1
|
|
|
from torch import nn |
2
|
|
|
import torch |
3
|
|
|
import matplotlib.pyplot as plt |
4
|
|
|
|
5
|
|
|
""" |
6
|
|
|
input shape:[batch, seq_len, d_model] |
7
|
|
|
""" |
8
|
|
|
|
9
|
|
|
class PositionEncoding(nn.Module): |
10
|
|
|
def __init__(self, d_model, max_seq_len=512): |
11
|
|
|
super().__init__() |
12
|
|
|
# shape: [max_seq_len, 1] |
13
|
|
|
position = torch.arange(0, max_seq_len).unsqueeze(1) |
14
|
|
|
item = 1/10000 ** (torch.arange(0, d_model, 2)/d_model) |
15
|
|
|
tmp_pos = position * item |
16
|
|
|
pe = torch.zeros(max_seq_len, d_model) |
17
|
|
|
pe[:, 0::2] = torch.sin(tmp_pos) |
18
|
|
|
pe[:, 1::2] = torch.cos(tmp_pos) |
19
|
|
|
# plt.matshow(pe) |
20
|
|
|
# plt.show() 这两行用于可视化位置编码的图像 |
21
|
|
|
pe = pe.unsqueeze(0) |
22
|
|
|
self.register_buffer('pe', pe, False) |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def forward(self, x): |
27
|
|
|
batch, seq_len,_ = x.shape |
28
|
|
|
pe = self.pe |
29
|
|
|
return x + pe[:,:seq_len,:] |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def attention(query, key, value, mask=None): |
35
|
|
|
d_model = key.shape[-1] |
36
|
|
|
# query, key, value shape:[batch, seq_len, d_model] |
37
|
|
|
att_ = torch.matmul(query, key.transpose(-2, -1)) / d_model ** 0.5 |
38
|
|
|
if mask is not None: |
39
|
|
|
att_ = att_.masked_fill(mask, -1e9) |
40
|
|
|
|
41
|
|
|
att_score = torch.softmax(att_, dim=-1) |
42
|
|
|
return torch.matmul(att_score, value) |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
|
46
|
|
|
|
47
|
|
|
|
48
|
|
|
class MultiHeadAttention(nn.Module): |
49
|
|
|
def __init__(self, heads, d_model, dropout=0.1): |
50
|
|
|
super().__init__() |
51
|
|
|
assert d_model % heads == 0 # 这里的做法是将不同的注意力头分治不同的qkv部分 |
52
|
|
|
self.q_linear = nn.Linear(d_model, d_model, bias=False) |
53
|
|
|
self.k_linear = nn.Linear(d_model, d_model, bias=False) |
54
|
|
|
self.v_linear = nn.Linear(d_model, d_model, bias=False) |
55
|
|
|
self.linear = nn.Linear(d_model, d_model, bias=False) |
56
|
|
|
self.dropout = nn.Dropout(dropout) |
57
|
|
|
self.heads = heads |
58
|
|
|
self.d_k = d_model // heads |
59
|
|
|
self.d_model = d_model |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
def forward(self, q, k, v, mask=None): |
63
|
|
|
# [n, seq_len, d_model] -> [n, heads, seq_len, d_k] |
64
|
|
|
# 这一步中,将输入x分布在三个linear中计算得到qkv,隐含了“w”矩阵 |
65
|
|
|
q = self.q_linear(q).reshape(q.shape[0], -1, self.heads, self.d_k).transpose(1, 2) |
66
|
|
|
k = self.k_linear(k).reshape(q.shape[0], -1, self.heads, self.d_k).transpose(1, 2) |
67
|
|
|
v = self.v_linear(v).reshape(q.shape[0], -1, self.heads, self.d_k).transpose(1, 2) |
68
|
|
|
out = attention(q, k, v, mask) |
69
|
|
|
out = out.transpose(1,2).reshape(out.shape[0], -1, self.d_model) |
70
|
|
|
out = self.linear(out) |
71
|
|
|
out = self.dropout(out) |
72
|
|
|
return out |
73
|
|
|
|
74
|
|
|
|
75
|
|
|
|
76
|
|
|
|
77
|
|
|
class FeedForward(nn.Module): |
78
|
|
|
def __init__(self, d_model, d_ff, dropout=0.1): |
79
|
|
|
super().__init__() |
80
|
|
|
self.ffn = nn.Sequential( |
