| 1 |  |  | #!/usr/bin/env python | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | # -*- coding: utf-8 -*- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 | 1 |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 | 1 |  | import scipy.stats as st | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 | 1 |  | from scipy.sparse.linalg import eigs | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 | 1 |  | from scipy.spatial.distance import cdist | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 | 1 |  | import sklearn as sk | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 | 1 |  | from sklearn.svm import LinearSVC | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 | 1 |  | from sklearn.linear_model import LogisticRegression, LinearRegression | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 | 1 |  | from sklearn.model_selection import cross_val_predict | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 | 1 |  | from os.path import basename | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 | 1 |  | from .util import is_pos_def | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 | 1 |  | class RobustBiasAwareClassifier(object): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  |     Class of robust bias-aware classifiers. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |     Reference: Liu & Ziebart (20140. Robust Classification under Sample | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  |     Selection Bias. NIPS. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  |     Methods contain training and prediction functions. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 | 1 |  |     def __init__(self, l2=0.0, order='first', gamma=1.0, tau=1e-5, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |                  max_iter=100, clip=1000, verbose=True): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |         Set classifier instance parameters. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |         INPUT   (1) float 'l2': l2-regularization parameter value (def:0.01) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |                 (2) str 'order': order of feature statistics to employ; options | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  |                     are 'first', or 'second' (def: 'first') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |                 (3) float 'gamma': decaying learning rate (def: 1.0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |                 (4) float 'tau': convergence threshold (def: 1e-5) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  |                 (5) int 'max_iter': maximum number of iterations (def: 100) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |                 (6) int 'clip': upper bound on importance weights (def: 1000) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |                 (7) boolean 'verbose': report training progress (def: True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |         OUTPUT  None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 | 1 |  |         self.l2 = l2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 | 1 |  |         self.order = order | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 | 1 |  |         self.gamma = gamma | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 | 1 |  |         self.tau = tau | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 | 1 |  |         self.max_iter = max_iter | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 | 1 |  |         self.clip = clip | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |         # Whether model has been trained | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 | 1 |  |         self.is_trained = False | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |         # Dimensionality of training data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 | 1 |  |         self.train_data_dim = '' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |         # Classifier parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 | 1 |  |         self.theta = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |         # Verbosity | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 | 1 |  |         self.verbose = verbose | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 | 1 |  |     def feature_stats(self, X, y, order='first'): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |         Compute first-order moment feature statistics. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |         INPUT   (1) array 'X': dataset (N samples by D features) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |                 (2) array 'y': label vector (N samples by 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |         OUTPUT  (1) array | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |         # Data shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 | 1 |  |         N, D = X.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |         # Expand label vector | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 | 1 |  |         if len(y.shape) < 2: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 | 1 |  |             y = np.atleast_2d(y).T | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 | 1 |  |         if (order == 'first'): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |             # First-order consists of data times label | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 | 1 |  |             mom = y * X | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |         elif (order == 'second'): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |             # First-order consists of data times label | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |             yX = y * X | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |             # Second-order is label times Kronecker delta product of data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |             yXX = y*np.kron(X, X) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |             # Concatenate moments | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |             mom = np.concatenate((yX, yXX), axis=1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |         # Concatenate label vector, moments, and ones-augmentation | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 | 1 |  |         return np.concatenate((y, mom, np.ones((N, 1))), axis=1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 | 1 |  |     def iwe_kernel_densities(self, X, Z): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |         Estimate importance weights based on kernel density estimation. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |         INPUT   (1) array 'X': source data (N samples by D features) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |                 (2) array 'Z': target data (M samples by D features) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |         OUTPUT  (1) array: importance weights (N samples by 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |         # Data shapes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 | 1 |  |         N, DX = X.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 | 1 |  |         M, DZ = Z.