1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
|
4
|
1 |
|
import numpy as np |
5
|
1 |
|
import scipy.stats as st |
6
|
1 |
|
from scipy.sparse.linalg import eigs |
7
|
1 |
|
from scipy.spatial.distance import cdist |
8
|
1 |
|
import sklearn as sk |
9
|
1 |
|
from sklearn.svm import LinearSVC |
10
|
1 |
|
from sklearn.linear_model import LogisticRegression, LinearRegression |
11
|
1 |
|
from sklearn.model_selection import cross_val_predict |
12
|
1 |
|
from os.path import basename |
13
|
|
|
|
14
|
1 |
|
from .util import is_pos_def |
15
|
|
|
|
16
|
|
|
|
17
|
1 |
|
class RobustBiasAwareClassifier(object): |
18
|
|
|
""" |
19
|
|
|
Class of robust bias-aware classifiers. |
20
|
|
|
|
21
|
|
|
Reference: Liu & Ziebart (20140. Robust Classification under Sample |
22
|
|
|
Selection Bias. NIPS. |
23
|
|
|
|
24
|
|
|
Methods contain training and prediction functions. |
25
|
|
|
""" |
26
|
|
|
|
27
|
1 |
|
def __init__(self, l2=0.0, order='first', gamma=1.0, tau=1e-5, |
28
|
|
|
max_iter=100, clip=1000, verbose=True): |
29
|
|
|
""" |
30
|
|
|
Set classifier instance parameters. |
31
|
|
|
|
32
|
|
|
INPUT (1) float 'l2': l2-regularization parameter value (def:0.01) |
33
|
|
|
(2) str 'order': order of feature statistics to employ; options |
34
|
|
|
are 'first', or 'second' (def: 'first') |
35
|
|
|
(3) float 'gamma': decaying learning rate (def: 1.0) |
36
|
|
|
(4) float 'tau': convergence threshold (def: 1e-5) |
37
|
|
|
(5) int 'max_iter': maximum number of iterations (def: 100) |
38
|
|
|
(6) int 'clip': upper bound on importance weights (def: 1000) |
39
|
|
|
(7) boolean 'verbose': report training progress (def: True) |
40
|
|
|
OUTPUT None |
41
|
|
|
""" |
42
|
1 |
|
self.l2 = l2 |
43
|
1 |
|
self.order = order |
44
|
1 |
|
self.gamma = gamma |
45
|
1 |
|
self.tau = tau |
46
|
1 |
|
self.max_iter = max_iter |
47
|
1 |
|
self.clip = clip |
48
|
|
|
|
49
|
|
|
# Whether model has been trained |
50
|
1 |
|
self.is_trained = False |
51
|
|
|
|
52
|
|
|
# Dimensionality of training data |
53
|
1 |
|
self.train_data_dim = '' |
54
|
|
|
|
55
|
|
|
# Classifier parameters |
56
|
1 |
|
self.theta = 0 |
57
|
|
|
|
58
|
|
|
# Verbosity |
59
|
1 |
|
self.verbose = verbose |
60
|
|
|
|
61
|
1 |
|
def feature_stats(self, X, y, order='first'): |
62
|
|
|
""" |
63
|
|
|
Compute first-order moment feature statistics. |
64
|
|
|
|
65
|
|
|
INPUT (1) array 'X': dataset (N samples by D features) |
66
|
|
|
(2) array 'y': label vector (N samples by 1) |
67
|
|
|
OUTPUT (1) array |
68
|
|
|
""" |
69
|
|
|
# Data shape |
70
|
1 |
|
N, D = X.shape |
71
|
|
|
|
72
|
|
|
# Expand label vector |
73
|
1 |
|
if len(y.shape) < 2: |
74
|
1 |
|
y = np.atleast_2d(y).T |
75
|
|
|
|
76
|
1 |
|
if (order == 'first'): |
77
|
|
|
|
78
|
|
|
# First-order consists of data times label |
79
|
1 |
|
mom = y * X |
80
|
|
|
|
81
|
|
|
elif (order == 'second'): |
82
|
|
|
|
83
|
|
|
# First-order consists of data times label |
84
|
|
|
yX = y * X |
85
|
|
|
|
86
|
|
|
# Second-order is label times Kronecker delta product of data |
87
|
|
|
yXX = y*np.kron(X, X) |
88
|
|
|
|
89
|
|
|
# Concatenate moments |
90
|
|
|
mom = np.concatenate((yX, yXX), axis=1) |
91
|
|
|
|
92
|
|
|
# Concatenate label vector, moments, and ones-augmentation |
93
|
1 |
|
return np.concatenate((y, mom, np.ones((N, 1))), axis=1) |
94
|
|
|
|
95
|
1 |
|
def iwe_kernel_densities(self, X, Z): |
96
|
|
|
""" |
97
|
|
|
Estimate importance weights based on kernel density estimation. |
98
|
|
|
|
99
|
|
|
INPUT (1) array 'X': source data (N samples by D features) |
100
|
