| Total Complexity | 36 |
| Total Lines | 140 |
| Duplicated Lines | 74.29 % |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
| 1 | #!/usr/bin/env python |
||
| 15 | class AttentionTrainer(CustomizeTrainer): |
||
| 16 | |||
| 17 | def __init__(self, network, attention_layer, config): |
||
| 18 | """ |
||
| 19 | Parameters: |
||
| 20 | network - AttentionNetwork |
||
| 21 | config - training config |
||
| 22 | :type network: NeuralClassifier |
||
| 23 | :type attention_layer: experiments.attention_models.baseline_model.AttentionLayer |
||
| 24 | :type config: TrainerConfig |
||
| 25 | """ |
||
| 26 | super(AttentionTrainer, self).__init__(network, config) |
||
| 27 | self.large_cov_mode = False |
||
| 28 | self.batch_size = config.get("batch_size", 20) |
||
| 29 | self.disable_backprop = config.get("disable_backprop", False) |
||
| 30 | self.disable_reinforce = config.get("disable_reinforce", False) |
||
| 31 | self.last_average_reward = 999 |
||
| 32 | self.turn = 1 |
||
| 33 | self.layer = attention_layer |
||
| 34 | if self.disable_backprop: |
||
| 35 | grads = [] |
||
| 36 | else: |
||
| 37 | grads = [T.grad(self.cost, p) for p in network.weights + network.biases] |
||
| 38 | if self.disable_reinforce: |
||
| 39 | grad_l = self.layer.W_l |
||
| 40 | else: |
||
| 41 | grad_l = self.layer.wl_grad |
||
| 42 | self.batch_wl_grad = np.zeros(attention_layer.W_l.get_value().shape, dtype=FLOATX) |
||
| 43 | self.batch_grad = [np.zeros(p.get_value().shape, dtype=FLOATX) for p in network.weights + network.biases] |
||
| 44 | self.grad_func = theano.function(network.inputs, [self.cost, grad_l, attention_layer.positions, attention_layer.last_decision] + grads, allow_input_downcast=True) |
||
| 45 | self.opt_interface = optimize_function(self.network.weights + self.network.biases, self.config) |
||
| 46 | self.l_opt_interface = optimize_function([self.layer.W_l], self.config) |
||
| 47 | # self.opt_interface = gradient_interface_future(self.network.weights + self.network.biases, config=self.config) |
||
| 48 | # self.l_opt_interface = gradient_interface_future([self.layer.W_l], config=self.config) |
||
| 49 | |||
| 50 | View Code Duplication | def update_parameters(self, update_wl): |
|
|
|
|||
| 51 | if not self.disable_backprop: |
||
| 52 | grads = [self.batch_grad[i] / self.batch_size for i in range(len(self.network.weights + self.network.biases))] |
||
| 53 | self.opt_interface(*grads) |
||
| 54 | # REINFORCE update |
||
| 55 | if update_wl and not self.disable_reinforce: |
||
| 56 | if np.sum(self.batch_wl_grad) == 0: |
||
| 57 | sys.stdout.write("[0 WLG] ") |
||
| 58 | sys.stdout.flush() |
||
| 59 | else: |
||
| 60 | grad_wl = self.batch_wl_grad / self.batch_size |
||
| 61 | self.l_opt_interface(grad_wl) |
||
| 62 | |||
| 63 | View Code Duplication | def train_func(self, train_set): |
|
| 64 | cost_sum = 0.0 |
||
| 65 | batch_cost = 0.0 |
||
| 66 | counter = 0 |
||
| 67 | total = 0 |
||
| 68 | total_reward = 0 |
||
| 69 | batch_reward = 0 |
||
| 70 | total_position_value = 0 |
||
| 71 | pena_count = 0 |
||
| 72 | for d in train_set: |
||
| 73 | pairs = self.grad_func(*d) |
||
