|
1
|
|
|
from torch import nn |
|
2
|
|
|
import torch |
|
3
|
|
|
import matplotlib.pyplot as plt |
|
4
|
|
|
|
|
5
|
|
|
""" |
|
6
|
|
|
input shape:[batch, seq_len, d_model] |
|
7
|
|
|
""" |
|
8
|
|
|
|
|
9
|
|
|
class PositionEncoding(nn.Module): |
|
10
|
|
|
def __init__(self, d_model, max_seq_len=512): |
|
11
|
|
|
super().__init__() |
|
12
|
|
|
# shape: [max_seq_len, 1] |
|
13
|
|
|
position = torch.arange(0, max_seq_len).unsqueeze(1) |
|
14
|
|
|
item = 1/10000 ** (torch.arange(0, d_model, 2)/d_model) |
|
15
|
|
|
tmp_pos = position * item |
|
16
|
|
|
pe = torch.zeros(max_seq_len, d_model) |
|
17
|
|
|
pe[:, 0::2] = torch.sin(tmp_pos) |
|
18
|
|
|
pe[:, 1::2] = torch.cos(tmp_pos) |
|
19
|
|
|
# plt.matshow(pe) |
|
20
|
|
|
# plt.show() 这两行用于可视化位置编码的图像 |
|
21
|
|
|
pe = pe.unsqueeze(0) |
|
22
|
|
|
self.register_buffer('pe', pe, False) |
|
23
|
|
|
|
|
24
|
|
|
|
|
25
|
|
|
|
|
26
|
|
|
def forward(self, x): |
|
27
|
|
|
batch, seq_len,_ = x.shape |
|
28
|
|
|
pe = self.pe |
|
29
|
|
|
return x + pe[:,:seq_len,:] |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
|
|
33
|
|
|
|
|
34
|
|
|
def attention(query, key, value, mask=None): |
|
35
|
|
|
d_model = key.shape[-1] |
|
36
|
|
|
# query, key, value shape:[batch, seq_len, d_model] |
|
37
|
|
|
att_ = torch.matmul(query, key.transpose(-2, -1)) / d_model ** 0.5 |
|
38
|
|
|
if mask is not None: |
|
39
|
|
|
att_ = att_.masked_fill(mask, -1e9) |
|
40
|
|
|
|
|
41
|
|
|
att_score = torch.softmax(att_, dim=-1) |
|
42
|
|
|
return torch.matmul(att_score, value) |
|
43
|
|
|
|
|
44
|
|
|
|
|
45
|
|
|
|
|
46
|
|
|
|
|
47
|
|
|
|
|
48
|
|
|
class MultiHeadAttention(nn.Module): |
|
49
|
|
|
def __init__(self, heads, d_model, dropout=0.1): |
|
50
|
|
|
super().__init__() |
|
51
|
|
|
assert d_model % heads == 0 # 这里的做法是将不同的注意力头分治不同的qkv部分 |
|
52
|
|
|
self.q_linear = nn.Linear(d_model, d_model, bias=False) |
|
53
|
|
|
self.k_linear = nn.Linear(d_model, d_model, bias=False) |
|
54
|
|
|
self.v_linear = nn.Linear(d_model, d_model, bias=False) |
|
55
|
|
|
self.linear = nn.Linear(d_model, d_model, bias=False) |
|
56
|
|
|
self.dropout = nn.Dropout(dropout) |
|
57
|
|
|
self.heads = heads |
|
58
|
|
|
self.d_k = d_model // heads |
|
59
|
|
|
self.d_model = d_model |
|
60
|
|
|
|
|
61
|
|
|
|
|
62
|
|
|
def forward(self, q, k, v, mask=None): |
|
63
|
|
|
# [n, seq_len, d_model] -> [n, heads, seq_len, d_k] |
|
64
|
|
|
# 这一步中,将输入x分布在三个linear中计算得到qkv,隐含了“w”矩阵 |
|
65
|
|
|
q = self.q_linear(q).reshape(q.shape[0], -1, self.heads, self.d_k).transpose(1, 2) |
|
66
|
|
|
k = self.k_linear(k).reshape(q.shape[0], -1, self.heads, self.d_k).transpose(1, 2) |
|
67
|
|
|
v = self.v_linear(v).reshape(q.shape[0], -1, self.heads, self.d_k).transpose(1, 2) |
|
68
|
|
|
out = attention(q, k, v, mask) |
|
69
|
|
|
out = out.transpose(1,2).reshape(out.shape[0], -1, self.d_model) |
|
70
|
|
|
out = self.linear(out) |
|
71
|
|
|
out = self.dropout(out) |
|
72
|
|
|
return out |
|
73
|
|
|
|
|
74
|
|
|
|
|
75
|
|
|
|
|
76
|
|
|
|
|
77
|
|
|
class FeedForward(nn.Module): |
|
78
|
|
|
def __init__(self, d_model, d_ff, dropout=0.1): |
|
79
|
|
|
super().__init__() |
|
80
|
|
|
self.ffn = nn.Sequential( |