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |         # Assert equivalent dimensionalities | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 | 1 |  |         assert DX == DZ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |         # Compute probabilities based on source kernel densities | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 | 1 |  |         pT = st.gaussian_kde(Z.T).pdf(X.T) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 | 1 |  |         pS = st.gaussian_kde(X.T).pdf(X.T) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |         # Check for numerics | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 | 1 |  |         assert not np.any(np.isnan(pT)) or np.any(pT == 0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 | 1 |  |         assert not np.any(np.isnan(pS)) or np.any(pS == 0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |         # Return the ratio of probabilities | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 | 1 |  |         return pT / pS | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 | 1 |  |     def psi(self, X, theta, w, K=2): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |         Compute psi function. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |         INPUT   (1) array 'X': data set (N samples by D features) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |                 (2) array 'theta': classifier parameters (D features by 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |                 (3) array 'w': importance-weights (N samples by 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |                 (4) int 'K': number of classes (def: 2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |         OUTPUT  (1) array 'psi' (N samples by K classes) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |         # Number of samples | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 | 1 |  |         N = X.shape[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |         # Preallocate psi array | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 | 1 |  |         psi = np.zeros((N, K)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |         # Loop over classes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 | 1 |  |         for k in range(K): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |             # Compute feature statistics | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 | 1 |  |             Xk = self.feature_stats(X, k*np.ones((N, 1))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |             # Compute psi function | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 | 1 |  |             psi[:, k] = (w*np.dot(Xk, theta))[:, 0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 | 1 |  |         return psi | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 | 1 |  |     def posterior(self, psi): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |         Class-posterior estimation. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |         INPUT   (1) array 'psi': weighted data-classifier output (N samples by | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |                     K classes) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |         OUTPUT  (1) array 'pyx': class-posterior estimation (N samples by | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |                     K classes) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |         # Data shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 | 1 |  |         N, K = psi.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |         # Preallocate array | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 | 1 |  |         pyx = np.zeros((N, K)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |         # Subtract maximum value for numerical stability | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 | 1 |  |         psi = (psi.T - np.max(psi, axis=1).T).T | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |         # Loop over classes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 | 1 |  |         for k in range(K): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |             # Estimate posterior p^(Y=y | x_i) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 | 1 |  |             pyx[:, k] = np.exp(psi[:, k]) / np.sum(np.exp(psi), axis=1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 | 1 |  |         return pyx | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 | 1 |  |     def fit(self, X, y, Z): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |         Fit/train a robust bias-aware classifier. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |         INPUT   (1) array 'X': source data (N samples by D features) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |                 (2) array 'y': source labels (N samples by 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |                 (3) array 'Z': target data (M samples by D features) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |         OUTPUT  None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |         # Data shapes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 | 1 |  |         N, DX = X.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 | 1 |  |         M, DZ = Z.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |         # Number of classes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 | 1 |  |         labels = np.unique(y) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 | 1 |  |         self.K = len(labels) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |         # Assert equivalent dimensionalities | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 | 1 |  |         assert DX == DZ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |         # Dimenionsality of expanded feature space | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 | 1 |  |         if (self.order == 'first'): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 | 1 |  |             D = 1 + DX + 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |         elif (self.order == 'second'): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |             D = 1 + DX + DX**2 + 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |             raise ValueError | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |         # Compute moment-matching constraint | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 | 1 |  |         c = np.mean(self.feature_stats(X, y, order=self.order), axis=0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  |         # Estimate importance-weights | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 | 1 |  |         w = self.iwe_kernel_densities(X, Z) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |         # Inverse weights to achieve p_S(x)/p_T(x) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 | 1 |  |         w = 1./w | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  |         # Clip weights if necessary | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 | 1 |  |         w = np.clip(w, 0, self.clip) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  |         # Initialize classifier parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 | 1 |  |         theta = np.random.randn(1, D)*0.01 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  |         # Start gradient descent | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 | 1 |  |         for t in range(1, self.max_iter+1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 218 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 219 |  |  |             # Calculate psi function | 
            
