| @@ 13-24 (lines=12) @@ | ||
| 10 | X, y = data.data, data.target |
|
| 11 | ||
| 12 | ||
| 13 | def model0(para, X, y): |
|
| 14 | etc = ExtraTreesClassifier( |
|
| 15 | n_estimators=para["n_estimators"], |
|
| 16 | criterion=para["criterion"], |
|
| 17 | max_features=para["max_features"], |
|
| 18 | min_samples_split=para["min_samples_split"], |
|
| 19 | min_samples_leaf=para["min_samples_leaf"], |
|
| 20 | bootstrap=para["bootstrap"], |
|
| 21 | ) |
|
| 22 | scores = cross_val_score(etc, X, y, cv=3) |
|
| 23 | ||
| 24 | return scores.mean() |
|
| 25 | ||
| 26 | ||
| 27 | def model1(para, X, y): |
|
| @@ 13-24 (lines=12) @@ | ||
| 10 | X, y = data.data, data.target |
|
| 11 | ||
| 12 | ||
| 13 | def model0(para, X, y): |
|
| 14 | model = ExtraTreesClassifier( |
|
| 15 | n_estimators=para["n_estimators"], |
|
| 16 | criterion=para["criterion"], |
|
| 17 | max_features=para["max_features"], |
|
| 18 | min_samples_split=para["min_samples_split"], |
|
| 19 | min_samples_leaf=para["min_samples_leaf"], |
|
| 20 | bootstrap=para["bootstrap"], |
|
| 21 | ) |
|
| 22 | scores = cross_val_score(model, X, y, cv=3) |
|
| 23 | ||
| 24 | return scores.mean() |
|
| 25 | ||
| 26 | ||
| 27 | def model1(para, X, y): |
|