|
1
|
|
|
from keras.datasets import cifar10 |
|
2
|
|
|
from keras.utils import to_categorical |
|
3
|
|
|
|
|
4
|
|
|
(X_train, y_train), (X_test, y_test) = cifar10.load_data() |
|
5
|
|
|
|
|
6
|
|
|
X = X_train[0:1000] |
|
7
|
|
|
y = y_train[0:1000] |
|
8
|
|
|
|
|
9
|
|
|
y = to_categorical(y, 10) |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
search_config = { |
|
13
|
|
|
"keras.compile.0": {"loss": ["categorical_crossentropy"], "optimizer": ["adam"]}, |
|
14
|
|
|
"keras.fit.0": {"epochs": [1], "batch_size": [1000], "verbose": [1]}, |
|
15
|
|
|
"keras.layers.Conv2D.1": { |
|
16
|
|
|
"filters": [32, 64, 128], |
|
17
|
|
|
"kernel_size": [3], |
|
18
|
|
|
"activation": ["relu"], |
|
19
|
|
|
}, |
|
20
|
|
|
"keras.layers.MaxPooling2D.2": {"pool_size": [(4, 4)]}, |
|
21
|
|
|
"keras.layers.Flatten.3": {}, |
|
22
|
|
|
"keras.layers.Dense.4": {"units": [10], "activation": ["softmax"]}, |
|
23
|
|
|
} |
|
24
|
|
|
|
|
25
|
|
|
|
|
26
|
|
|
def test_keras(): |
|
27
|
|
|
from hyperactive import HillClimbingOptimizer |
|
28
|
|
|
|
|
29
|
|
|
opt = HillClimbingOptimizer(search_config, 1) |
|
30
|
|
|
opt.fit(X, y) |
|
31
|
|
|
opt.predict(X) |
|
32
|
|
|
opt.score(X, y) |
|
33
|
|
|
|
|
34
|
|
|
|
|
35
|
|
View Code Duplication |
def test_keras_scores(): |
|
|
|
|
|
|
36
|
|
|
from hyperactive import RandomSearchOptimizer |
|
37
|
|
|
|
|
38
|
|
|
ml_scores = [ |
|
39
|
|
|
"accuracy", |
|
40
|
|
|
"binary_accuracy", |
|
41
|
|
|
"categorical_accuracy", |
|
42
|
|
|
# "sparse_categorical_accuracy", |
|
43
|
|
|
"top_k_categorical_accuracy", |
|
44
|
|
|
# "sparse_top_k_categorical_accuracy", |
|
45
|
|
|
] |
|
46
|
|
|
|
|
47
|
|
|
for score in ml_scores: |
|
48
|
|
|
opt = RandomSearchOptimizer(search_config, 1, metric=score) |
|
49
|
|
|
assert opt._config_.metric == score |
|
50
|
|
|
opt.fit(X, y) |
|
51
|
|
|
assert opt._config_.metric == score |
|
52
|
|
|
opt.predict(X) |
|
53
|
|
|
assert opt._config_.metric == score |
|
54
|
|
|
opt.score(X, y) |
|
55
|
|
|
assert opt._config_.metric == score |
|
56
|
|
|
|
|
57
|
|
|
|
|
58
|
|
View Code Duplication |
def test_keras_losses(): |
|
|
|
|
|
|
59
|
|
|
from hyperactive import RandomSearchOptimizer |
|
60
|
|
|
|
|
61
|
|
|
ml_losses = [ |
|
62
|
|
|
"mean_squared_error", |
|
63
|
|
|
"mean_absolute_error", |
|
64
|
|
|
"mean_absolute_percentage_error", |
|
65
|
|
|
"mean_squared_logarithmic_error", |
|
66
|
|
|
"squared_hinge", |
|
67
|
|
|
"hinge", |
|
68
|
|
|
# "categorical_hinge", |
|
69
|
|
|
"logcosh", |
|
70
|
|
|
"categorical_crossentropy", |
|
71
|
|
|
# "sparse_categorical_crossentropy", |
|
72
|
|
|
"binary_crossentropy", |
|
73
|
|
|
"kullback_leibler_divergence", |
|
74
|
|
|
"poisson", |
|
75
|
|
|
"cosine_proximity", |
|
76
|
|
|
] |
|
77
|
|
|
|
|
78
|
|
|
for loss in ml_losses: |
|
79
|
|
|
opt = RandomSearchOptimizer(search_config, 1, metric=loss) |
|
80
|
|
|
assert opt._config_.metric == loss |
|
81
|
|
|
opt.fit(X, y) |
|
82
|
|
|
assert opt._config_.metric == loss |
|
83
|
|
|
opt.predict(X) |
|
84
|
|
|
assert opt._config_.metric == loss |
|
85
|
|
|
opt.score(X, y) |
|
86
|
|
|
assert opt._config_.metric == loss |
|
87
|
|
|
|
|
88
|
|
|
|
|
89
|
|
|
def test_keras_n_jobs(): |
|
90
|
|
|
from hyperactive import HillClimbingOptimizer |
|
91
|
|
|
|
|
92
|
|
|
n_jobs_list = [1, 2, 3, 4] |
|
93
|
|
|
for n_jobs in n_jobs_list: |
|
94
|
|
|
opt = HillClimbingOptimizer(search_config, 1, n_jobs=n_jobs) |
|
95
|
|
|
opt.fit(X, y) |
|
96
|
|