|
81
|
|
|
nn.Linear(d_model, d_ff, bias=False), |
|
82
|
|
|
nn.ReLU(), |
|
83
|
|
|
nn.Linear(d_ff, d_model, bias=False), |
|
84
|
|
|
nn.Dropout(dropout) |
|
85
|
|
|
) |
|
86
|
|
|
|
|
87
|
|
|
def forward(self, x): |
|
88
|
|
|
return self.ffn(x) |
|
89
|
|
|
|
|
90
|
|
|
|
|
91
|
|
|
|
|
92
|
|
|
|
|
93
|
|
|
class EncoderLayer(nn.Module): |
|
94
|
|
|
def __init__(self, heads, d_model, d_ff, dropout=0.1): |
|
95
|
|
|
super().__init__() |
|
96
|
|
|
self.self_multi_head_att = MultiHeadAttention(heads, d_model, dropout) |
|
97
|
|
|
self.ffn = FeedForward(d_model, d_ff, dropout) |
|
98
|
|
|
self.norms = nn.ModuleList([nn.LayerNorm(d_model) for i in range(2)]) |
|
99
|
|
|
self.dropout = nn.Dropout(dropout) |
|
100
|
|
|
|
|
101
|
|
|
def forward(self, x, mask=None): |
|
102
|
|
|
multi_head_att_out = self.self_multi_head_att(x, x, x, mask) |
|
103
|
|
|
multi_head_att_out = self.norms[0](x + multi_head_att_out) |
|
104
|
|
|
ffn_out = self.ffn(multi_head_att_out) |
|
105
|
|
|
ffn_out = self.norms[1](multi_head_att_out + ffn_out) |
|
106
|
|
|
out = self.dropout(ffn_out) |
|
107
|
|
|
return out |
|
108
|
|
|
|
|
109
|
|
|
|
|
110
|
|
View Code Duplication |
class Encoder(nn.Module): |
|
|
|
|
|
|
111
|
|
|
def __init__(self, vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len=512, dropout=0.1): |
|
112
|
|
|
super().__init__() |
|
113
|
|
|
self.embedding = nn.Embedding(vocab_size, d_model, pad_idx) |
|
114
|
|
|
self.positional_encode = PositionEncoding(d_model, max_seq_len) |
|
115
|
|
|
self.encoder_layers = nn.ModuleList([EncoderLayer(heads, d_model, d_ff, dropout) for i in range(num_layers)]) |
|
116
|
|
|
|
|
117
|
|
|
|
|
118
|
|
|
def forward(self, x, src_mask): |
|
119
|
|
|
embed_x = self.embedding(x) |
|
120
|
|
|
pos_encode_x = self.positional_encode(embed_x) |
|
121
|
|
|
for layer in self.encoder_layers: |
|
122
|
|
|
pos_encode_x = layer(pos_encode_x, src_mask) |
|
123
|
|
|
return pos_encode_x |
|
124
|
|
|
|
|
125
|
|
|
|
|
126
|
|
|
|
|
127
|
|
|
|
|
128
|
|
|
|
|
129
|
|
|
class DecoderLayer(nn.Module): |
|
130
|
|
|
def __init__(self, heads, d_model, d_ff, dropout=0.1): |
|
131
|
|
|
super().__init__() |
|
132
|
|
|
self.masked_att = MultiHeadAttention(heads, d_model, dropout) |
|
133
|
|
|
self.att = MultiHeadAttention(heads, d_model, dropout) |
|
134
|
|
|
self.norms = nn.ModuleList([nn.LayerNorm(d_model) for i in range(3)]) |
|
135
|
|
|
self.ffn = FeedForward(d_model, d_ff, dropout) |
|
136
|
|
|
self.dropout = nn.Dropout(dropout) |
|
137
|
|
|
|
|
138
|
|
|
def forward(self, x, encode_kv, dst_mask=None, src_dst_mask=None): |
|
139
|
|
|
masked_att_out = self.masked_att(x, x, x, dst_mask) |
|
140
|
|
|
masked_att_out = self.norms[0](x + masked_att_out) |
|
141
|
|
|
att_out = self.att(masked_att_out, encode_kv, encode_kv, src_dst_mask) |
|
142
|
|
|
att_out = self.norms[1](att_out + masked_att_out) |
|
143
|
|
|
ffn_out = self.ffn(att_out) |
|
144
|
|
|
ffn_out = self.norms[2](ffn_out + att_out) |
|
145
|
|
|
out = self.dropout(ffn_out) |
|
146
|
|
|
return out |
|
147
|
|
|
|
|
148
|
|
|
|
|
149
|
|
|
|
|
150
|
|
|
|
|
151
|
|
|
|
|
152
|
|
View Code Duplication |
class Decoder(nn.Module): |
