| @@ 27-38 (lines=12) @@ | ||
| 24 | return scores.mean() |
|
| 25 | ||
| 26 | ||
| 27 | def model1(para, X, y): |
|
| 28 | rfc = RandomForestClassifier( |
|
| 29 | n_estimators=para["n_estimators"], |
|
| 30 | criterion=para["criterion"], |
|
| 31 | max_features=para["max_features"], |
|
| 32 | min_samples_split=para["min_samples_split"], |
|
| 33 | min_samples_leaf=para["min_samples_leaf"], |
|
| 34 | bootstrap=para["bootstrap"], |
|
| 35 | ) |
|
| 36 | scores = cross_val_score(rfc, X, y, cv=3) |
|
| 37 | ||
| 38 | return scores.mean() |
|
| 39 | ||
| 40 | ||
| 41 | def model2(para, X, y): |
|
| @@ 27-38 (lines=12) @@ | ||
| 24 | return scores.mean() |
|
| 25 | ||
| 26 | ||
| 27 | def model1(para, X, y): |
|
| 28 | model = RandomForestClassifier( |
|
| 29 | n_estimators=para["n_estimators"], |
|
| 30 | criterion=para["criterion"], |
|
| 31 | max_features=para["max_features"], |
|
| 32 | min_samples_split=para["min_samples_split"], |
|
| 33 | min_samples_leaf=para["min_samples_leaf"], |
|
| 34 | bootstrap=para["bootstrap"], |
|
| 35 | ) |
|
| 36 | scores = cross_val_score(model, X, y, cv=3) |
|
| 37 | ||
| 38 | return scores.mean() |
|
| 39 | ||
| 40 | ||
| 41 | def model2(para, X, y): |
|