| @@ 32-56 (lines=25) @@ | ||
| 29 | opt.score(X, y) |
|
| 30 | ||
| 31 | ||
| 32 | def test_lightgbm_classification(): |
|
| 33 | from hyperactive import RandomSearchOptimizer |
|
| 34 | ||
| 35 | ml_scores = [ |
|
| 36 | "accuracy_score", |
|
| 37 | "balanced_accuracy_score", |
|
| 38 | "average_precision_score", |
|
| 39 | "brier_score_loss", |
|
| 40 | "f1_score", |
|
| 41 | "log_loss", |
|
| 42 | "precision_score", |
|
| 43 | "recall_score", |
|
| 44 | "jaccard_score", |
|
| 45 | "roc_auc_score", |
|
| 46 | ] |
|
| 47 | ||
| 48 | for score in ml_scores: |
|
| 49 | opt = RandomSearchOptimizer(search_config, 1, metric=score) |
|
| 50 | assert opt._config_.metric == score |
|
| 51 | opt.fit(X, y) |
|
| 52 | assert opt._config_.metric == score |
|
| 53 | opt.predict(X) |
|
| 54 | assert opt._config_.metric == score |
|
| 55 | opt.score(X, y) |
|
| 56 | assert opt._config_.metric == score |
|
| 57 | ||
| 58 | ||
| 59 | def test_lightgbm_regression(): |
|
| @@ 30-54 (lines=25) @@ | ||
| 27 | opt.score(X, y) |
|
| 28 | ||
| 29 | ||
| 30 | def test_catboost_classification(): |
|
| 31 | from hyperactive import RandomSearchOptimizer |
|
| 32 | ||
| 33 | ml_scores = [ |
|
| 34 | "accuracy_score", |
|
| 35 | "balanced_accuracy_score", |
|
| 36 | "average_precision_score", |
|
| 37 | "brier_score_loss", |
|
| 38 | "f1_score", |
|
| 39 | "log_loss", |
|
| 40 | "precision_score", |
|
| 41 | "recall_score", |
|
| 42 | "jaccard_score", |
|
| 43 | "roc_auc_score", |
|
| 44 | ] |
|
| 45 | ||
| 46 | for score in ml_scores: |
|
| 47 | opt = RandomSearchOptimizer(search_config, 1, metric=score) |
|
| 48 | assert opt._config_.metric == score |
|
| 49 | opt.fit(X, y) |
|
| 50 | assert opt._config_.metric == score |
|
| 51 | opt.predict(X) |
|
| 52 | assert opt._config_.metric == score |
|
| 53 | opt.score(X, y) |
|
| 54 | assert opt._config_.metric == score |
|
| 55 | ||
| 56 | ||
| 57 | def test_catboost_regression(): |
|
| @@ 30-54 (lines=25) @@ | ||
| 27 | opt.score(X, y) |
|
| 28 | ||
| 29 | ||
| 30 | def test_sklearn_classification(): |
|
| 31 | from hyperactive import RandomSearchOptimizer |
|
| 32 | ||
| 33 | ml_scores = [ |
|
| 34 | "accuracy_score", |
|
| 35 | "balanced_accuracy_score", |
|
| 36 | "average_precision_score", |
|
| 37 | "brier_score_loss", |
|
| 38 | "f1_score", |
|
| 39 | "log_loss", |
|
| 40 | "precision_score", |
|
| 41 | "recall_score", |
|
| 42 | "jaccard_score", |
|
| 43 | "roc_auc_score", |
|
| 44 | ] |
|
| 45 | ||
| 46 | for score in ml_scores: |
|
| 47 | opt = RandomSearchOptimizer(search_config, 1, metric=score) |
|
| 48 | assert opt._config_.metric == score |
|
| 49 | opt.fit(X, y) |
|
| 50 | assert opt._config_.metric == score |
|
| 51 | opt.predict(X) |
|
| 52 | assert opt._config_.metric == score |
|
| 53 | opt.score(X, y) |
|