|
|
|
|
|
|
153
|
|
|
def __init__(self,vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len=512, dropout=0.1): |
|
154
|
|
|
super().__init__() |
|
155
|
|
|
self.embedding = nn.Embedding(vocab_size, d_model, pad_idx) |
|
156
|
|
|
self.positional_encode = PositionEncoding(d_model, max_seq_len) |
|
157
|
|
|
self.decoder_layers = nn.ModuleList([DecoderLayer(heads, d_model, d_ff, dropout) for i in range(num_layers)]) |
|
158
|
|
|
|
|
159
|
|
|
def forward(self, x, encoder_kv, dst_mask=None, src_dst_mask=None): |
|
160
|
|
|
embed_x = self.embedding(x) |
|
161
|
|
|
pos_encode_x = self.positional_encode(embed_x) |
|
162
|
|
|
for layer in self.decoder_layers: |
|
163
|
|
|
pos_encode_x = layer(pos_encode_x, encoder_kv, dst_mask, src_dst_mask) |
|
164
|
|
|
return pos_encode_x |
|
165
|
|
|
|
|
166
|
|
|
|
|
167
|
|
|
|
|
168
|
|
|
|
|
169
|
|
|
|
|
170
|
|
|
|
|
171
|
|
|
class Transformer(nn.Module): |
|
172
|
|
|
def __init__(self, enc_vocab_size, dec_vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len=512, dropout=0.1): |
|
173
|
|
|
super().__init__() |
|
174
|
|
|
self.encoder = Encoder(enc_vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len, dropout) |
|
175
|
|
|
self.decoder = Decoder(dec_vocab_size, pad_idx, d_model, heads, num_layers, d_ff, max_seq_len, dropout) |
|
176
|
|
|
self.linear = nn.Linear(d_model, dec_vocab_size) |
|
177
|
|
|
self.pad_idx = pad_idx |
|
178
|
|
|
|
|
179
|
|
|
def generate_mask(self, query, key, is_triu_mask=False): # 最后一个参数用于判断是否是用于masked多头还是padding mask |
|
180
|
|
|
device = query.device |
|
181
|
|
|
# batch, seq_len |
|
182
|
|
|
batch, seq_q = query.shape |
|
183
|
|
|
_, seq_k = key.shape |
|
184
|
|
|
# batch, head, seq_q, seq_k |
|
185
|
|
|
mask = (key == self.pad_idx).unsqueeze(1).unsqueeze(2) |
|
186
|
|
|
mask = mask.expand(batch, 1, seq_q, seq_k).to(device) |
|
187
|
|
|
if is_triu_mask: |
|
188
|
|
|
dst_triu_mask = torch.triu(torch.ones(seq_q, seq_k, dtype=torch.bool), diagonal=1) |
|
189
|
|
|
dst_triu_mask = dst_triu_mask.unsqueeze(0).unsqueeze(1).expand(batch, 1, seq_q, seq_k).to(device) |
|
190
|
|
|
return mask|dst_triu_mask |
|
191
|
|
|
return mask |
|
192
|
|
|
|
|
193
|
|
|
|
|
194
|
|
|
def forward(self, src, dst): |
|
195
|
|
|
src_mask = self.generate_mask(src, src) # 输入部分的padding mask |
|
196
|
|
|
encoder_out = self.encoder(src, src_mask) |
|
197
|
|
|
dst_mask = self.generate_mask(dst, dst, True) |
|
198
|
|
|
src_dst_mask = self.generate_mask(dst, src) |
|
199
|
|
|
decoder_out = self.decoder(dst, encoder_out, dst_mask, src_dst_mask) |
|
200
|
|
|
out = self.linear(decoder_out) |
|
201
|
|
|
return out |
|
202
|
|
|
|
|
203
|
|
|
|
|
204
|
|
|
|
|
205
|
|
|
if __name__ == '__main__': |
|
206
|
|
|
# PositionEncoding(512, 100) 测试位置编码样式 |
|
207
|
|
|
# att = MultiHeadAttention(8, 512, 0.2) 测试多头注意力的维度变化是否正确 |
|
208
|
|
|
# x = torch.randn(4, 100, 512) |
|
209
|
|
|
# out = att(x, x, x) |
|
210
|
|
|
# print(out.shape) |
|
211
|
|
|
att = Transformer(100, 200, 0, 512, 8, 6, 1024, 512, 0.1) |
|
212
|
|
|
x = torch.randint(0, 100, (4, 64)) |
|
213
|
|
|
y = torch.randint(0, 200, (4, 64)) |
|
214
|
|
|
out = att(x, y) |
|
215
|
|
|
print(out.shape) |