WordEmbedding.compute_tensor()   B
last analyzed

Complexity

Conditions 7

Size

Total Lines 18

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 7
c 0
b 0
f 0
dl 0
loc 18
rs 7.3333
1
#!/usr/bin/env python
2
# -*- coding: utf-8 -*-
3
4
import theano
5
import theano.tensor as T
6
7
from deepy.layers import NeuralLayer
8
9
10
class WordEmbedding(NeuralLayer):
11
    """
12
    Word embedding layer.
13
    The word embeddings are randomly initialized, and are learned over the time.
14
    """
15
    def __init__(self, size, vocab_size, zero_index=None, mask=None, load_values=None, init=None):
16
        from deepy.core.neural_var import NeuralVariable
17
        super(WordEmbedding, self).__init__("word_embed")
18
        self.size = size
19
        self.vocab_size = vocab_size
20
        self.output_dim = size
21
        self.zero_index = zero_index
22
        self._mask = mask.tensor if type(mask) == NeuralVariable else mask
23
        self._init = init
24
        self._load_values = load_values
25
        self.init(1)
26
27
    def prepare(self):
28
        if self._load_values is not None:
29
            self.embed_matrix = theano.shared(self._load_values, name="embeddings")
30
        else:
31
            self.embed_matrix = self.create_weight(self.vocab_size, self.size, "embeddings", initializer=self._init)
32
        self.register_parameters(self.embed_matrix)
33
34
    def compute_tensor(self, x, mask=None):
35
        mask = mask if mask else self._mask
36
        if self.zero_index is not None:
37
            mask = T.neq(x, self.zero_index)
38
            # To avoid negative index
39
            x = T.cast(x * mask, "int32")
40
41
        if x.ndim == 1:
42
            ret_tensor = self.embed_matrix[x]
43
        else:
44
            ret_tensor = self.embed_matrix[x.flatten()].reshape(list(x.shape) + [self.size])
45
46
        if mask:
47
            if x.ndim == 2:
48
                ret_tensor *= mask[:, :, None]
49
            elif x.ndim == 1:
50
                ret_tensor *= mask[:, None]
51
        return ret_tensor
52