|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
1 |
|
import numpy as np |
|
5
|
1 |
|
import scipy.stats as st |
|
6
|
1 |
|
from scipy.sparse.linalg import eigs |
|
7
|
1 |
|
from scipy.spatial.distance import cdist |
|
8
|
1 |
|
import sklearn as sk |
|
9
|
1 |
|
from sklearn.svm import LinearSVC |
|
10
|
1 |
|
from sklearn.linear_model import LogisticRegression, LinearRegression |
|
11
|
1 |
|
from sklearn.model_selection import cross_val_predict |
|
12
|
1 |
|
from os.path import basename |
|
13
|
|
|
|
|
14
|
1 |
|
from .util import is_pos_def |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
1 |
|
class RobustBiasAwareClassifier(object): |
|
18
|
|
|
""" |
|
19
|
|
|
Class of robust bias-aware classifiers. |
|
20
|
|
|
|
|
21
|
|
|
Reference: Liu & Ziebart (20140. Robust Classification under Sample |
|
22
|
|
|
Selection Bias. NIPS. |
|
23
|
|
|
|
|
24
|
|
|
Methods contain training and prediction functions. |
|
25
|
|
|
""" |
|
26
|
|
|
|
|
27
|
1 |
|
def __init__(self, l2=0.0, order='first', gamma=1.0, tau=1e-5, |
|
28
|
|
|
max_iter=100, clip=1000, verbose=True): |
|
29
|
|
|
""" |
|
30
|
|
|
Set classifier instance parameters. |
|
31
|
|
|
|
|
32
|
|
|
INPUT (1) float 'l2': l2-regularization parameter value (def:0.01) |
|
33
|
|
|
(2) str 'order': order of feature statistics to employ; options |
|
34
|
|
|
are 'first', or 'second' (def: 'first') |
|
35
|
|
|
(3) float 'gamma': decaying learning rate (def: 1.0) |
|
36
|
|
|
(4) float 'tau': convergence threshold (def: 1e-5) |
|
37
|
|
|
(5) int 'max_iter': maximum number of iterations (def: 100) |
|
38
|
|
|
(6) int 'clip': upper bound on importance weights (def: 1000) |
|
39
|
|
|
(7) boolean 'verbose': report training progress (def: True) |
|
40
|
|
|
OUTPUT None |
|
41
|
|
|
""" |
|
42
|
1 |
|
self.l2 = l2 |
|
43
|
1 |
|
self.order = order |
|
44
|
1 |
|
self.gamma = gamma |
|
45
|
1 |
|
self.tau = tau |
|
46
|
1 |
|
self.max_iter = max_iter |
|
47
|
1 |
|
self.clip = clip |
|
48
|
|
|
|
|
49
|
|
|
# Whether model has been trained |
|
50
|
1 |
|
self.is_trained = False |
|
51
|
|
|
|
|
52
|
|
|
# Dimensionality of training data |
|
53
|
1 |
|
self.train_data_dim = '' |
|
54
|
|
|
|
|
55
|
|
|
# Classifier parameters |
|
56
|
1 |
|
self.theta = 0 |
|
57
|
|
|
|
|
58
|
|
|
# Verbosity |
|
59
|
1 |
|
self.verbose = verbose |
|
60
|
|
|
|
|
61
|
1 |
|
def feature_stats(self, X, y, order='first'): |
|
62
|
|
|
""" |
|
63
|
|
|
Compute first-order moment feature statistics. |
|
64
|
|
|
|
|
65
|
|
|
INPUT (1) array 'X': dataset (N samples by D features) |
|
66
|
|
|
(2) array 'y': label vector (N samples by 1) |
|
67
|
|
|
OUTPUT (1) array |
|
68
|
|
|
""" |
|
69
|
|
|
# Data shape |
|
70
|
1 |
|
N, D = X.shape |
|
71
|
|
|
|
|
72
|
|
|
# Expand label vector |
|
73
|
1 |
|
if len(y.shape) < 2: |
|
74
|
1 |
|
