1
|
|
|
import numpy as np |
2
|
|
|
from sklearn.model_selection import cross_val_score |
3
|
|
|
from sklearn.ensemble import GradientBoostingClassifier |
4
|
|
|
from sklearn.ensemble import RandomForestClassifier |
5
|
|
|
from sklearn.ensemble import ExtraTreesClassifier |
6
|
|
|
from sklearn.datasets import load_breast_cancer |
7
|
|
|
from hyperactive import Hyperactive |
8
|
|
|
|
9
|
|
|
data = load_breast_cancer() |
10
|
|
|
X, y = data.data, data.target |
11
|
|
|
|
12
|
|
|
|
13
|
|
View Code Duplication |
def model0(para, X, y): |
|
|
|
|
14
|
|
|
etc = ExtraTreesClassifier( |
15
|
|
|
n_estimators=para["n_estimators"], |
16
|
|
|
criterion=para["criterion"], |
17
|
|
|
max_features=para["max_features"], |
18
|
|
|
min_samples_split=para["min_samples_split"], |
19
|
|
|
min_samples_leaf=para["min_samples_leaf"], |
20
|
|
|
bootstrap=para["bootstrap"], |
21
|
|
|
) |
22
|
|
|
scores = cross_val_score(etc, X, y, cv=3) |
23
|
|
|
|
24
|
|
|
return scores.mean() |
25
|
|
|
|
26
|
|
|
|
27
|
|
View Code Duplication |
def model1(para, X, y): |
|
|
|
|
28
|
|
|
rfc = RandomForestClassifier( |
29
|
|
|
n_estimators=para["n_estimators"], |
30
|
|
|
criterion=para["criterion"], |
31
|
|
|
max_features=para["max_features"], |
32
|
|
|
min_samples_split=para["min_samples_split"], |
33
|
|
|
min_samples_leaf=para["min_samples_leaf"], |
34
|
|
|
bootstrap=para["bootstrap"], |
35
|
|
|
) |
36
|
|
|
scores = cross_val_score(rfc, X, y, cv=3) |
37
|
|
|
|
38
|
|
|
return scores.mean() |
39
|
|
|
|
40
|
|
|
|
41
|
|
View Code Duplication |
def model2(para, X, y): |
|
|
|
|
42
|
|
|
gbc = GradientBoostingClassifier( |
43
|
|
|
n_estimators=para["n_estimators"], |
44
|
|
|
learning_rate=para["learning_rate"], |
45
|
|
|
max_depth=para["max_depth"], |
46
|
|
|
min_samples_split=para["min_samples_split"], |
47
|
|
|
min_samples_leaf=para["min_samples_leaf"], |
48
|
|
|
subsample=para["subsample"], |
49
|
|
|
max_features=para["max_features"], |
50
|
|
|
) |
51
|
|
|
scores = cross_val_score(gbc, X, y, cv=3) |
52
|
|
|
|
53
|
|
|
return scores.mean() |
54
|
|
|
|
55
|
|
|
|
56
|
|
|
search_config = { |
57
|
|
|
model0: { |
58
|
|
|
"n_estimators": range(10, 200, 10), |
59
|
|
|
"criterion": ["gini", "entropy"], |
60
|
|
|
"max_features": np.arange(0.05, 1.01, 0.05), |
61
|
|
|
"min_samples_split": range(2, 21), |
62
|
|
|
"min_samples_leaf": range(1, 21), |
63
|
|
|
"bootstrap": [True, False], |
64
|
|
|
}, |
65
|
|
|
model1: { |
66
|
|
|
"n_estimators": range(10, 200, 10), |
67
|
|
|
"criterion": ["gini", "entropy"], |
68
|
|
|
"max_features": np.arange(0.05, 1.01, 0.05), |
69
|
|
|
"min_samples_split": range(2, 21), |
70
|
|
|
"min_samples_leaf": range(1, 21), |
71
|
|
|
"bootstrap": [True, False], |
72
|
|
|
}, |
73
|
|
|
model2: { |
74
|
|
|
"n_estimators": range(10, 200, 10), |
75
|
|
|
"learning_rate": [1e-3, 1e-2, 1e-1, 0.5, 1.0], |
76
|
|
|
"max_depth": range(1, 11), |
77
|
|
|
"min_samples_split": range(2, 21), |
78
|
|
|
"min_samples_leaf": range(1, 21), |
79
|
|
|
"subsample": np.arange(0.05, 1.01, 0.05), |
80
|
|
|
"max_features": np.arange(0.05, 1.01, 0.05), |
81
|
|
|
}, |
82
|
|
|
} |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
opt = Hyperactive(X, y) |
86
|
|
|
opt.search(search_config, n_iter=30, n_jobs=4) |
87
|
|
|
|