Total Complexity | 2 |
Total Lines | 56 |
Duplicated Lines | 58.93 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
1 | import pytest |
||
2 | import numpy as np |
||
3 | |||
4 | |||
5 | from hyperactive import Hyperactive |
||
6 | from hyperactive.optimizers.strategies import CustomOptimizationStrategy |
||
7 | from hyperactive.optimizers import HillClimbingOptimizer |
||
8 | |||
9 | from ._parametrize import optimizers |
||
10 | |||
11 | |||
12 | def objective_function(opt): |
||
13 | score = -(opt["x1"] * opt["x1"] + opt["x2"] * opt["x2"]) |
||
14 | return score |
||
15 | |||
16 | |||
17 | search_space = { |
||
18 | "x1": list(np.arange(-3, 3, 1)), |
||
19 | "x2": list(np.arange(-3, 3, 1)), |
||
20 | } |
||
21 | |||
22 | |||
23 | View Code Duplication | @pytest.mark.parametrize(*optimizers) |
|
|
|||
24 | def test_strategy_combinations_0(Optimizer): |
||
25 | optimizer1 = Optimizer() |
||
26 | optimizer2 = HillClimbingOptimizer() |
||
27 | |||
28 | opt_strat = CustomOptimizationStrategy() |
||
29 | opt_strat.add_optimizer(optimizer1, duration=0.5) |
||
30 | opt_strat.add_optimizer(optimizer2, duration=0.5) |
||
31 | |||
32 | n_iter = 4 |
||
33 | |||
34 | hyper = Hyperactive() |
||
35 | hyper.add_search( |
||
36 | objective_function, |
||
37 | search_space, |
||
38 | optimizer=opt_strat, |
||
39 | n_iter=n_iter, |
||
40 | memory=False, |
||
41 | initialize={"random": 1}, |
||
42 | ) |
||
43 | hyper.run() |
||
44 | |||
45 | search_data = hyper.search_data(objective_function) |
||
46 | |||
47 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
||
48 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
||
49 | |||
50 | assert len(search_data) == n_iter |
||
51 | |||
52 | assert len(optimizer1.search_data) == 2 |
||
53 | assert len(optimizer2.search_data) == 2 |
||
54 | |||
55 | assert optimizer1.best_score <= optimizer2.best_score |
||
56 |