|
opt.predict(X) |
|
97
|
|
|
opt.score(X, y) |
|
98
|
|
|
|
|
99
|
|
|
|
|
100
|
|
|
def test_keras_n_iter(): |
|
101
|
|
|
from hyperactive import HillClimbingOptimizer |
|
102
|
|
|
|
|
103
|
|
|
n_iter_list = [0, 1, 3] |
|
104
|
|
|
for n_iter in n_iter_list: |
|
105
|
|
|
opt = HillClimbingOptimizer(search_config, n_iter) |
|
106
|
|
|
opt.fit(X, y) |
|
107
|
|
|
opt.predict(X) |
|
108
|
|
|
opt.score(X, y) |
|
109
|
|
|
|
|
110
|
|
|
|
|
111
|
|
|
def test_keras_cv(): |
|
112
|
|
|
from hyperactive import HillClimbingOptimizer |
|
113
|
|
|
|
|
114
|
|
|
cv_list = [0.1, 0.5, 0.9, 2] |
|
115
|
|
|
for cv in cv_list: |
|
116
|
|
|
opt = HillClimbingOptimizer(search_config, 1, cv=cv) |
|
117
|
|
|
opt.fit(X, y) |
|
118
|
|
|
opt.predict(X) |
|
119
|
|
|
opt.score(X, y) |
|
120
|
|
|
|
|
121
|
|
|
|
|
122
|
|
|
def test_keras_verbosity(): |
|
123
|
|
|
from hyperactive import HillClimbingOptimizer |
|
124
|
|
|
|
|
125
|
|
|
verbosity_list = [0, 1, 2] |
|
126
|
|
|
for verbosity in verbosity_list: |
|
127
|
|
|
opt = HillClimbingOptimizer(search_config, 1, verbosity=verbosity) |
|
128
|
|
|
opt.fit(X, y) |
|
129
|
|
|
opt.predict(X) |
|
130
|
|
|
opt.score(X, y) |
|
131
|
|
|
|
|
132
|
|
|
|
|
133
|
|
|
def test_keras_random_state(): |
|
134
|
|
|
from hyperactive import HillClimbingOptimizer |
|
135
|
|
|
|
|
136
|
|
|
random_state_list = [None, 0, 1, 2] |
|
137
|
|
|
for random_state in random_state_list: |
|
138
|
|
|
opt = HillClimbingOptimizer(search_config, 1, random_state=random_state) |
|
139
|
|
|
opt.fit(X, y) |
|
140
|
|
|
opt.predict(X) |
|
141
|
|
|
opt.score(X, y) |
|
142
|
|
|
|
|
143
|
|
|
|
|
144
|
|
|
def test_keras_warm_start(): |
|
145
|
|
|
from hyperactive import HillClimbingOptimizer |
|
146
|
|
|
|
|
147
|
|
|
warm_start = { |
|
148
|
|
|
"keras.compile.0": { |
|
149
|
|
|
"loss": ["categorical_crossentropy"], |
|
150
|
|
|
"optimizer": ["adam"], |
|
151
|
|
|
}, |
|
152
|
|
|
"keras.fit.0": {"epochs": [1], "batch_size": [1000], "verbose": [1]}, |
|
153
|
|
|
"keras.layers.Conv2D.1": { |
|
154
|
|
|
"filters": [64], |
|
155
|
|
|
"kernel_size": [3], |
|
156
|
|
|
"activation": ["relu"], |
|
157
|
|
|
}, |
|
158
|
|
|
"keras.layers.MaxPooling2D.2": {"pool_size": [(4, 4)]}, |
|
159
|
|
|
"keras.layers.Flatten.3": {}, |
|
160
|
|
|
"keras.layers.Dense.4": {"units": [10], "activation": ["softmax"]}, |
|
161
|
|
|
} |
|
162
|
|
|
|
|
163
|
|
|
warm_start_list = [None, warm_start] |
|
164
|
|
|
for warm_start in warm_start_list: |
|
165
|
|
|
opt = HillClimbingOptimizer(search_config, 1, warm_start=warm_start) |
|
166
|
|
|
opt.fit(X, y) |
|
167
|
|
|
opt.predict(X) |
|
168
|
|
|
opt.score(X, y) |
|
169
|
|
|
|
|
170
|
|
|
|
|
171
|
|
|
def test_keras_memory(): |
|
172
|
|
|
from hyperactive import HillClimbingOptimizer |
|
173
|
|
|
|
|
174
|
|
|
memory_list = [False, True] |
|
175
|
|
|
for memory in memory_list: |
|
176
|
|
|
opt = HillClimbingOptimizer(search_config, 1, memory=memory) |
|
177
|
|
|
opt.fit(X, y) |
|
178
|
|
|
opt.predict(X) |
|
179
|
|
|
opt.score(X, y) |
|
180
|
|
|
|
|
181
|
|
|
|
|
182
|
|
|
def test_keras_scatter_init(): |
|
183
|
|
|
from hyperactive import HillClimbingOptimizer |
|
184
|
|
|
|
|
185
|
|
|
scatter_init_list = [False, 2, 3, 4] |
|
186
|
|
|
for scatter_init in scatter_init_list: |
|
187
|
|
|
opt = HillClimbingOptimizer(search_config, 1, scatter_init=scatter_init) |
|
188
|
|
|
opt.fit(X, y) |
|
189
|
|
|
opt.predict(X) |
|
190
|
|
|
opt.score(X, y) |
|
191
|
|
|
|