| 1 |  |  | from torch import nn | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | import torch | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  | import matplotlib.pyplot as plt | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  |     input shape:[batch, seq_len, d_model] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | class PositionEncoding(nn.Module): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  |     def __init__(self, d_model, max_seq_len=512): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  |         super().__init__() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  |         # shape: [max_seq_len, 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  |         position = torch.arange(0, max_seq_len).unsqueeze(1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  |         item = 1/10000 ** (torch.arange(0, d_model, 2)/d_model) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  |         tmp_pos = position * item | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  |         pe = torch.zeros(max_seq_len, d_model) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |         pe[:, 0::2] = torch.sin(tmp_pos) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |         pe[:, 1::2] = torch.cos(tmp_pos) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  |         # plt.matshow(pe) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  |         # plt.show()  这两行用于可视化位置编码的图像 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |         pe = pe.unsqueeze(0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  |         self.register_buffer('pe', pe, False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |     def forward(self, x): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  |         batch, seq_len,_ = x.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |         pe = self.pe | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |         return x + pe[:,:seq_len,:] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |  | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 33 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 34 |  |  | def attention(query, key, value, mask=None): | 
            
                                                                        
                            
            
                                    
            
            
                | 35 |  |  |     d_model = key.shape[-1] | 
            
                                                                        
                            
            
                                    
            
            
                | 36 |  |  |     # query, key, value shape:[batch, seq_len, d_model] | 
            
                                                                        
                            
            
                                    
            
            
                | 37 |  |  |     att_ = torch.matmul(query, key.transpose(-2, -1)) / d_model ** 0.5 | 
            
                                                                        
                            
            
                                    
            
            
                | 38 |  |  |     if mask is not None: | 
            
                                                                        
                            
            
                                    
            
            
                | 39 |  |  |         att_ = att_.masked_fill(mask, -1e9) | 
            
                                                                        
                            
            
                                    
            
            
                | 40 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 41 |  |  |     att_score = torch.softmax(att_, dim=-1) | 
            
                                                                        
                            
            
                                    
            
            