81
|
|
|
nn.Linear(d_model, d_ff, bias=False), |
82
|
|
|
nn.ReLU(), |
83
|
|
|
nn.Linear(d_ff, d_model, bias=False), |
84
|
|
|
nn.Dropout(dropout) |
85
|
|
|
) |
86
|
|
|
|
87
|
|
|
def forward(self, x): |
88
|
|
|
return self.ffn(x) |
89
|
|
|
|
90
|
|
|
|
91
|
|
|
|
92
|
|
|
|
93
|
|
|
class EncoderLayer(nn.Module): |
94
|
|
|
def __init__(self, heads, d_model, d_ff, dropout=0.1): |
95
|
|
|
super().__init__() |
96
|
|
|
self.self_multi_head_att = MultiHeadAttention(heads, d_model, dropout) |
97
|
|
|
self.ffn = FeedForward(d_model, d_ff, dropout) |
98
|
|
|
self.norms = nn.ModuleList([nn.LayerNorm(d_model) for i in range(2)]) |
99
|
|
|
self.dropout = nn.Dropout(dropout) |
100
|
|
|
|
101
|
|
|
def forward(self, x, mask=None): |
102
|
|
|
multi_head_att_out = self.self_multi_head_att(x, x, x, mask) |
103
|
|
|
multi_head_att_out = self.norms[0](x + multi_head_att_out) |
104
|
|
|
ffn_out = self.ffn(multi_head_att_out) |
105
|
|
|
ffn_out = self.norms[1](multi_head_att_out + ffn_out) |
106
|
|
|
out = self.dropout(ffn_out) |
107
|
|
|
return out |
108
|
|
|
|
109
|
|
|
|
110
|
|
View Code Duplication |
class Encoder(nn.Module): |
|
|
|
|
111
|
|
|
def __init__(self, vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len=512, dropout=0.1): |
112
|
|
|
super().__init__() |
113
|
|
|
self.embedding = nn.Embedding(vocab_size, d_model, pad_idx) |
114
|
|
|
self.positional_encode = PositionEncoding(d_model, max_seq_len) |
115
|
|
|
self.encoder_layers = nn.ModuleList([EncoderLayer(heads, d_model, d_ff, dropout) for i in range(num_layers)]) |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
def forward(self, x, src_mask): |
119
|
|
|
embed_x = self.embedding(x) |
120
|
|
|
pos_encode_x = self.positional_encode(embed_x) |
121
|
|
|
for layer in self.encoder_layers: |
122
|
|
|
pos_encode_x = layer(pos_encode_x, src_mask) |
123
|
|
|
return pos_encode_x |
124
|
|
|
|
125
|
|
|
|
126
|
|
|
|
127
|
|
|
|
128
|
|
|
|
129
|
|
|
class DecoderLayer(nn.Module): |
130
|
|
|
def __init__(self, heads, d_model, d_ff, dropout=0.1): |
131
|
|
|
super().__init__() |
132
|
|
|
self.masked_att = MultiHeadAttention(heads, d_model, dropout) |
133
|
|
|
self.att = MultiHeadAttention(heads, d_model, dropout) |
134
|
|
|
self.norms = nn.ModuleList([nn.LayerNorm(d_model) for i in range(3)]) |
135
|
|
|
self.ffn = FeedForward(d_model, d_ff, dropout) |
136
|
|
|
self.dropout = nn.Dropout(dropout) |
137
|
|
|
|
138
|
|
|
def forward(self, x, encode_kv, dst_mask=None, src_dst_mask=None): |
139
|
|
|
masked_att_out = self.masked_att(x, x, x, dst_mask) |
140
|
|
|
masked_att_out = self.norms[0](x + masked_att_out) |
141
|
|
|
att_out = self.att(masked_att_out, encode_kv, encode_kv, src_dst_mask) |
142
|
|
|
att_out = self.norms[1](att_out + masked_att_out) |
143
|
|
|
ffn_out = self.ffn(att_out) |
144
|
|
|
ffn_out = self.norms[2](ffn_out + att_out) |
145
|
|
|
out = self.dropout(ffn_out) |
146
|
|
|
return out |
147
|
|
|
|
148
|
|
|
|
149
|
|
|
|
150
|
|
|
|
151
|
|
|
|
152
|
|
View Code Duplication |
class Decoder(nn.Module): |