|
|
(2) array 'Z': target data (M samples by D features) |
101
|
|
|
OUTPUT (1) array: importance weights (N samples by 1) |
102
|
|
|
""" |
103
|
|
|
# Data shapes |
104
|
1 |
|
N, DX = X.shape |
105
|
1 |
|
M, DZ = Z.shape |
106
|
|
|
|
107
|
|
|
# Assert equivalent dimensionalities |
108
|
1 |
|
assert DX == DZ |
109
|
|
|
|
110
|
|
|
# Compute probabilities based on source kernel densities |
111
|
1 |
|
pT = st.gaussian_kde(Z.T).pdf(X.T) |
112
|
1 |
|
pS = st.gaussian_kde(X.T).pdf(X.T) |
113
|
|
|
|
114
|
|
|
# Check for numerics |
115
|
1 |
|
assert not np.any(np.isnan(pT)) or np.any(pT == 0) |
116
|
1 |
|
assert not np.any(np.isnan(pS)) or np.any(pS == 0) |
117
|
|
|
|
118
|
|
|
# Return the ratio of probabilities |
119
|
1 |
|
return pT / pS |
120
|
|
|
|
121
|
1 |
|
def psi(self, X, theta, w, K=2): |
122
|
|
|
""" |
123
|
|
|
Compute psi function. |
124
|
|
|
|
125
|
|
|
INPUT (1) array 'X': data set (N samples by D features) |
126
|
|
|
(2) array 'theta': classifier parameters (D features by 1) |
127
|
|
|
(3) array 'w': importance-weights (N samples by 1) |
128
|
|
|
(4) int 'K': number of classes (def: 2) |
129
|
|
|
OUTPUT (1) array 'psi' (N samples by K classes) |
130
|
|
|
""" |
131
|
|
|
# Number of samples |
132
|
1 |
|
N = X.shape[0] |
133
|
|
|
|
134
|
|
|
# Preallocate psi array |
135
|
1 |
|
psi = np.zeros((N, K)) |
136
|
|
|
|
137
|
|
|
# Loop over classes |
138
|
1 |
|
for k in range(K): |
139
|
|
|
# Compute feature statistics |
140
|
1 |
|
Xk = self.feature_stats(X, k*np.ones((N, 1))) |
141
|
|
|
|
142
|
|
|
# Compute psi function |
143
|
1 |
|
psi[:, k] = (w*np.dot(Xk, theta))[:, 0] |
144
|
|
|
|
145
|
1 |
|
return psi |
146
|
|
|
|
147
|
1 |
|
def posterior(self, psi): |
148
|
|
|
""" |
149
|
|
|
Class-posterior estimation. |
150
|
|
|
|
151
|
|
|
INPUT (1) array 'psi': weighted data-classifier output (N samples by |
152
|
|
|
K classes) |
153
|
|
|
OUTPUT (1) array 'pyx': class-posterior estimation (N samples by |
154
|
|
|
K classes) |
155
|
|
|
""" |
156
|
|
|
# Data shape |
157
|
1 |
|
N, K = psi.shape |
158
|
|
|
|
159
|
|
|
# Preallocate array |
160
|
1 |
|
pyx = np.zeros((N, K)) |
161
|
|
|
|
162
|
|
|
# Subtract maximum value for numerical stability |
163
|
1 |
|
psi = (psi.T - np.max(psi, axis=1).T).T |
164
|
|
|
|
165
|
|
|
# Loop over classes |
166
|
1 |
|
for k in range(K): |
167
|
|
|
|
168
|
|
|
# Estimate posterior p^(Y=y | x_i) |
169
|
1 |
|
pyx[:, k] = np.exp(psi[:, k]) / np.sum(np.exp(psi), axis=1) |
170
|
|
|
|
171
|
1 |
|
return pyx |
172
|
|
|
|
173
|
1 |
|
def fit(self, X, y, Z): |
174
|
|
|
""" |
175
|
|
|
Fit/train a robust bias-aware classifier. |
176
|
|
|
|
177
|
|
|
INPUT (1) array 'X': source data (N samples by D features) |
178
|
|
|
(2) array 'y': source labels (N samples by 1) |
179
|
|
|
(3) array 'Z': target data (M samples by D features) |
180
|
|
|
OUTPUT None |
181
|
|
|
""" |
182
|
|
|
# Data shapes |
183
|
1 |
|
N, DX = X.shape |
184
|
1 |
|
M, DZ = Z.shape |
185
|
|
|
|
186
|
|
|
# Number of classes |
187
|
1 |
|
labels = np.unique(y) |
188
|
1 |
|
self.K = len(labels) |
189
|
|
|
|
190
|
|
|
# Assert equivalent dimensionalities |
191
|
1 |
|
assert DX == DZ |
192
|
|
|
|
193
|
|
|
# Dimenionsality of expanded feature space |
194
|
1 |
|
if (self.order == 'first'): |
195
|
1 |
|
D = 1 + DX + 1 |
196
|
|
|
elif (self.order == 'second'): |
197
|
|
|
D = 1 + DX + DX**2 + 1 |
198
|
|
|
else: |
199
|
|
|
raise ValueError |
200
|
|
|
|
201
|
|
|
# Compute moment-matching constraint |
202
|
1 |
|
c = np.mean(self.feature_stats(X, y, order=self.order), axis=0) |