                | 42 |  |  |     return torch.matmul(att_score, value) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  | class MultiHeadAttention(nn.Module): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |     def __init__(self, heads, d_model, dropout=0.1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |         super().__init__() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |         assert d_model % heads == 0   # 这里的做法是将不同的注意力头分治不同的qkv部分 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |         self.q_linear = nn.Linear(d_model, d_model, bias=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  |         self.k_linear = nn.Linear(d_model, d_model, bias=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |         self.v_linear = nn.Linear(d_model, d_model, bias=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |         self.linear = nn.Linear(d_model, d_model, bias=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |         self.dropout = nn.Dropout(dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |         self.heads = heads | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |         self.d_k = d_model // heads | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |         self.d_model = d_model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |     def forward(self, q, k, v, mask=None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |         # [n, seq_len, d_model] -> [n, heads, seq_len, d_k] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |         # 这一步中,将输入x分布在三个linear中计算得到qkv,隐含了“w”矩阵 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |         q = self.q_linear(q).reshape(q.shape[0], -1, self.heads, self.d_k).transpose(1, 2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |         k = self.k_linear(k).reshape(q.shape[0], -1, self.heads, self.d_k).transpose(1, 2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |         v = self.v_linear(v).reshape(q.shape[0], -1, self.heads, self.d_k).transpose(1, 2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |         out = attention(q, k, v, mask) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |         out = out.transpose(1,2).reshape(out.shape[0], -1, self.d_model) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |         out = self.linear(out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |         out = self.dropout(out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |         return out | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  | class FeedForward(nn.Module): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |     def __init__(self, d_model, d_ff, dropout=0.1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |         super().__init__() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |         self.ffn = nn.Sequential( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |             nn.Linear(d_model, d_ff, bias=False), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |             nn.ReLU(), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |             nn.Linear(d_ff, d_model, bias=False), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |             nn.Dropout(dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |     def forward(self, x): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |         return self.ffn(x) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  | class EncoderLayer(nn.Module): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |     def __init__(self, heads, d_model, d_ff, dropout=0.1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |         super().__init__() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |         self.self_multi_head_att = MultiHeadAttention(heads, d_model, dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |         self.ffn = FeedForward(d_model, d_ff, dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |         self.norms = nn.ModuleList([nn.LayerNorm(d_model) for i in range(2)]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |         self.dropout = nn.Dropout(dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |     def forward(self, x, mask=None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |         multi_head_att_out = self.self_multi_head_att(x, x, x, mask) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |         multi_head_att_out = self.norms[0](x + multi_head_att_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |         ffn_out = self.ffn(multi_head_att_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |         ffn_out = self.norms[1](multi_head_att_out + ffn_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |         out = self.dropout(ffn_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |         return out | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |  | 
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 110 |  | View Code Duplication | class Encoder(nn.Module): | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |     def __init__(self, vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len=512, dropout=0.1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |         super().__init__() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |         self.embedding = nn.Embedding(vocab_size, d_model, pad_idx) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |         self.positional_encode = PositionEncoding(d_model, max_seq_len) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |         self.encoder_layers = nn.ModuleList([EncoderLayer(heads, d_model, d_ff, dropout) for i in range(num_layers)]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |     def forward(self, x, src_mask): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |         embed_x = self.embedding(x) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |         pos_encode_x = self.positional_encode(embed_x) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |         for layer in self.encoder_layers: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |             pos_encode_x = layer(pos_encode_x, src_mask) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |         return pos_encode_x | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  | class DecoderLayer(nn.Module): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |     def __init__(self, heads, d_model, d_ff, dropout=0.1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |         super().__init__() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |         self.masked_att = MultiHeadAttention(heads, d_model, dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |         self.att = MultiHeadAttention(heads, d_model, dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |         self.norms = nn.ModuleList([nn.LayerNorm(d_model) for i in range(3)]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |         self.ffn = FeedForward(d_model, d_ff, dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |         self.dropout = nn.Dropout(dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |     def forward(self, x, encode_kv, dst_mask=None, src_dst_mask=None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |         masked_att_out = self.masked_att(x, x, x, dst_mask) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |         masked_att_out = self.norms[0](x + masked_att_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |         att_out = self.att(masked_att_out, encode_kv, encode_kv, src_dst_mask) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |         att_out = self.norms[1](att_out + masked_att_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |         ffn_out = self.ffn(att_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |         ffn_out = self.norms[2](ffn_out + att_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |         out = self.dropout(ffn_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |         return out | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |  | 
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 152 |  | View Code Duplication | class Decoder(nn.Module): | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |     def __init__(self,vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len=512, dropout=0.1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |         super().__init__() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |         self.embedding = nn.Embedding(vocab_size, d_model, pad_idx) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |         self.positional_encode = PositionEncoding(d_model, max_seq_len) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |         self.decoder_layers = nn.ModuleList([DecoderLayer(heads, d_model, d_ff, dropout) for i in range(num_layers)]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |     def forward(self, x, encoder_kv, dst_mask=None, src_dst_mask=None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |         embed_x = self.embedding(x) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |         pos_encode_x = self.positional_encode(embed_x) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |         for layer in self.decoder_layers: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |             pos_encode_x = layer(pos_encode_x, encoder_kv, dst_mask, src_dst_mask) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |         return pos_encode_x | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  | class Transformer(nn.Module): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |     def __init__(self, enc_vocab_size, dec_vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len=512, dropout=0.1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |         super().__init__() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |         self.encoder = Encoder(enc_vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len, dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |         self.decoder = Decoder(dec_vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len, dropout) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |         self.linear = nn.Linear(d_model, dec_vocab_size) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |         self.pad_idx = pad_idx | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |     def generate_mask(self, query, key, is_triu_mask=False):    # 最后一个参数用于判断是否是用于masked多头还是padding mask | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |         device = query.device | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |         # batch, seq_len | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |         batch, seq_q = query.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |         _, seq_k = key.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |         # batch, head, seq_q, seq_k | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |         mask = (key == self.pad_idx).unsqueeze(1).unsqueeze(2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |         mask = mask.expand(batch, 1, seq_q, seq_k).to(device) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  |         if is_triu_mask: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  |             dst_triu_mask = torch.triu(torch.ones(seq_q, seq_k, dtype=torch.bool), diagonal=1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |             dst_triu_mask = dst_triu_mask.unsqueeze(0).unsqueeze(1).expand(batch, 1, seq_q, seq_k).to(device) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |             return mask|dst_triu_mask | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |         return mask | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |     def forward(self, src, dst): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  |         src_mask = self.generate_mask(src, src)  # 输入部分的padding mask | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |         encoder_out = self.encoder(src, src_mask) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |         dst_mask = self.generate_mask(dst, dst, True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |         src_dst_mask = self.generate_mask(dst, src) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |         decoder_out = self.decoder(dst, encoder_out, dst_mask, src_dst_mask) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |         out = self.linear(decoder_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |         return out | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  | if __name__ == '__main__': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  |     # PositionEncoding(512, 100) 测试位置编码样式 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |     # att = MultiHeadAttention(8, 512, 0.2) 测试多头注意力的维度变化是否正确 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  |     # x = torch.randn(4, 100, 512) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  |     # out = att(x, x, x) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  |     # print(out.shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  |     att = Transformer(100, 200, 0, 512, 8, 6, 1024, 512, 0.1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |     x = torch.randint(0, 100, (4, 64)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  |     y = torch.randint(0, 200, (4, 64)) | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 214 |  |  |     out = att(x, y) | 
            
                                                        
            
                                    
            
            
                | 215 |  |  |     print(out.shape) |