1 | from app import db |
||
2 | from .models import Schedule, Skip |
||
3 | from datetime import datetime, date |
||
4 | import pandas as pd |
||
5 | import json |
||
6 | import plotly |
||
7 | import os |
||
8 | from dateutil.relativedelta import relativedelta |
||
9 | from natsort import index_natsorted |
||
10 | import numpy as np |
||
11 | import decimal |
||
12 | import plotly.graph_objs as go |
||
13 | |||
14 | |||
15 | def update_cash(balance): |
||
16 | # calculate total events for the year amount |
||
17 | total = calc_schedule() |
||
18 | |||
19 | # calculate sum of running transactions |
||
20 | trans, run = calc_transactions(balance, total) |
||
21 | |||
22 | return trans, run |
||
23 | |||
24 | |||
25 | def calc_schedule(): |
||
26 | months = 13 |
||
27 | weeks = 53 |
||
28 | years = 1 |
||
29 | quarters = 4 |
||
30 | biweeks = 27 |
||
31 | |||
32 | try: |
||
33 | engine = db.create_engine(os.environ.get('DATABASE_URL')).connect() |
||
34 | except: |
||
35 | engine = db.create_engine('sqlite:///db.sqlite').connect() |
||
36 | |||
37 | # pull the schedule information |
||
38 | df = pd.read_sql('SELECT * FROM schedule;', engine) |
||
39 | total_dict = {} |
||
40 | |||
41 | # loop through the schedule and create transactions in a table out to the future number of years |
||
42 | todaydate = datetime.today().date() |
||
43 | for i in df.itertuples(index=False): |
||
44 | format = '%Y-%m-%d' |
||
45 | name = i.name |
||
46 | startdate = i.startdate |
||
47 | firstdate = i.firstdate |
||
48 | frequency = i.frequency |
||
49 | amount = i.amount |
||
50 | type = i.type |
||
51 | existing = Schedule.query.filter_by(name=name).first() |
||
52 | if not firstdate: |
||
53 | existing.firstdate = datetime.strptime(startdate, format).date() |
||
54 | firstdate = existing.firstdate.strftime(format) |
||
55 | db.session.commit() |
||
56 | if frequency == 'Monthly': |
||
57 | for k in range(months): |
||
58 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=k) |
||
59 | futuredateday = futuredate.day |
||
60 | firstdateday = datetime.strptime(firstdate, format).date().day |
||
61 | if firstdateday > futuredateday: |
||
62 | try: |
||
63 | for m in range(3): |
||
64 | futuredateday += 1 |
||
65 | if firstdateday >= futuredateday: |
||
66 | futuredate = futuredate.replace(day=futuredateday) |
||
67 | except ValueError: |
||
68 | pass |
||
69 | View Code Duplication | if futuredate <= todaydate and datetime.today().weekday() < 5: |
|
0 ignored issues
–
show
Duplication
introduced
by
![]() |
|||
70 | existing.startdate = futuredate + relativedelta(months=1) |
||
71 | daycheckdate = futuredate + relativedelta(months=1) |
||
72 | daycheck = daycheckdate.day |
||
73 | if firstdateday > daycheck: |
||
74 | try: |
||
75 | for m in range(3): |
||
76 | daycheck += 1 |
||
77 | if firstdateday >= daycheck: |
||
78 | existing.startdate = daycheckdate.replace(day=daycheck) |
||
79 | except ValueError: |
||
80 | pass |
||
81 | if type == 'Income': |
||
82 | rollbackdate = datetime.combine(futuredate, datetime.min.time()) |
||
83 | # Create a new row |
||
84 | new_row = { |
||
85 | 'type': type, |
||
86 | 'name': name, |
||
87 | 'amount': amount, |
||
88 | 'date': pd.tseries.offsets.BDay(1).rollback(rollbackdate).date() |
||
89 | } |
||
90 | # Append the row to the DataFrame |
||
91 | total_dict[len(total_dict)] = new_row |
||
0 ignored issues
–
show
Comprehensibility
Best Practice
introduced
by
|
|||
92 | else: |
||
93 | # Create a new row |
||
94 | new_row = { |
||
95 | 'type': type, |
||
96 | 'name': name, |
||
97 | 'amount': amount, |
||
98 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
99 | } |
||
100 | # Append the row to the DataFrame |
||
101 | total_dict[len(total_dict)] = new_row |
||
102 | elif frequency == 'Weekly': |
||
103 | for k in range(weeks): |
||
104 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=k) |
||
105 | if futuredate <= todaydate and datetime.today().weekday() < 5: |
||
