@@ 92-124 (lines=33) @@ | ||
89 | assert optimizer1.best_score <= optimizer2.best_score |
|
90 | ||
91 | ||
92 | @pytest.mark.parametrize(*optimizers) |
|
93 | @pytest.mark.parametrize(*optimizers_strat) |
|
94 | def test_strategy_combinations_2(Optimizer, Optimizer_strat): |
|
95 | optimizer1 = Optimizer() |
|
96 | optimizer2 = Optimizer_strat() |
|
97 | ||
98 | opt_strat = CustomOptimizationStrategy() |
|
99 | opt_strat.add_optimizer(optimizer1, duration=0.9) |
|
100 | opt_strat.add_optimizer(optimizer2, duration=0.1) |
|
101 | ||
102 | n_iter = 10 |
|
103 | ||
104 | hyper = Hyperactive() |
|
105 | hyper.add_search( |
|
106 | objective_function, |
|
107 | search_space, |
|
108 | optimizer=opt_strat, |
|
109 | n_iter=n_iter, |
|
110 | memory=False, |
|
111 | ) |
|
112 | hyper.run() |
|
113 | ||
114 | search_data = hyper.search_data(objective_function) |
|
115 | ||
116 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
|
117 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
|
118 | ||
119 | assert len(search_data) == n_iter |
|
120 | ||
121 | assert len(optimizer1.search_data) == 9 |
|
122 | assert len(optimizer2.search_data) == 1 |
|
123 | ||
124 | assert optimizer1.best_score <= optimizer2.best_score |
|
125 | ||
126 | ||
127 | @pytest.mark.parametrize(*optimizers) |
|
@@ 57-89 (lines=33) @@ | ||
54 | assert optimizer1.best_score <= optimizer2.best_score |
|
55 | ||
56 | ||
57 | @pytest.mark.parametrize(*optimizers) |
|
58 | @pytest.mark.parametrize(*optimizers_strat) |
|
59 | def test_strategy_combinations_1(Optimizer, Optimizer_strat): |
|
60 | optimizer1 = Optimizer() |
|
61 | optimizer2 = Optimizer_strat() |
|
62 | ||
63 | opt_strat = CustomOptimizationStrategy() |
|
64 | opt_strat.add_optimizer(optimizer1, duration=0.1) |
|
65 | opt_strat.add_optimizer(optimizer2, duration=0.9) |
|
66 | ||
67 | n_iter = 10 |
|
68 | ||
69 | hyper = Hyperactive() |
|
70 | hyper.add_search( |
|
71 | objective_function, |
|
72 | search_space, |
|
73 | optimizer=opt_strat, |
|
74 | n_iter=n_iter, |
|
75 | memory=False, |
|
76 | ) |
|
77 | hyper.run() |
|
78 | ||
79 | search_data = hyper.search_data(objective_function) |
|
80 | ||
81 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
|
82 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
|
83 | ||
84 | assert len(search_data) == n_iter |
|
85 | ||
86 | assert len(optimizer1.search_data) == 1 |
|
87 | assert len(optimizer2.search_data) == 9 |
|
88 | ||
89 | assert optimizer1.best_score <= optimizer2.best_score |
|
90 | ||
91 | ||
92 | @pytest.mark.parametrize(*optimizers) |
|
@@ 22-54 (lines=33) @@ | ||
19 | } |
|
20 | ||
21 | ||
22 | @pytest.mark.parametrize(*optimizers) |
|
23 | @pytest.mark.parametrize(*optimizers_strat) |
|
24 | def test_strategy_combinations_0(Optimizer, Optimizer_strat): |
|
25 | optimizer1 = Optimizer() |
|
26 | optimizer2 = Optimizer_strat() |
|
27 | ||
28 | opt_strat = CustomOptimizationStrategy() |
|
29 | opt_strat.add_optimizer(optimizer1, duration=0.5) |
|
30 | opt_strat.add_optimizer(optimizer2, duration=0.5) |
|
31 | ||
32 | n_iter = 30 |
|
33 | ||
34 | hyper = Hyperactive() |
|
35 | hyper.add_search( |
|
36 | objective_function, |
|
37 | search_space, |
|
38 | optimizer=opt_strat, |
|
39 | n_iter=n_iter, |
|
40 | memory=False, |
|
41 | ) |
|
42 | hyper.run() |
|
43 | ||
44 | search_data = hyper.search_data(objective_function) |
|
45 | ||
46 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
|
47 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
|
48 | ||
49 | assert len(search_data) == n_iter |
|
50 | ||
51 | assert len(optimizer1.search_data) == 15 |
|
52 | assert len(optimizer2.search_data) == 15 |
|
53 | ||
54 | assert optimizer1.best_score <= optimizer2.best_score |
|
55 | ||
56 | ||
57 | @pytest.mark.parametrize(*optimizers) |
@@ 23-55 (lines=33) @@ | ||
20 | } |
|
21 | ||
22 | ||
23 | @pytest.mark.parametrize(*optimizers) |
|
24 | def test_strategy_combinations_0(Optimizer): |
|
25 | optimizer1 = Optimizer() |
|
26 | optimizer2 = HillClimbingOptimizer() |
|
27 | ||
28 | opt_strat = CustomOptimizationStrategy() |
|
29 | opt_strat.add_optimizer(optimizer1, duration=0.5) |
|
30 | opt_strat.add_optimizer(optimizer2, duration=0.5) |
|
31 | ||
32 | n_iter = 4 |
|
33 | ||
34 | hyper = Hyperactive() |
|
35 | hyper.add_search( |
|
36 | objective_function, |
|
37 | search_space, |
|
38 | optimizer=opt_strat, |
|
39 | n_iter=n_iter, |
|
40 | memory=False, |
|
41 | initialize={"random": 1}, |
|
42 | ) |
|
43 | hyper.run() |
|
44 | ||
45 | search_data = hyper.search_data(objective_function) |
|
46 | ||
47 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
|
48 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
|
49 | ||
50 | assert len(search_data) == n_iter |
|
51 | ||
52 | assert len(optimizer1.search_data) == 2 |
|
53 | assert len(optimizer2.search_data) == 2 |
|
54 | ||
55 | assert optimizer1.best_score <= optimizer2.best_score |
|
56 |
@@ 24-55 (lines=32) @@ | ||
21 | } |
|
22 | ||
23 | ||
24 | @pytest.mark.parametrize(*optimizers_smbo) |
|
25 | def test_memory_Warm_start_smbo_0(Optimizer_smbo): |
|
26 | optimizer1 = GridSearchOptimizer() |
|
27 | optimizer2 = Optimizer_smbo() |
|
28 | ||
29 | opt_strat = CustomOptimizationStrategy() |
|
30 | opt_strat.add_optimizer(optimizer1, duration=0.8) |
|
31 | opt_strat.add_optimizer(optimizer2, duration=0.2) |
|
32 | ||
33 | n_iter = 100 |
|
34 | ||
35 | hyper = Hyperactive() |
|
36 | hyper.add_search( |
|
37 | objective_function, |
|
38 | search_space, |
|
39 | optimizer=opt_strat, |
|
40 | n_iter=n_iter, |
|
41 | memory=True, |
|
42 | ) |
|
43 | hyper.run() |
|
44 | ||
45 | search_data = hyper.search_data(objective_function) |
|
46 | ||
47 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
|
48 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
|
49 | ||
50 | assert len(search_data) == n_iter |
|
51 | ||
52 | assert len(optimizer1.search_data) == 80 |
|
53 | assert len(optimizer2.search_data) == 20 |
|
54 | ||
55 | assert optimizer1.best_score <= optimizer2.best_score |
|
56 |