |
||
| 644 | for i, o in self.NON_FIXED_INVESTFLOWS: |
||
| 645 | for p, t in m.TIMEINDEX: |
||
| 646 | expr = ( |
||
| 647 | m.flow[i, o, t] |
||
| 648 | <= self.total[i, o, p] * m.flows[i, o].max[t] |
||
| 649 | ) |
||
| 650 | self.max.add((i, o, p, t), expr) |
||
| 651 | |||
| 652 | self.max = Constraint( |
||
| 653 | self.NON_FIXED_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
||
| 654 | ) |
||
| 655 | self.max_build = BuildAction(rule=_max_investflow_rule) |
||
| 656 | |||
| 657 | def _min_investflow_rule(block): |
||
| 658 | """Rule definition of constraint setting a lower bound on flow |
||
| 659 | variable in investment case. |
||
| 660 | """ |
||
| 661 | for i, o in self.MIN_INVESTFLOWS: |
||
| 662 | for p, t in m.TIMEINDEX: |
||
| 663 | expr = ( |
||
| 664 | m.flow[i, o, t] |
||
| 665 | >= self.total[i, o, p] * m.flows[i, o].min[t] |
||
| 666 | ) |
||
| 667 | self.min.add((i, o, p, t), expr) |
||
| 668 | |||
| 669 | self.min = Constraint( |
||
| 670 | self.MIN_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
||
| 671 | ) |
||
| 672 | self.min_build = BuildAction(rule=_min_investflow_rule) |
||
| 673 | |||
| 674 | def _full_load_time_max_investflow_rule(_, i, o): |
||
| 675 | """Rule definition for build action of max. sum flow constraint |
||
| 676 | in investment case. |
||
| 677 | """ |
||
| 678 | expr = sum( |
||
| 679 | m.flow[i, o, t] * m.timeincrement[t] for t in m.TIMESTEPS |
||
| 680 | ) <= ( |
||
| 681 | m.flows[i, o].full_load_time_max |
||
| 682 | * sum(self.total[i, o, p] for p in m.PERIODS) |
||
| 683 | ) |
||
| 684 | return expr |
||
| 685 | |||
| 686 | self.full_load_time_max = Constraint( |
||
| 687 | self.FULL_LOAD_TIME_MAX_INVESTFLOWS, |
||
| 688 | rule=_full_load_time_max_investflow_rule, |
||
| 689 | ) |
||
| 690 | |||
| 691 | def _full_load_time_min_investflow_rule(_, i, o): |
||
| 692 | """Rule definition for build action of min. sum flow constraint |
||
| 693 | in investment case. |
||
| 694 | """ |
||
| 695 | expr = sum( |
||
| 696 | m.flow[i, o, t] * m.timeincrement[t] for t in m.TIMESTEPS |
||
| 697 | ) >= ( |
||
| 698 | sum(self.total[i, o, p] for p in m.PERIODS) |
||
| 699 | * m.flows[i, o].full_load_time_min |
||
| 700 | ) |
||
| 701 | return expr |
||
| 702 | |||
| 703 | self.full_load_time_min = Constraint( |
||
| 704 | self.FULL_LOAD_TIME_MIN_INVESTFLOWS, |
||
| 705 | rule=_full_load_time_min_investflow_rule, |
||
| 706 | ) |
||
| 707 | |||
| 708 | if m.es.periods is not None: |
||
| 709 | |||
| 710 | def _overall_maximum_investflow_rule(block): |
||
| 711 | """Rule definition for maximum overall investment |
||
| 712 | in investment case. |
||
| 713 | """ |
||
| 714 | for i, o in self.OVERALL_MAXIMUM_INVESTFLOWS: |
||
| 715 | for p in m.PERIODS: |
||
| 716 | expr = ( |
||
| 717 | self.total[i, o, p] |
||
| 718 | <= m.flows[i, o].investment.overall_maximum |
||
| 719 | ) |
||
| 720 | self.overall_maximum.add((i, o, p), expr) |
||
| 721 | |||
| 722 | self.overall_maximum = Constraint( |
||
| 723 | self.OVERALL_MAXIMUM_INVESTFLOWS, m.PERIODS, noruleinit=True |
||
| 724 | ) |
||
| 725 | self.overall_maximum_build = BuildAction( |
||
| 726 | rule=_overall_maximum_investflow_rule |
||
| 727 | ) |
||
| 728 | |||
| 729 | def _overall_minimum_investflow_rule(block, i, o): |
||
| 730 | """Rule definition for minimum overall investment |
||
| 731 | in investment case. |
||
| 732 | |||
| 733 | Note: This is only applicable for the last period |
||
| 734 | """ |
||
| 735 | expr = ( |
||
| 736 | m.flows[i, o].investment.overall_minimum |
||
| 737 | <= self.total[i, o, m.PERIODS[-1]] |
||
| 738 | ) |
||
| 739 | return expr |
||
| 740 | |||
| 741 | self.overall_minimum = Constraint( |
||
| 742 | self.OVERALL_MINIMUM_INVESTFLOWS, |
||
| 743 | rule=_overall_minimum_investflow_rule, |
||
| 744 | ) |
||
| 1171 |