1
|
|
|
"""Test module for search space functionality.""" |
2
|
|
|
|
3
|
|
|
import sys |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
import pytest |
8
|
|
|
|
9
|
|
|
from hyperactive import Hyperactive |
10
|
|
|
|
11
|
|
|
if sys.platform.startswith("win"): |
12
|
|
|
pytest.skip("skip these tests for windows", allow_module_level=True) |
13
|
|
|
|
14
|
|
|
|
15
|
|
View Code Duplication |
def test_search_space_0(): |
|
|
|
|
16
|
|
|
"""Test search space with integer range.""" |
17
|
|
|
|
18
|
|
|
def objective_function(opt): |
19
|
|
|
score = -opt["x1"] * opt["x1"] |
20
|
|
|
return score |
21
|
|
|
|
22
|
|
|
search_space = { |
23
|
|
|
"x1": list(range(0, 3, 1)), |
24
|
|
|
} |
25
|
|
|
|
26
|
|
|
hyper = Hyperactive() |
27
|
|
|
hyper.add_search( |
28
|
|
|
objective_function, |
29
|
|
|
search_space, |
30
|
|
|
n_iter=15, |
31
|
|
|
) |
32
|
|
|
hyper.run() |
33
|
|
|
|
34
|
|
|
assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
35
|
|
|
assert hyper.best_para(objective_function)["x1"] in search_space["x1"] |
36
|
|
|
|
37
|
|
|
|
38
|
|
View Code Duplication |
def test_search_space_1(): |
|
|
|
|
39
|
|
|
"""Test search space with float range.""" |
40
|
|
|
|
41
|
|
|
def objective_function(opt): |
42
|
|
|
score = -opt["x1"] * opt["x1"] |
43
|
|
|
return score |
44
|
|
|
|
45
|
|
|
search_space = { |
46
|
|
|
"x1": list(np.arange(0, 0.003, 0.001)), |
47
|
|
|
} |
48
|
|
|
|
49
|
|
|
hyper = Hyperactive() |
50
|
|
|
hyper.add_search( |
51
|
|
|
objective_function, |
52
|
|
|
search_space, |
53
|
|
|
n_iter=15, |
54
|
|
|
) |
55
|
|
|
hyper.run() |
56
|
|
|
|
57
|
|
|
assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
58
|
|
|
assert hyper.best_para(objective_function)["x1"] in search_space["x1"] |
59
|
|
|
|
60
|
|
|
|
61
|
|
View Code Duplication |
def test_search_space_2(): |
|
|
|
|
62
|
|
|
"""Test search space with numpy float range.""" |
63
|
|
|
|
64
|
|
|
def objective_function(opt): |
65
|
|
|
score = -opt["x1"] * opt["x1"] |
66
|
|
|
return score |
67
|
|
|
|
68
|
|
|
search_space = { |
69
|
|
|
"x1": list(range(0, 100, 1)), |
70
|
|
|
"str1": ["0", "1", "2"], |
71
|
|
|
} |
72
|
|
|
|
73
|
|
|
hyper = Hyperactive() |
74
|
|
|
hyper.add_search( |
75
|
|
|
objective_function, |
76
|
|
|
search_space, |
77
|
|
|
n_iter=15, |
78
|
|
|
) |
79
|
|
|
hyper.run() |
80
|
|
|
|
81
|
|
|
assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
82
|
|
|
assert hyper.best_para(objective_function)["str1"] in search_space["str1"] |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
def test_search_space_3(): |
86
|
|
|
"""Test search space with function objects.""" |
87
|
|
|
|
88
|
|
|
def func1(): |
89
|
|
|
pass |
90
|
|
|
|
91
|
|
|
def func2(): |
92
|
|
|
pass |
93
|
|
|
|
94
|
|
|
def func3(): |
95
|
|
|
pass |
96
|
|
|
|
97
|
|
|
def objective_function(opt): |
98
|
|
|
score = -opt["x1"] * opt["x1"] |
99
|
|
|
return score |
100
|
|
|
|
101
|
|
|
search_space = { |
102
|
|
|
"x1": list(range(0, 100, 1)), |
103
|
|
|
"func1": [func1, func2, func3], |
104
|
|
|
} |
105
|
|
|
|
106
|
|
|
hyper = Hyperactive() |
107
|
|
|
hyper.add_search( |
108
|
|
|
objective_function, |
109
|
|
|
search_space, |
110
|
|
|
n_iter=15, |
111
|
|
|
) |
112
|
|
|
