tests.test_search_spaces.test_search_space_0()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 19
Code Lines 14

Duplication

Lines 19
Ratio 100 %

Importance

Changes 0
Metric Value
cc 1
eloc 14
nop 0
dl 19
loc 19
rs 9.7
c 0
b 0
f 0
1
import sys, pytest
2
import numpy as np
3
import pandas as pd
4
5
from hyperactive import Hyperactive
6
7
8
if sys.platform.startswith("win"):
9
    pytest.skip("skip these tests for windows", allow_module_level=True)
10
11
12 View Code Duplication
def test_search_space_0():
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
13
    def objective_function(opt):
14
        score = -opt["x1"] * opt["x1"]
15
        return score
16
17
    search_space = {
18
        "x1": list(range(0, 3, 1)),
19
    }
20
21
    hyper = Hyperactive()
22
    hyper.add_search(
23
        objective_function,
24
        search_space,
25
        n_iter=15,
26
    )
27
    hyper.run()
28
29
    assert isinstance(hyper.search_data(objective_function), pd.DataFrame)
30
    assert hyper.best_para(objective_function)["x1"] in search_space["x1"]
31
32
33 View Code Duplication
def test_search_space_1():
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
34
    def objective_function(opt):
35
        score = -opt["x1"] * opt["x1"]
36
        return score
37
38
    search_space = {
39
        "x1": list(np.arange(0, 0.003, 0.001)),
40
    }
41
42
    hyper = Hyperactive()
43
    hyper.add_search(
44
        objective_function,
45
        search_space,
46
        n_iter=15,
47
    )
48
    hyper.run()
49
50
    assert isinstance(hyper.search_data(objective_function), pd.DataFrame)
51
    assert hyper.best_para(objective_function)["x1"] in search_space["x1"]
52
53
54 View Code Duplication
def test_search_space_2():
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
55
    def objective_function(opt):
56
        score = -opt["x1"] * opt["x1"]
57
        return score
58
59
    search_space = {
60
        "x1": list(range(0, 100, 1)),
61
        "str1": ["0", "1", "2"],
62
    }
63
64
    hyper = Hyperactive()
65
    hyper.add_search(
66
        objective_function,
67
        search_space,
68
        n_iter=15,
69
    )
70
    hyper.run()
71
72
    assert isinstance(hyper.search_data(objective_function), pd.DataFrame)
73
    assert hyper.best_para(objective_function)["str1"] in search_space["str1"]
74
75
76
def test_search_space_3():
77
    def func1():
78
        pass
79
80
    def func2():
81
        pass
82
83
    def func3():
84
        pass
85
86
    def objective_function(opt):
87
        score = -opt["x1"] * opt["x1"]
88
        return score
89
90
    search_space = {
91
        "x1": list(range(0, 100, 1)),
92
        "func1": [func1, func2, func3],
93
    }
94
95
    hyper = Hyperactive()
96
    hyper.add_search(
97
        objective_function,
98
        search_space,
99
        n_iter=15,
100
    )
101
    hyper.run()
102
103
    assert isinstance(hyper.search_data(objective_function), pd.DataFrame)
104
    assert hyper.best_para(objective_function)["func1"] in search_space["func1"]
105
106
107
def test_search_space_4():
108
    class class1:
109
        pass
110
111
    class class2:
112
        pass
113
114
    class class3:
115
        pass
116
117
    def objective_function(opt):
118
        score = -opt["x1"] * opt["x1"]
119
        return score
120
121
    search_space = {
122
        "x1": list(range(0, 100, 1)),
123
        "class1": [class1, class2, class3],
124
    }
125
126
    hyper = Hyperactive()
127
    hyper.add_search(
128
        objective_function,
129
        search_space,
130
        n_iter=15,
131
    )
132
    hyper.run()
133
134
    assert isinstance(hyper.search_data(objective_function), pd.DataFrame)
135
    assert hyper.best_para(objective_function)["class1"] in search_space["class1"]
136
137
138
def test_search_space_5():
139
    class class1:
140
        def __init__(self):
141
            pass
142
143
    class class2:
144
        def __init__(self):
145
            pass
146
147
    class class3:
148
        def __init__(self):
149
            pass
150
151
    def class_f1():
152
        return class1
153
154
    def class_f2():
155
        return class2
156
157
    def class_f3():
158
        return class3
159
160
    def objective_function(opt):
161
        score = -opt["x1"] * opt["x1"]
162
        return score
163
164
    search_space = {
165
        "x1": list(range(0, 100, 1)),
166
        "class1": [class_f1, class_f2, class_f3],
167
    }
168
169
    hyper = Hyperactive()
170
    hyper.add_search(
171
        objective_function,
172
        search_space,
173
        n_iter=15,
174
    )
175
    hyper.run()
176
177
    assert isinstance(hyper.search_data(objective_function), pd.DataFrame)
178
    assert hyper.best_para(objective_function)["class1"] in search_space["class1"]
179
180
181
def test_search_space_6():
182
    def objective_function(opt):
183
        score = -opt["x1"] * opt["x1"]
184
        return score
185
186
    def list_f1():
187
        return [0, 1]
188
189
    def list_f2():
190
        return [1, 0]
191
192
    search_space = {
193
        "x1": list(range(0, 100, 1)),
194
        "list1": [list_f1, list_f2],
195
    }
196
197
    hyper = Hyperactive()
198
    hyper.add_search(
199
        objective_function,
200
        search_space,
201
        n_iter=15,
202
    )
203
    hyper.run()
204
205
    assert isinstance(hyper.search_data(objective_function), pd.DataFrame)
206
    assert hyper.best_para(objective_function)["list1"] in search_space["list1"]
207