1 | import sys, pytest |
||
2 | import numpy as np |
||
3 | import pandas as pd |
||
4 | |||
5 | from hyperactive import Hyperactive |
||
6 | |||
7 | |||
8 | if sys.platform.startswith("win"): |
||
9 | pytest.skip("skip these tests for windows", allow_module_level=True) |
||
10 | |||
11 | |||
12 | View Code Duplication | def test_search_space_0(): |
|
0 ignored issues
–
show
Duplication
introduced
by
![]() |
|||
13 | def objective_function(opt): |
||
14 | score = -opt["x1"] * opt["x1"] |
||
15 | return score |
||
16 | |||
17 | search_space = { |
||
18 | "x1": list(range(0, 3, 1)), |
||
19 | } |
||
20 | |||
21 | hyper = Hyperactive() |
||
22 | hyper.add_search( |
||
23 | objective_function, |
||
24 | search_space, |
||
25 | n_iter=15, |
||
26 | ) |
||
27 | hyper.run() |
||
28 | |||
29 | assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
||
30 | assert hyper.best_para(objective_function)["x1"] in search_space["x1"] |
||
31 | |||
32 | |||
33 | View Code Duplication | def test_search_space_1(): |
|
0 ignored issues
–
show
|
|||
34 | def objective_function(opt): |
||
35 | score = -opt["x1"] * opt["x1"] |
||
36 | return score |
||
37 | |||
38 | search_space = { |
||
39 | "x1": list(np.arange(0, 0.003, 0.001)), |
||
40 | } |
||
41 | |||
42 | hyper = Hyperactive() |
||
43 | hyper.add_search( |
||
44 | objective_function, |
||
45 | search_space, |
||
46 | n_iter=15, |
||
47 | ) |
||
48 | hyper.run() |
||
49 | |||
50 | assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
||
51 | assert hyper.best_para(objective_function)["x1"] in search_space["x1"] |
||
52 | |||
53 | |||
54 | View Code Duplication | def test_search_space_2(): |
|
0 ignored issues
–
show
|
|||
55 | def objective_function(opt): |
||
56 | score = -opt["x1"] * opt["x1"] |
||
57 | return score |
||
58 | |||
59 | search_space = { |
||
60 | "x1": list(range(0, 100, 1)), |
||
61 | "str1": ["0", "1", "2"], |
||
62 | } |
||
63 | |||
64 | hyper = Hyperactive() |
||
65 | hyper.add_search( |
||
66 | objective_function, |
||
67 | search_space, |
||
68 | n_iter=15, |
||
69 | ) |
||
70 | hyper.run() |
||
71 | |||
72 | assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
||
73 | assert hyper.best_para(objective_function)["str1"] in search_space["str1"] |
||
74 | |||
75 | |||
76 | def test_search_space_3(): |
||
77 | def func1(): |
||
78 | pass |
||
79 | |||
80 | def func2(): |
||
81 | pass |
||
82 | |||
83 | def func3(): |
||
84 | pass |
||
85 | |||
86 | def objective_function(opt): |
||
87 | score = -opt["x1"] * opt["x1"] |
||
88 | return score |
||
89 | |||
90 | search_space = { |
||
91 | "x1": list(range(0, 100, 1)), |
||
92 | "func1": [func1, func2, func3], |
||
93 | } |
||
94 | |||
95 | hyper = Hyperactive() |
||
96 | hyper.add_search( |
||
97 | objective_function, |
||
98 | search_space, |
||
99 | n_iter=15, |
||
100 | ) |
||
101 | hyper.run() |
||
102 | |||
103 | assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
||
104 | assert hyper.best_para(objective_function)["func1"] in search_space["func1"] |
||
105 | |||
106 | |||
107 | def test_search_space_4(): |
||
108 | class class1: |
||
109 | pass |
||
110 | |||
111 | class class2: |
||
112 | pass |
||
113 | |||
114 | class class3: |
||
115 | pass |
||
116 | |||
117 | def objective_function(opt): |
||
118 | score = -opt["x1"] * opt["x1"] |
||
119 | return score |
||
120 | |||
121 | search_space = { |
||
122 | "x1": list(range(0, 100, 1)), |
||
123 | "class1": [class1, class2, class3], |
||
124 | } |
||
125 | |||
126 | hyper = Hyperactive() |
||
127 | hyper.add_search( |
||
128 | objective_function, |
||
129 | search_space, |
||
130 | n_iter=15, |
||
131 | ) |
||
132 | hyper.run() |
||
133 | |||
134 | assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
||
135 | assert hyper.best_para(objective_function)["class1"] in search_space["class1"] |
||
136 | |||
137 | |||
138 | def test_search_space_5(): |
||
139 | class class1: |
||
140 | def __init__(self): |
||
141 | pass |
||
142 | |||
143 | class class2: |
||
144 | def __init__(self): |
||
145 | pass |
||
146 | |||
147 | class class3: |
||
148 | def __init__(self): |
||
149 | pass |
||
150 | |||
151 | def class_f1(): |
||
152 | return class1 |
||
153 | |||
154 | def class_f2(): |
||
155 | return class2 |
||
156 | |||
157 | def class_f3(): |
||
158 | return class3 |
||
159 | |||
160 | def objective_function(opt): |
||
161 | score = -opt["x1"] * opt["x1"] |
||
162 | return score |
||
163 | |||
164 | search_space = { |
||
165 | "x1": list(range(0, 100, 1)), |
||
166 | "class1": [class_f1, class_f2, class_f3], |
||
167 | } |
||
168 | |||
169 | hyper = Hyperactive() |
||
170 | hyper.add_search( |
||
171 | objective_function, |
||
172 | search_space, |
||
173 | n_iter=15, |
||
174 | ) |
||
175 | hyper.run() |
||
176 | |||
177 | assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
||
178 | assert hyper.best_para(objective_function)["class1"] in search_space["class1"] |
||
179 | |||
180 | |||
181 | def test_search_space_6(): |
||
182 | def objective_function(opt): |
||
183 | score = -opt["x1"] * opt["x1"] |
||
184 | return score |
||
185 | |||
186 | def list_f1(): |
||
187 | return [0, 1] |
||
188 | |||
189 | def list_f2(): |
||
190 | return [1, 0] |
||
191 | |||
192 | search_space = { |
||
193 | "x1": list(range(0, 100, 1)), |
||
194 | "list1": [list_f1, list_f2], |
||
195 | } |
||
196 | |||
197 | hyper = Hyperactive() |
||
198 | hyper.add_search( |
||
199 | objective_function, |
||
200 | search_space, |
||
201 | n_iter=15, |
||
202 | ) |
||
203 | hyper.run() |
||
204 | |||
205 | assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
||
206 | assert hyper.best_para(objective_function)["list1"] in search_space["list1"] |
||
207 |