                                                                                                            
                            
            
                                    
            
            
                | 220 | 1 |  |             psi = self.psi(X, theta.T, w, K=self.K) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 221 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 222 |  |  |             # Compute posterior | 
            
                                                                                                            
                            
            
                                    
            
            
                | 223 | 1 |  |             pyx = self.posterior(psi) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 224 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 225 |  |  |             # Sum product of estimated posterior and feature stats | 
            
                                                                                                            
                            
            
                                    
            
            
                | 226 | 1 |  |             pfs = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 227 | 1 |  |             for k in range(self.K): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 228 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 229 |  |  |                 # Compute feature statistics for k-th class | 
            
                                                                                                            
                            
            
                                    
            
            
                | 230 | 1 |  |                 Xk = self.feature_stats(X, k*np.ones((N, 1))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 231 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 232 |  |  |                 # Element-wise product with posterior and sum over classes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 233 | 1 |  |                 pfs += (pyx[:, k].T * Xk.T).T | 
            
                                                                                                            
                            
            
                                    
            
            
                | 234 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 235 |  |  |             # Gradient computation and regularization | 
            
                                                                                                            
                            
            
                                    
            
            
                | 236 | 1 |  |             dL = c - np.mean(pfs, axis=0) + self.l2*2*theta | 
            
                                                                                                            
                            
            
                                    
            
            
                | 237 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 238 |  |  |             # Apply learning rate to gradient | 
            
                                                                                                            
                            
            
                                    
            
            
                | 239 | 1 |  |             dT = dL / (t * self.gamma) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 240 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 241 |  |  |             # Update classifier parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 242 | 1 |  |             theta += dT | 
            
                                                                                                            
                            
            
                                    
            
            
                | 243 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 244 |  |  |             # Report progress | 
            
                                                                                                            
                            
            
                                    
            
            
                | 245 | 1 |  |             if self.verbose: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 246 | 1 |  |                 if (t % (self.max_iter / 10)) == 1: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 247 | 1 |  |                     print('Iteration {:03}/{:03} - Norm gradient: {:.12}' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 248 |  |  |                           .format(t, self.max_iter, np.linalg.norm(dL))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 249 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 250 |  |  |             # Check for convergence | 
            
                                                                                                            
                            
            
                                    
            
            
                | 251 | 1 |  |             if (np.linalg.norm(dL) <= self.tau): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 252 |  |  |                 print('Broke at {}'.format(t)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 253 |  |  |                 break | 
            
                                                                                                            
                            
            
                                    
            
            
                | 254 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 255 |  |  |         # Store resultant classifier parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 256 | 1 |  |         self.theta = theta | 
            
                                                                                                            
                            
            
                                    
            
            
                | 257 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 258 |  |  |         # Store classes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 259 | 1 |  |         self.classes = labels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 260 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 261 |  |  |         # Mark classifier as trained | 
            
                                                                                                            
                            
            
                                    
            
            
                | 262 | 1 |  |         self.is_trained = True | 
            
                                                                                                            
                            
            
                                    
            
            
                | 263 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 264 |  |  |         # Store training data dimensionality | 
            
                                                                                                            
                            
            
                                    
            
            
                | 265 | 1 |  |         self.train_data_dim = DX | 
            
                                                                                                            
                            
            
                                    
            
            
                | 266 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 267 | 1 |  |     def predict(self, Z_): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 268 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 269 |  |  |         Make predictions on new dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 270 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 271 |  |  |         INPUT   (1) array 'Z_': new data set (M samples by D features) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 272 |  |  |         OUTPUT  (1) array 'preds': label predictions (M samples by 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 273 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 274 |  |  |         # Data shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 275 | 1 |  |         M, D = Z_.shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 276 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 277 |  |  |         # If classifier is trained, check for same dimensionality | 
            
                                                                                                            
                            
            
                                    
            
            
                | 278 | 1 |  |         if self.is_trained: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 279 | 1 |  |             assert self.train_data_dim == D | 
            
                                                                                                            
                            
            
                                    
            
            
                | 280 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 281 |  |  |             raise UserWarning('Classifier is not trained yet.') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 282 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 283 |  |  |         # Calculate psi function for target samples | 
            
                                                                                                            
                            
            
                                    
            
            
                | 284 | 1 |  |         psi = self.psi(Z_, self.theta.T, np.ones((M, 1)), K=self.K) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 285 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 286 |  |  |         # Compute posteriors for target samples | 
            
                                                                                                            
                            
            
                                    
            
            
                | 287 | 1 |  |         pyz = self.posterior(psi) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 288 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 289 |  |  |         # Predictions through max-posteriors | 
            
                                                                                                            
                            
            
                                    
            
            
                | 290 | 1 |  |         preds = np.argmax(pyz, axis=1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 291 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 292 |  |  |         # Map predictions back to original labels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 293 | 1 |  |         preds = self.classes[preds] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 294 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 295 |  |  |         # Return predictions array | 
            
                                                                                                            
                            
            
                                    
            
            
                | 296 | 1 |  |         return preds | 
            
                                                                                                            
                            
            
                                    
            
            
                | 297 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 298 | 1 |  |     def get_params(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 299 |  |  |         """Get classifier parameters.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 300 |  |  |         return self.clf.get_params() | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 301 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 302 | 1 |  |     def is_trained(self): | 
            
                                                        
            
                                    
            
            
                | 303 |  |  |         """Check whether classifier is trained.""" | 
            
                                                        
            
                                    
            
            
                | 304 |  |  |         return self.is_trained | 
            
                                                        
            
                                    
            
            
                | 305 |  |  |  |