y = np.atleast_2d(y).T |
|
75
|
|
|
|
|
76
|
1 |
|
if (order == 'first'): |
|
77
|
|
|
|
|
78
|
|
|
# First-order consists of data times label |
|
79
|
1 |
|
mom = y * X |
|
80
|
|
|
|
|
81
|
|
|
elif (order == 'second'): |
|
82
|
|
|
|
|
83
|
|
|
# First-order consists of data times label |
|
84
|
|
|
yX = y * X |
|
85
|
|
|
|
|
86
|
|
|
# Second-order is label times Kronecker delta product of data |
|
87
|
|
|
yXX = y*np.kron(X, X) |
|
88
|
|
|
|
|
89
|
|
|
# Concatenate moments |
|
90
|
|
|
mom = np.concatenate((yX, yXX), axis=1) |
|
91
|
|
|
|
|
92
|
|
|
# Concatenate label vector, moments, and ones-augmentation |
|
93
|
1 |
|
return np.concatenate((y, mom, np.ones((N, 1))), axis=1) |
|
94
|
|
|
|
|
95
|
1 |
|
def iwe_kernel_densities(self, X, Z): |
|
96
|
|
|
""" |
|
97
|
|
|
Estimate importance weights based on kernel density estimation. |
|
98
|
|
|
|
|
99
|
|
|
INPUT (1) array 'X': source data (N samples by D features) |
|
100
|
|
|
(2) array 'Z': target data (M samples by D features) |
|
101
|
|
|
OUTPUT (1) array: importance weights (N samples by 1) |
|
102
|
|
|
""" |
|
103
|
|
|
# Data shapes |
|
104
|
1 |
|
N, DX = X.shape |
|
105
|
1 |
|
M, DZ = Z.shape |
|
106
|
|
|
|
|
107
|
|
|
# Assert equivalent dimensionalities |
|
108
|
1 |
|
assert DX == DZ |
|
109
|
|
|
|
|
110
|
|
|
# Compute probabilities based on source kernel densities |
|
111
|
1 |
|
pT = st.gaussian_kde(Z.T).pdf(X.T) |
|
112
|
1 |
|
pS = st.gaussian_kde(X.T).pdf(X.T) |
|
113
|
|
|
|
|
114
|
|
|
# Check for numerics |
|
115
|
1 |
|
assert not np.any(np.isnan(pT)) or np.any(pT == 0) |
|
116
|
1 |
|
assert not np.any(np.isnan(pS)) or np.any(pS == 0) |
|
117
|
|
|
|
|
118
|
|
|
# Return the ratio of probabilities |
|
119
|
1 |
|
return pT / pS |
|
120
|
|
|
|
|
121
|
1 |
|
def psi(self, X, theta, w, K=2): |
|
122
|
|
|
""" |
|
123
|
|
|
Compute psi function. |
|
124
|
|
|
|
|
125
|
|
|
INPUT (1) array 'X': data set (N samples by D features) |
|
126
|
|
|
(2) array 'theta': classifier parameters (D features by 1) |
|
127
|
|
|
(3) array 'w': importance-weights (N samples by 1) |
|
128
|
|
|
(4) int 'K': number of classes (def: 2) |
|
129
|
|
|
OUTPUT (1) array 'psi' (N samples by K classes) |
|
130
|
|
|
""" |
|
131
|
|
|
# Number of samples |
|
132
|
1 |
|
N = X.shape[0] |
|
133
|
|
|
|
|
134
|
|
|
# Preallocate psi array |
|
135
|
1 |
|
psi = np.zeros((N, K)) |
|
136
|
|
|
|
|
137
|
|
|
# Loop over classes |
|
138
|
1 |
|
for k in range(K): |
|
139
|
|
|
# Compute feature statistics |
|
140
|
1 |
|
Xk = self.feature_stats(X, k*np.ones((N, 1))) |
|
141
|
|
|
|
|
142
|
|
|
# Compute psi function |
|
143
|
1 |
|
psi[:, k] = (w*np.dot(Xk, theta))[:, 0] |
|
144
|
|
|
|
|
145
|
1 |
|
return psi |
|
146
|
|
|
|
|
147
|
1 |
|
def posterior(self, psi): |
|
148
|
|
|
""" |
|
149
|
|
|
Class-posterior estimation. |
|
150
|
