Conditions | 1 |
Total Lines | 33 |
Code Lines | 24 |
Lines | 33 |
Ratio | 100 % |
Changes | 0 |
1 | import pytest |
||
23 | View Code Duplication | @pytest.mark.parametrize(*optimizers) |
|
|
|||
24 | def test_strategy_combinations_0(Optimizer): |
||
25 | optimizer1 = Optimizer() |
||
26 | optimizer2 = HillClimbingOptimizer() |
||
27 | |||
28 | opt_strat = CustomOptimizationStrategy() |
||
29 | opt_strat.add_optimizer(optimizer1, duration=0.5) |
||
30 | opt_strat.add_optimizer(optimizer2, duration=0.5) |
||
31 | |||
32 | n_iter = 4 |
||
33 | |||
34 | hyper = Hyperactive() |
||
35 | hyper.add_search( |
||
36 | objective_function, |
||
37 | search_space, |
||
38 | optimizer=opt_strat, |
||
39 | n_iter=n_iter, |
||
40 | memory=False, |
||
41 | initialize={"random": 1}, |
||
42 | ) |
||
43 | hyper.run() |
||
44 | |||
45 | search_data = hyper.search_data(objective_function) |
||
46 | |||
47 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
||
48 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
||
49 | |||
50 | assert len(search_data) == n_iter |
||
51 | |||
52 | assert len(optimizer1.search_data) == 2 |
||
53 | assert len(optimizer2.search_data) == 2 |
||
54 | |||
55 | assert optimizer1.best_score <= optimizer2.best_score |
||
56 |