| Conditions | 1 |
| Total Lines | 33 |
| Code Lines | 24 |
| Lines | 33 |
| Ratio | 100 % |
| Changes | 0 | ||
| 1 | import pytest |
||
| 23 | View Code Duplication | @pytest.mark.parametrize(*optimizers) |
|
|
|
|||
| 24 | def test_strategy_combinations_0(Optimizer): |
||
| 25 | optimizer1 = Optimizer() |
||
| 26 | optimizer2 = HillClimbingOptimizer() |
||
| 27 | |||
| 28 | opt_strat = CustomOptimizationStrategy() |
||
| 29 | opt_strat.add_optimizer(optimizer1, duration=0.5) |
||
| 30 | opt_strat.add_optimizer(optimizer2, duration=0.5) |
||
| 31 | |||
| 32 | n_iter = 4 |
||
| 33 | |||
| 34 | hyper = Hyperactive() |
||
| 35 | hyper.add_search( |
||
| 36 | objective_function, |
||
| 37 | search_space, |
||
| 38 | optimizer=opt_strat, |
||
| 39 | n_iter=n_iter, |
||
| 40 | memory=False, |
||
| 41 | initialize={"random": 1}, |
||
| 42 | ) |
||
| 43 | hyper.run() |
||
| 44 | |||
| 45 | search_data = hyper.search_data(objective_function) |
||
| 46 | |||
| 47 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
||
| 48 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
||
| 49 | |||
| 50 | assert len(search_data) == n_iter |
||
| 51 | |||
| 52 | assert len(optimizer1.search_data) == 2 |
||
| 53 | assert len(optimizer2.search_data) == 2 |
||
| 54 | |||
| 55 | assert optimizer1.best_score <= optimizer2.best_score |
||
| 56 |