|
|
|
|
151
|
|
|
INPUT (1) array 'psi': weighted data-classifier output (N samples by |
|
152
|
|
|
K classes) |
|
153
|
|
|
OUTPUT (1) array 'pyx': class-posterior estimation (N samples by |
|
154
|
|
|
K classes) |
|
155
|
|
|
""" |
|
156
|
|
|
# Data shape |
|
157
|
1 |
|
N, K = psi.shape |
|
158
|
|
|
|
|
159
|
|
|
# Preallocate array |
|
160
|
1 |
|
pyx = np.zeros((N, K)) |
|
161
|
|
|
|
|
162
|
|
|
# Subtract maximum value for numerical stability |
|
163
|
1 |
|
psi = (psi.T - np.max(psi, axis=1).T).T |
|
164
|
|
|
|
|
165
|
|
|
# Loop over classes |
|
166
|
1 |
|
for k in range(K): |
|
167
|
|
|
|
|
168
|
|
|
# Estimate posterior p^(Y=y | x_i) |
|
169
|
1 |
|
pyx[:, k] = np.exp(psi[:, k]) / np.sum(np.exp(psi), axis=1) |
|
170
|
|
|
|
|
171
|
1 |
|
return pyx |
|
172
|
|
|
|
|
173
|
1 |
|
def fit(self, X, y, Z): |
|
174
|
|
|
""" |
|
175
|
|
|
Fit/train a robust bias-aware classifier. |
|
176
|
|
|
|
|
177
|
|
|
INPUT (1) array 'X': source data (N samples by D features) |
|
178
|
|
|
(2) array 'y': source labels (N samples by 1) |
|
179
|
|
|
(3) array 'Z': target data (M samples by D features) |
|
180
|
|
|
OUTPUT None |
|
181
|
|
|
""" |
|
182
|
|
|
# Data shapes |
|
183
|
1 |
|
N, DX = X.shape |
|
184
|
1 |
|
M, DZ = Z.shape |
|
185
|
|
|
|
|
186
|
|
|
# Number of classes |
|
187
|
1 |
|
labels = np.unique(y) |
|
188
|
1 |
|
self.K = len(labels) |
|
189
|
|
|
|
|
190
|
|
|
# Assert equivalent dimensionalities |
|
191
|
1 |
|
assert DX == DZ |
|
192
|
|
|
|
|
193
|
|
|
# Dimenionsality of expanded feature space |
|
194
|
1 |
|
if (self.order == 'first'): |
|
195
|
1 |
|
D = 1 + DX + 1 |
|
196
|
|
|
elif (self.order == 'second'): |
|
197
|
|
|
D = 1 + DX + DX**2 + 1 |
|
198
|
|
|
else: |
|
199
|
|
|
raise ValueError |
|
200
|
|
|
|
|
201
|
|
|
# Compute moment-matching constraint |
|
202
|
1 |
|
c = np.mean(self.feature_stats(X, y, order=self.order), axis=0) |
|
203
|
|
|
|
|
204
|
|
|
# Estimate importance-weights |
|
205
|
1 |
|
w = self.iwe_kernel_densities(X, Z) |
|
206
|
|
|
|
|
207
|
|
|
# Inverse weights to achieve p_S(x)/p_T(x) |
|
208
|
1 |
|
w = 1./w |
|
209
|
|
|
|
|
210
|
|
|
# Clip weights if necessary |
|
211
|
1 |
|
w = np.clip(w, 0, self.clip) |
|
212
|
|
|
|
|
213
|
|
|
# Initialize classifier parameters |
|
214
|
1 |
|
theta = np.random.randn(1, D)*0.01 |
|
215
|
|
|
|
|
216
|
|
|
# Start gradient descent |
|
217
|
1 |
|
for t in range(1, self.max_iter+1): |
|
218
|
|
|
|
|
219
|
|
|
# Calculate psi function |
|
220
|
1 |
|
psi = self.psi(X, theta.T, w, K=self.K) |
|
221
|
|
|
|
|
222
|
|
|
# Compute posterior |
|
223
|
1 |
|
pyx = self.posterior(psi) |
|
224
|
|
|
|
|
225
|
|
|
# Sum product of estimated posterior and feature stats |
|
226
|
1 |
|
pfs = 0 |
|
227
|
1 |
|
for k in range(self.K): |
|
228
|
|
|
|
|
229
|
|
|
# Compute feature statistics for k-th class |
|