| 54 | assert opt._config_.metric == score |
|
| 55 | ||
| 56 | ||
| 57 | def test_sklearn_regression(): |
|
| @@ 30-54 (lines=25) @@ | ||
| 27 | opt.score(X, y) |
|
| 28 | ||
| 29 | ||
| 30 | def test_xgboost_classification(): |
|
| 31 | from hyperactive import RandomSearchOptimizer |
|
| 32 | ||
| 33 | ml_scores = [ |
|
| 34 | "accuracy_score", |
|
| 35 | "balanced_accuracy_score", |
|
| 36 | "average_precision_score", |
|
| 37 | "brier_score_loss", |
|
| 38 | "f1_score", |
|
| 39 | "log_loss", |
|
| 40 | "precision_score", |
|
| 41 | "recall_score", |
|
| 42 | "jaccard_score", |
|
| 43 | "roc_auc_score", |
|
| 44 | ] |
|
| 45 | ||
| 46 | for score in ml_scores: |
|
| 47 | opt = RandomSearchOptimizer(search_config, 1, metric=score) |
|
| 48 | assert opt._config_.metric == score |
|
| 49 | opt.fit(X, y) |
|
| 50 | assert opt._config_.metric == score |
|
| 51 | opt.predict(X) |
|
| 52 | assert opt._config_.metric == score |
|
| 53 | opt.score(X, y) |
|
| 54 | assert opt._config_.metric == score |
|
| 55 | ||
| 56 | ||
| 57 | def test_xgboost_regression(): |
|
| @@ 35-55 (lines=21) @@ | ||
| 32 | opt.score(X, y) |
|
| 33 | ||
| 34 | ||
| 35 | def test_keras_scores(): |
|
| 36 | from hyperactive import RandomSearchOptimizer |
|
| 37 | ||
| 38 | ml_scores = [ |
|
| 39 | "accuracy", |
|
| 40 | "binary_accuracy", |
|
| 41 | "categorical_accuracy", |
|
| 42 | # "sparse_categorical_accuracy", |
|
| 43 | "top_k_categorical_accuracy", |
|
| 44 | # "sparse_top_k_categorical_accuracy", |
|
| 45 | ] |
|
| 46 | ||
| 47 | for score in ml_scores: |
|
| 48 | opt = RandomSearchOptimizer(search_config, 1, metric=score) |
|
| 49 | assert opt._config_.metric == score |
|
| 50 | opt.fit(X, y) |
|
| 51 | assert opt._config_.metric == score |
|
| 52 | opt.predict(X) |
|
| 53 | assert opt._config_.metric == score |
|
| 54 | opt.score(X, y) |
|
| 55 | assert opt._config_.metric == score |
|
| 56 | ||
| 57 | ||
| 58 | def test_keras_losses(): |
|
| @@ 27-47 (lines=21) @@ | ||
| 24 | opt.score(X, y) |
|
| 25 | ||
| 26 | ||
| 27 | def test_keras_scores(): |
|
| 28 | from hyperactive import RandomSearchOptimizer |
|
| 29 | ||
| 30 | ml_scores = [ |
|
| 31 | "accuracy", |
|
| 32 | "binary_accuracy", |
|
| 33 | "categorical_accuracy", |
|
| 34 | "sparse_categorical_accuracy", |
|
| 35 | "top_k_categorical_accuracy", |
|
| 36 | "sparse_top_k_categorical_accuracy", |
|
| 37 | ] |
|
| 38 | ||
| 39 | for score in ml_scores: |
|
| 40 | opt = RandomSearchOptimizer(search_config, 1, metric=score) |
|
| 41 | assert opt._config_.metric == score |
|
| 42 | opt.fit(X, y) |
|
| 43 | assert opt._config_.metric == score |
|
| 44 | opt.predict(X) |
|
| 45 | assert opt._config_.metric == score |
|
| 46 | opt.score(X, y) |
|
| 47 | assert opt._config_.metric == score |
|
| 48 | ||
| 49 | ||
| 50 | def test_keras_losses(): |
|