@@ 27-38 (lines=12) @@ | ||
24 | return scores.mean() |
|
25 | ||
26 | ||
27 | def model1(para, X, y): |
|
28 | rfc = RandomForestClassifier( |
|
29 | n_estimators=para["n_estimators"], |
|
30 | criterion=para["criterion"], |
|
31 | max_features=para["max_features"], |
|
32 | min_samples_split=para["min_samples_split"], |
|
33 | min_samples_leaf=para["min_samples_leaf"], |
|
34 | bootstrap=para["bootstrap"], |
|
35 | ) |
|
36 | scores = cross_val_score(rfc, X, y, cv=3) |
|
37 | ||
38 | return scores.mean() |
|
39 | ||
40 | ||
41 | def model2(para, X, y): |
@@ 27-38 (lines=12) @@ | ||
24 | return scores.mean() |
|
25 | ||
26 | ||
27 | def model1(para, X, y): |
|
28 | model = RandomForestClassifier( |
|
29 | n_estimators=para["n_estimators"], |
|
30 | criterion=para["criterion"], |
|
31 | max_features=para["max_features"], |
|
32 | min_samples_split=para["min_samples_split"], |
|
33 | min_samples_leaf=para["min_samples_leaf"], |
|
34 | bootstrap=para["bootstrap"], |
|
35 | ) |
|
36 | scores = cross_val_score(model, X, y, cv=3) |
|
37 | ||
38 | return scores.mean() |
|
39 | ||
40 | ||
41 | def model2(para, X, y): |