230
|
1 |
|
Xk = self.feature_stats(X, k*np.ones((N, 1))) |
|
231
|
|
|
|
|
232
|
|
|
# Element-wise product with posterior and sum over classes |
|
233
|
1 |
|
pfs += (pyx[:, k].T * Xk.T).T |
|
234
|
|
|
|
|
235
|
|
|
# Gradient computation and regularization |
|
236
|
1 |
|
dL = c - np.mean(pfs, axis=0) + self.l2*2*theta |
|
237
|
|
|
|
|
238
|
|
|
# Apply learning rate to gradient |
|
239
|
1 |
|
dT = dL / (t * self.gamma) |
|
240
|
|
|
|
|
241
|
|
|
# Update classifier parameters |
|
242
|
1 |
|
theta += dT |
|
243
|
|
|
|
|
244
|
|
|
# Report progress |
|
245
|
1 |
|
if self.verbose: |
|
246
|
1 |
|
if (t % (self.max_iter / 10)) == 1: |
|
247
|
1 |
|
print('Iteration {:03}/{:03} - Norm gradient: {:.12}' |
|
248
|
|
|
.format(t, self.max_iter, np.linalg.norm(dL))) |
|
249
|
|
|
|
|
250
|
|
|
# Check for convergence |
|
251
|
1 |
|
if (np.linalg.norm(dL) <= self.tau): |
|
252
|
|
|
print('Broke at {}'.format(t)) |
|
253
|
|
|
break |
|
254
|
|
|
|
|
255
|
|
|
# Store resultant classifier parameters |
|
256
|
1 |
|
self.theta = theta |
|
257
|
|
|
|
|
258
|
|
|
# Store classes |
|
259
|
1 |
|
self.classes = labels |
|
260
|
|
|
|
|
261
|
|
|
# Mark classifier as trained |
|
262
|
1 |
|
self.is_trained = True |
|
263
|
|
|
|
|
264
|
|
|
# Store training data dimensionality |
|
265
|
1 |
|
self.train_data_dim = DX |
|
266
|
|
|
|
|
267
|
1 |
|
def predict(self, Z_): |
|
268
|
|
|
""" |
|
269
|
|
|
Make predictions on new dataset. |
|
270
|
|
|
|
|
271
|
|
|
INPUT (1) array 'Z_': new data set (M samples by D features) |
|
272
|
|
|
OUTPUT (1) array 'preds': label predictions (M samples by 1) |
|
273
|
|
|
""" |
|
274
|
|
|
# Data shape |
|
275
|
1 |
|
M, D = Z_.shape |
|
276
|
|
|
|
|
277
|
|
|
# If classifier is trained, check for same dimensionality |
|
278
|
1 |
|
if self.is_trained: |
|
279
|
1 |
|
assert self.train_data_dim == D |
|
280
|
|
|
else: |
|
281
|
|
|
raise UserWarning('Classifier is not trained yet.') |
|
282
|
|
|
|
|
283
|
|
|
# Calculate psi function for target samples |
|
284
|
1 |
|
psi = self.psi(Z_, self.theta.T, np.ones((M, 1)), K=self.K) |
|
285
|
|
|
|
|
286
|
|
|
# Compute posteriors for target samples |
|
287
|
1 |
|
pyz = self.posterior(psi) |
|
288
|
|
|
|
|
289
|
|
|
# Predictions through max-posteriors |
|
290
|
1 |
|
preds = np.argmax(pyz, axis=1) |
|
291
|
|
|
|
|
292
|
|
|
# Map predictions back to original labels |
|
293
|
1 |
|
preds = self.classes[preds] |
|
294
|
|
|
|
|
295
|
|
|
# Return predictions array |
|
296
|
1 |
|
return preds |
|
297
|
|
|
|
|
298
|
1 |
|
def get_params(self): |
|
299
|
|
|
"""Get classifier parameters.""" |
|
300
|
|
|
return self.clf.get_params() |
|
301
|
|
|
|
|
302
|
1 |
|
def is_trained(self): |
|
303
|
|
|
"""Check whether classifier is trained.""" |
|
304
|
|
|
return self.is_trained |
|
305
|
|
|
|