|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
import theano |
|
5
|
|
|
import theano.tensor as T |
|
6
|
|
|
|
|
7
|
|
|
from deepy.layers import NeuralLayer |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
class WordEmbedding(NeuralLayer): |
|
11
|
|
|
""" |
|
12
|
|
|
Word embedding layer. |
|
13
|
|
|
The word embeddings are randomly initialized, and are learned over the time. |
|
14
|
|
|
""" |
|
15
|
|
|
def __init__(self, size, vocab_size, zero_index=None, mask=None, load_values=None, init=None): |
|
16
|
|
|
from deepy.core.neural_var import NeuralVariable |
|
17
|
|
|
super(WordEmbedding, self).__init__("word_embed") |
|
18
|
|
|
self.size = size |
|
19
|
|
|
self.vocab_size = vocab_size |
|
20
|
|
|
self.output_dim = size |
|
21
|
|
|
self.zero_index = zero_index |
|
22
|
|
|
self._mask = mask.tensor if type(mask) == NeuralVariable else mask |
|
23
|
|
|
self._init = init |
|
24
|
|
|
self._load_values = load_values |
|
25
|
|
|
self.init(1) |
|
26
|
|
|
|
|
27
|
|
|
def prepare(self): |
|
28
|
|
|
if self._load_values is not None: |
|
29
|
|
|
self.embed_matrix = theano.shared(self._load_values, name="embeddings") |
|
30
|
|
|
else: |
|
31
|
|
|
self.embed_matrix = self.create_weight(self.vocab_size, self.size, "embeddings", initializer=self._init) |
|
32
|
|
|
self.register_parameters(self.embed_matrix) |
|
33
|
|
|
|
|
34
|
|
|
def compute_tensor(self, x, mask=None): |
|
35
|
|
|
mask = mask if mask else self._mask |
|
36
|
|
|
if self.zero_index is not None: |
|
37
|
|
|
mask = T.neq(x, self.zero_index) |
|
38
|
|
|
# To avoid negative index |
|
39
|
|
|
x = T.cast(x * mask, "int32") |
|
40
|
|
|
|
|
41
|
|
|
if x.ndim == 1: |
|
42
|
|
|
ret_tensor = self.embed_matrix[x] |
|
43
|
|
|
else: |
|
44
|
|
|
ret_tensor = self.embed_matrix[x.flatten()].reshape(list(x.shape) + [self.size]) |
|
45
|
|
|
|
|
46
|
|
|
if mask: |
|
47
|
|
|
if x.ndim == 2: |
|
48
|
|
|
ret_tensor *= mask[:, :, None] |
|
49
|
|
|
elif x.ndim == 1: |
|
50
|
|
|
ret_tensor *= mask[:, None] |
|
51
|
|
|
return ret_tensor |
|
52
|
|
|
|