|
|
|
|
153
|
|
|
def __init__(self,vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len=512, dropout=0.1): |
154
|
|
|
super().__init__() |
155
|
|
|
self.embedding = nn.Embedding(vocab_size, d_model, pad_idx) |
156
|
|
|
self.positional_encode = PositionEncoding(d_model, max_seq_len) |
157
|
|
|
self.decoder_layers = nn.ModuleList([DecoderLayer(heads, d_model, d_ff, dropout) for i in range(num_layers)]) |
158
|
|
|
|
159
|
|
|
def forward(self, x, encoder_kv, dst_mask=None, src_dst_mask=None): |
160
|
|
|
embed_x = self.embedding(x) |
161
|
|
|
pos_encode_x = self.positional_encode(embed_x) |
162
|
|
|
for layer in self.decoder_layers: |
163
|
|
|
pos_encode_x = layer(pos_encode_x, encoder_kv, dst_mask, src_dst_mask) |
164
|
|
|
return pos_encode_x |
165
|
|
|
|
166
|
|
|
|
167
|
|
|
|
168
|
|
|
|
169
|
|
|
|
170
|
|
|
|
171
|
|
|
class Transformer(nn.Module): |
172
|
|
|
def __init__(self, enc_vocab_size, dec_vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len=512, dropout=0.1): |
173
|
|
|
super().__init__() |
174
|
|
|
self.encoder = Encoder(enc_vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len, dropout) |
175
|
|
|
self.decoder = Decoder(dec_vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len, dropout) |
176
|
|
|
self.linear = nn.Linear(d_model, dec_vocab_size) |
177
|
|
|
self.pad_idx = pad_idx |
178
|
|
|
|
179
|
|
|
def generate_mask(self, query, key, is_triu_mask=False): # 最后一个参数用于判断是否是用于masked多头还是padding mask |
180
|
|
|
device = query.device |
181
|
|
|
# batch, seq_len |
182
|
|
|
batch, seq_q = query.shape |
183
|
|
|
_, seq_k = key.shape |
184
|
|
|
# batch, head, seq_q, seq_k |
185
|
|
|
mask = (key == self.pad_idx).unsqueeze(1).unsqueeze(2) |
186
|
|
|
mask = mask.expand(batch, 1, seq_q, seq_k).to(device) |
187
|
|
|
if is_triu_mask: |
188
|
|
|
dst_triu_mask = torch.triu(torch.ones(seq_q, seq_k, dtype=torch.bool), diagonal=1) |
189
|
|
|
dst_triu_mask = dst_triu_mask.unsqueeze(0).unsqueeze(1).expand(batch, 1, seq_q, seq_k).to(device) |
190
|
|
|
return mask|dst_triu_mask |
191
|
|
|
return mask |
192
|
|
|
|
193
|
|
|
|
194
|
|
|
def forward(self, src, dst): |
195
|
|
|
src_mask = self.generate_mask(src, src) # 输入部分的padding mask |
196
|
|
|
encoder_out = self.encoder(src, src_mask) |
197
|
|
|
dst_mask = self.generate_mask(dst, dst, True) |
198
|
|
|
src_dst_mask = self.generate_mask(dst, src) |
199
|
|
|
decoder_out = self.decoder(dst, encoder_out, dst_mask, src_dst_mask) |
200
|
|
|
out = self.linear(decoder_out) |
201
|
|
|
return out |
202
|
|
|
|
203
|
|
|
|
204
|
|
|
|
205
|
|
|
if __name__ == '__main__': |
206
|
|
|
# PositionEncoding(512, 100) 测试位置编码样式 |
207
|
|
|
# att = MultiHeadAttention(8, 512, 0.2) 测试多头注意力的维度变化是否正确 |
208
|
|
|
# x = torch.randn(4, 100, 512) |
209
|
|
|
# out = att(x, x, x) |
210
|
|
|
# print(out.shape) |
211
|
|
|
att = Transformer(100, 200, 0, 512, 8, 6, 1024, 512, 0.1) |
212
|
|
|
x = torch.randint(0, 100, (4, 64)) |
213
|
|
|
y = torch.randint(0, 200, (4, 64)) |
214
|
|
|
out = att(x, y) |
215
|
|
|
print(out.shape) |