Code Duplication    Length = 22-29 lines in 6 locations

tests/local/_test_keras_cnn.py 1 location

@@ 58-86 (lines=29) @@
55
        assert opt._config_.metric == score
56
57
58
def test_keras_losses():
59
    from hyperactive import RandomSearchOptimizer
60
61
    ml_losses = [
62
        "mean_squared_error",
63
        "mean_absolute_error",
64
        "mean_absolute_percentage_error",
65
        "mean_squared_logarithmic_error",
66
        "squared_hinge",
67
        "hinge",
68
        # "categorical_hinge",
69
        "logcosh",
70
        "categorical_crossentropy",
71
        # "sparse_categorical_crossentropy",
72
        "binary_crossentropy",
73
        "kullback_leibler_divergence",
74
        "poisson",
75
        "cosine_proximity",
76
    ]
77
78
    for loss in ml_losses:
79
        opt = RandomSearchOptimizer(search_config, 1, metric=loss)
80
        assert opt._config_.metric == loss
81
        opt.fit(X, y)
82
        assert opt._config_.metric == loss
83
        opt.predict(X)
84
        assert opt._config_.metric == loss
85
        opt.score(X, y)
86
        assert opt._config_.metric == loss
87
88
89
def test_keras_n_jobs():

tests/test_keras_mlp.py 1 location

@@ 50-78 (lines=29) @@
47
        assert opt._config_.metric == score
48
49
50
def test_keras_losses():
51
    from hyperactive import RandomSearchOptimizer
52
53
    ml_losses = [
54
        "mean_squared_error",
55
        "mean_absolute_error",
56
        "mean_absolute_percentage_error",
57
        "mean_squared_logarithmic_error",
58
        "squared_hinge",
59
        "hinge",
60
        # "categorical_hinge",
61
        "logcosh",
62
        "categorical_crossentropy",
63
        # "sparse_categorical_crossentropy",
64
        "binary_crossentropy",
65
        "kullback_leibler_divergence",
66
        "poisson",
67
        "cosine_proximity",
68
    ]
69
70
    for loss in ml_losses:
71
        opt = RandomSearchOptimizer(search_config, 1, metric=loss)
72
        assert opt._config_.metric == loss
73
        opt.fit(X, y)
74
        assert opt._config_.metric == loss
75
        opt.predict(X)
76
        assert opt._config_.metric == loss
77
        opt.score(X, y)
78
        assert opt._config_.metric == loss
79
80
81
def test_keras_n_jobs():

tests/test_lightgbm.py 1 location

@@ 59-80 (lines=22) @@
56
        assert opt._config_.metric == score
57
58
59
def test_lightgbm_regression():
60
    from hyperactive import RandomSearchOptimizer
61
62
    ml_losses = [
63
        "explained_variance_score",
64
        "max_error",
65
        "mean_absolute_error",
66
        "mean_squared_error",
67
        "mean_squared_log_error",
68
        "median_absolute_error",
69
        "r2_score",
70
    ]
71
72
    for loss in ml_losses:
73
        opt = RandomSearchOptimizer(search_config, 1, metric=loss)
74
        assert opt._config_.metric == loss
75
        opt.fit(X, y)
76
        assert opt._config_.metric == loss
77
        opt.predict(X)
78
        assert opt._config_.metric == loss
79
        opt.score(X, y)
80
        assert opt._config_.metric == loss
81
82
83
"""

tests/test_sklearn.py 1 location

@@ 57-78 (lines=22) @@
54
        assert opt._config_.metric == score
55
56
57
def test_sklearn_regression():
58
    from hyperactive import RandomSearchOptimizer
59
60
    ml_losses = [
61
        "explained_variance_score",
62
        "max_error",
63
        "mean_absolute_error",
64
        "mean_squared_error",
65
        "mean_squared_log_error",
66
        "median_absolute_error",
67
        "r2_score",
68
    ]
69
70
    for loss in ml_losses:
71
        opt = RandomSearchOptimizer(search_config, 1, metric=loss)
72
        assert opt._config_.metric == loss
73
        opt.fit(X, y)
74
        assert opt._config_.metric == loss
75
        opt.predict(X)
76
        assert opt._config_.metric == loss
77
        opt.score(X, y)
78
        assert opt._config_.metric == loss
79
80
81
"""

tests/test_xgboost.py 1 location

@@ 57-78 (lines=22) @@
54
        assert opt._config_.metric == score
55
56
57
def test_xgboost_regression():
58
    from hyperactive import RandomSearchOptimizer
59
60
    ml_losses = [
61
        "explained_variance_score",
62
        "max_error",
63
        "mean_absolute_error",
64
        "mean_squared_error",
65
        "mean_squared_log_error",
66
        "median_absolute_error",
67
        "r2_score",
68
    ]
69
70
    for loss in ml_losses:
71
        opt = RandomSearchOptimizer(search_config, 1, metric=loss)
72
        assert opt._config_.metric == loss
73
        opt.fit(X, y)
74
        assert opt._config_.metric == loss
75
        opt.predict(X)
76
        assert opt._config_.metric == loss
77
        opt.score(X, y)
78
        assert opt._config_.metric == loss
79
80
81
"""

tests/test_catboost.py 1 location

@@ 57-78 (lines=22) @@
54
        assert opt._config_.metric == score
55
56
57
def test_catboost_regression():
58
    from hyperactive import RandomSearchOptimizer
59
60
    ml_losses = [
61
        "explained_variance_score",
62
        "max_error",
63
        "mean_absolute_error",
64
        "mean_squared_error",
65
        "mean_squared_log_error",
66
        "median_absolute_error",
67
        "r2_score",
68
    ]
69
70
    for loss in ml_losses:
71
        opt = RandomSearchOptimizer(search_config, 1, metric=loss)
72
        assert opt._config_.metric == loss
73
        opt.fit(X, y)
74
        assert opt._config_.metric == loss
75
        opt.predict(X)
76
        assert opt._config_.metric == loss
77
        opt.score(X, y)
78
        assert opt._config_.metric == loss
79
80
81
"""