203
|
|
|
|
204
|
|
|
# Estimate importance-weights |
205
|
1 |
|
w = self.iwe_kernel_densities(X, Z) |
206
|
|
|
|
207
|
|
|
# Inverse weights to achieve p_S(x)/p_T(x) |
208
|
1 |
|
w = 1./w |
209
|
|
|
|
210
|
|
|
# Clip weights if necessary |
211
|
1 |
|
w = np.clip(w, 0, self.clip) |
212
|
|
|
|
213
|
|
|
# Initialize classifier parameters |
214
|
1 |
|
theta = np.random.randn(1, D)*0.01 |
215
|
|
|
|
216
|
|
|
# Start gradient descent |
217
|
1 |
|
for t in range(1, self.max_iter+1): |
218
|
|
|
|
219
|
|
|
# Calculate psi function |
220
|
1 |
|
psi = self.psi(X, theta.T, w, K=self.K) |
221
|
|
|
|
222
|
|
|
# Compute posterior |
223
|
1 |
|
pyx = self.posterior(psi) |
224
|
|
|
|
225
|
|
|
# Sum product of estimated posterior and feature stats |
226
|
1 |
|
pfs = 0 |
227
|
1 |
|
for k in range(self.K): |
228
|
|
|
|
229
|
|
|
# Compute feature statistics for k-th class |
230
|
1 |
|
Xk = self.feature_stats(X, k*np.ones((N, 1))) |
231
|
|
|
|
232
|
|
|
# Element-wise product with posterior and sum over classes |
233
|
1 |
|
pfs += (pyx[:, k].T * Xk.T).T |
234
|
|
|
|
235
|
|
|
# Gradient computation and regularization |
236
|
1 |
|
dL = c - np.mean(pfs, axis=0) + self.l2*2*theta |
237
|
|
|
|
238
|
|
|
# Apply learning rate to gradient |
239
|
1 |
|
dT = dL / (t * self.gamma) |
240
|
|
|
|
241
|
|
|
# Update classifier parameters |
242
|
1 |
|
theta += dT |
243
|
|
|
|
244
|
|
|
# Report progress |
245
|
1 |
|
if self.verbose: |
246
|
1 |
|
if (t % (self.max_iter / 10)) == 1: |
247
|
1 |
|
print('Iteration {:03}/{:03} - Norm gradient: {:.12}' |
248
|
|
|
.format(t, self.max_iter, np.linalg.norm(dL))) |
249
|
|
|
|
250
|
|
|
# Check for convergence |
251
|
1 |
|
if (np.linalg.norm(dL) <= self.tau): |
252
|
|
|
print('Broke at {}'.format(t)) |
253
|
|
|
break |
254
|
|
|
|
255
|
|
|
# Store resultant classifier parameters |
256
|
1 |
|
self.theta = theta |
257
|
|
|
|
258
|
|
|
# Store classes |
259
|
1 |
|
self.classes = labels |
260
|
|
|
|
261
|
|
|
# Mark classifier as trained |
262
|
1 |
|
self.is_trained = True |
263
|
|
|
|
264
|
|
|
# Store training data dimensionality |
265
|
1 |
|
self.train_data_dim = DX |
266
|
|
|
|
267
|
1 |
|
def predict(self, Z_): |
268
|
|
|
""" |
269
|
|
|
Make predictions on new dataset. |
270
|
|
|
|
271
|
|
|
INPUT (1) array 'Z_': new data set (M samples by D features) |
272
|
|
|
OUTPUT (1) array 'preds': label predictions (M samples by 1) |
273
|
|
|
""" |
274
|
|
|
# Data shape |
275
|
1 |
|
M, D = Z_.shape |
276
|
|
|
|
277
|
|
|
# If classifier is trained, check for same dimensionality |
278
|
1 |
|
if self.is_trained: |
279
|
1 |
|
assert self.train_data_dim == D |
280
|
|
|
else: |
281
|
|
|
raise UserWarning('Classifier is not trained yet.') |
282
|
|
|
|
283
|
|
|
# Calculate psi function for target samples |
284
|
1 |
|
psi = self.psi(Z_, self.theta.T, np.ones((M, 1)), K=self.K) |
285
|
|
|
|
286
|
|
|
# Compute posteriors for target samples |
287
|
1 |
|
pyz = self.posterior(psi) |
288
|
|
|
|
289
|
|
|
# Predictions through max-posteriors |
290
|
1 |
|
preds = np.argmax(pyz, axis=1) |
291
|
|
|
|
292
|
|
|
# Map predictions back to original labels |
293
|
1 |
|
preds = self.classes[preds] |
294
|
|
|
|
295
|
|
|
# Return predictions array |
296
|
1 |
|
return preds |
297
|
|
|
|
298
|
1 |
|
def get_params(self): |
299
|
|
|
"""Get classifier parameters.""" |
300
|
|
|
return self.clf.get_params() |
301
|
|
|
|
302
|
1 |
|
def is_trained(self): |
303
|
|
|
"""Check whether classifier is trained.""" |
304
|
|
|
return self.is_trained |
305
|
|
|
|