| 74 | cost = pairs[0] |
||
| 75 | if cost > 10 or np.isnan(cost): |
||
| 76 | sys.stdout.write("X") |
||
| 77 | sys.stdout.flush() |
||
| 78 | continue |
||
| 79 | batch_cost += cost |
||
| 80 | |||
| 81 | wl_grad = pairs[1] |
||
| 82 | max_position_value = np.max(np.absolute(pairs[2])) |
||
| 83 | total_position_value += max_position_value |
||
| 84 | last_decision = pairs[3] |
||
| 85 | target_decision = d[1][0] |
||
| 86 | reward = 0.005 if last_decision == target_decision else 0 |
||
| 87 | if max_position_value > 0.8: |
||
| 88 | reward = 0 |
||
| 89 | total_reward += reward |
||
| 90 | batch_reward += reward |
||
| 91 | if self.last_average_reward == 999 and total > 2000: |
||
| 92 | self.last_average_reward = total_reward / total |
||
| 93 | if not self.disable_reinforce: |
||
| 94 | self.batch_wl_grad += wl_grad * - (reward - self.last_average_reward) |
||
| 95 | if not self.disable_backprop: |
||
| 96 | for grad_cache, grad in zip(self.batch_grad, pairs[4:]): |
||
| 97 | grad_cache += grad |
||
| 98 | counter += 1 |
||
| 99 | total += 1 |
||
| 100 | if counter >= self.batch_size: |
||
| 101 | if total == counter: counter -= 1 |
||
| 102 | self.update_parameters(self.last_average_reward < 999) |
||
| 103 | |||
| 104 | # Clean batch gradients |
||
| 105 | if not self.disable_reinforce: |
||
| 106 | self.batch_wl_grad *= 0 |
||
| 107 | if not self.disable_backprop: |
||
| 108 | for grad_cache in self.batch_grad: |
||
| 109 | grad_cache *= 0 |
||
| 110 | |||
| 111 | if total % 1000 == 0: |
||
| 112 | sys.stdout.write(".") |
||
| 113 | sys.stdout.flush() |
||
| 114 | |||
| 115 | # Cov |
||
| 116 | if not self.disable_reinforce: |
||
| 117 | cov_changed = False |
||
| 118 | if batch_reward / self.batch_size < 0.001: |
||
| 119 | if not self.large_cov_mode: |
||
| 120 | if pena_count > 20: |
||
| 121 | self.layer.cov.set_value(self.layer.large_cov) |
||
| 122 | print "[LCOV]", |
||
| 123 | cov_changed = True |
||
| 124 | else: |
||
| 125 | pena_count += 1 |
||
| 126 | else: |
||
| 127 | pena_count = 0 |
||
| 128 | else: |
||
| 129 | if self.large_cov_mode: |
||
| 130 | if pena_count > 20: |
||
| 131 | self.layer.cov.set_value(self.layer.small_cov) |
||
| 132 | print "[SCOV]", |
||
| 133 | cov_changed = True |
||
| 134 | else: |
||
| 135 | pena_count += 1 |
||
| 136 | else: |
||
| 137 | pena_count = 0 |
||
| 138 | if cov_changed: |
||
| 139 | self.large_cov_mode = not self.large_cov_mode |
||
| 140 | self.layer.cov_inv_var.set_value(np.array(LA.inv(self.layer.cov.get_value()), dtype=FLOATX)) |
||
| 141 | self.layer.cov_det_var.set_value(LA.det(self.layer.cov.get_value())) |
||
| 142 | |||
| 143 | # Clean batch cost |
||
| 144 | counter = 0 |
||
| 145 | cost_sum += batch_cost |
||
| 146 | batch_cost = 0.0 |
||
| 147 | batch_reward = 0 |
||
| 148 | if total == 0: |
||
| 149 | return "COST OVERFLOW" |
||
| 150 | |||
| 151 | sys.stdout.write("\n") |
||
| 152 | self.last_average_reward = (total_reward / total) |
||
| 153 | self.turn += 1 |
||
| 154 | return "J: %.2f, Avg R: %.4f, Avg P: %.2f" % ((cost_sum / total), self.last_average_reward, (total_position_value / total)) |
||
| 155 | |||
| 156 |