hyper.run() |
113
|
|
|
|
114
|
|
|
assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
115
|
|
|
assert hyper.best_para(objective_function)["func1"] in search_space["func1"] |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
def test_search_space_4(): |
119
|
|
|
"""Test search space with class objects.""" |
120
|
|
|
|
121
|
|
|
class class1: |
122
|
|
|
pass |
123
|
|
|
|
124
|
|
|
class class2: |
125
|
|
|
pass |
126
|
|
|
|
127
|
|
|
class class3: |
128
|
|
|
pass |
129
|
|
|
|
130
|
|
|
def objective_function(opt): |
131
|
|
|
score = -opt["x1"] * opt["x1"] |
132
|
|
|
return score |
133
|
|
|
|
134
|
|
|
search_space = { |
135
|
|
|
"x1": list(range(0, 100, 1)), |
136
|
|
|
"class1": [class1, class2, class3], |
137
|
|
|
} |
138
|
|
|
|
139
|
|
|
hyper = Hyperactive() |
140
|
|
|
hyper.add_search( |
141
|
|
|
objective_function, |
142
|
|
|
search_space, |
143
|
|
|
n_iter=15, |
144
|
|
|
) |
145
|
|
|
hyper.run() |
146
|
|
|
|
147
|
|
|
assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
148
|
|
|
assert hyper.best_para(objective_function)["class1"] in search_space["class1"] |
149
|
|
|
|
150
|
|
|
|
151
|
|
|
def test_search_space_5(): |
152
|
|
|
"""Test search space with initialized class instances.""" |
153
|
|
|
|
154
|
|
|
class class1: |
155
|
|
|
def __init__(self): |
156
|
|
|
pass |
157
|
|
|
|
158
|
|
|
class class2: |
159
|
|
|
def __init__(self): |
160
|
|
|
pass |
161
|
|
|
|
162
|
|
|
class class3: |
163
|
|
|
def __init__(self): |
164
|
|
|
pass |
165
|
|
|
|
166
|
|
|
def class_f1(): |
167
|
|
|
return class1 |
168
|
|
|
|
169
|
|
|
def class_f2(): |
170
|
|
|
return class2 |
171
|
|
|
|
172
|
|
|
def class_f3(): |
173
|
|
|
return class3 |
174
|
|
|
|
175
|
|
|
def objective_function(opt): |
176
|
|
|
score = -opt["x1"] * opt["x1"] |
177
|
|
|
return score |
178
|
|
|
|
179
|
|
|
search_space = { |
180
|
|
|
"x1": list(range(0, 100, 1)), |
181
|
|
|
"class1": [class_f1, class_f2, class_f3], |
182
|
|
|
} |
183
|
|
|
|
184
|
|
|
hyper = Hyperactive() |
185
|
|
|
hyper.add_search( |
186
|
|
|
objective_function, |
187
|
|
|
search_space, |
188
|
|
|
n_iter=15, |
189
|
|
|
) |
190
|
|
|
hyper.run() |
191
|
|
|
|
192
|
|
|
assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
193
|
|
|
assert hyper.best_para(objective_function)["class1"] in search_space["class1"] |
194
|
|
|
|
195
|
|
|
|
196
|
|
|
def test_search_space_6(): |
197
|
|
|
"""Test search space with mixed parameter types.""" |
198
|
|
|
|
199
|
|
|
def objective_function(opt): |
200
|
|
|
score = -opt["x1"] * opt["x1"] |
201
|
|
|
return score |
202
|
|
|
|
203
|
|
|
def list_f1(): |
204
|
|
|
return [0, 1] |
205
|
|
|
|
206
|
|
|
def list_f2(): |
207
|
|
|
return [1, 0] |
208
|
|
|
|
209
|
|
|
search_space = { |
210
|
|
|
"x1": list(range(0, 100, 1)), |
211
|
|
|
"list1": [list_f1, list_f2], |
212
|
|
|
} |
213
|
|
|
|
214
|
|
|
hyper = Hyperactive() |
215
|
|
|
hyper.add_search( |
216
|
|
|
objective_function, |
217
|
|
|
search_space, |
218
|
|
|
n_iter=15, |
219
|
|
|
) |
220
|
|
|
hyper.run() |
221
|
|
|
|
222
|
|
|
assert isinstance(hyper.search_data(objective_function), pd.DataFrame) |
223
|
|
|
assert hyper.best_para(objective_function)["list1"] in search_space["list1"] |
224
|
|
|
|