106 | existing.startdate = futuredate + relativedelta(weeks=1) |
||
107 | # Create a new row |
||
108 | new_row = { |
||
109 | 'type': type, |
||
110 | 'name': name, |
||
111 | 'amount': amount, |
||
112 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
113 | } |
||
114 | # Append the row to the DataFrame |
||
115 | total_dict[len(total_dict)] = new_row |
||
116 | elif frequency == 'Yearly': |
||
117 | for k in range(years): |
||
118 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(years=k) |
||
119 | if futuredate <= todaydate and datetime.today().weekday() < 5: |
||
120 | existing.startdate = futuredate + relativedelta(years=1) |
||
121 | # Create a new row |
||
122 | new_row = { |
||
123 | 'type': type, |
||
124 | 'name': name, |
||
125 | 'amount': amount, |
||
126 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
127 | } |
||
128 | # Append the row to the DataFrame |
||
129 | total_dict[len(total_dict)] = new_row |
||
130 | elif frequency == 'Quarterly': |
||
131 | for k in range(quarters): |
||
132 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=3 * k) |
||
133 | futuredateday = futuredate.day |
||
134 | firstdateday = datetime.strptime(firstdate, format).date().day |
||
135 | if firstdateday > futuredateday: |
||
136 | try: |
||
137 | for m in range(3): |
||
138 | futuredateday += 1 |
||
139 | if firstdateday >= futuredateday: |
||
140 | futuredate = futuredate.replace(day=futuredateday) |
||
141 | except ValueError: |
||
142 | pass |
||
143 | View Code Duplication | if futuredate <= todaydate and datetime.today().weekday() < 5: |
|
0 ignored issues
–
show
|
|||
144 | existing.startdate = futuredate + relativedelta(months=3) |
||
145 | daycheckdate = futuredate + relativedelta(months=3) |
||
146 | daycheck = daycheckdate.day |
||
147 | if firstdateday > daycheck: |
||
148 | try: |
||
149 | for m in range(3): |
||
150 | daycheck += 1 |
||
151 | if firstdateday >= daycheck: |
||
152 | existing.startdate = daycheckdate.replace(day=daycheck) |
||
153 | except ValueError: |
||
154 | pass |
||
155 | # Create a new row |
||
156 | new_row = { |
||
157 | 'type': type, |
||
158 | 'name': name, |
||
159 | 'amount': amount, |
||
160 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
161 | } |
||
162 | # Append the row to the DataFrame |
||
163 | total_dict[len(total_dict)] = new_row |
||
164 | elif frequency == 'BiWeekly': |
||
165 | for k in range(biweeks): |
||
166 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=2 * k) |
||
167 | if futuredate <= todaydate and datetime.today().weekday() < 5: |
||
168 | existing.startdate = futuredate + relativedelta(weeks=2) |
||
169 | # Create a new row |
||
170 | new_row = { |
||
171 | 'type': type, |
||
172 | 'name': name, |
||
173 | 'amount': amount, |
||
174 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
175 | } |
||
176 | # Append the row to the DataFrame |
||
177 | total_dict[len(total_dict)] = new_row |
||
178 | elif frequency == 'Onetime': |
||
179 | futuredate = datetime.strptime(startdate, format).date() |
||
180 | if futuredate < todaydate: |
||
181 | db.session.delete(existing) |
||
182 | else: |
||
183 | # Create a new row |
||
184 | new_row = { |
||
185 | 'type': type, |
||
186 | 'name': name, |
||
187 | 'amount': amount, |
||
188 | 'date': futuredate |
||
189 | } |
||
190 | # Append the row to the DataFrame |
||
191 | total_dict[len(total_dict)] = new_row |
||
192 | db.session.commit() |
||
193 | |||
194 | # add the hold items |
||
195 | df = pd.read_sql('SELECT * FROM hold;', engine) |
||
196 | for i in df.itertuples(index=False): |
||
197 | name = i.name |
||
198 | amount = i.amount |
||
199 | type = i.type |
||
200 | # Create a new row |
||
201 | new_row = { |
||
202 | 'type': type, |
||
203 | 'name': name, |
||
204 | 'amount': amount, |
||
205 | 'date': todaydate + relativedelta(days=1) |
||
206 | } |
||
207 | # Append the row to the DataFrame |
||
208 | total_dict[len(total_dict)] = new_row |
||
209 | |||
210 | # add the skip items |
||
211 | df = pd.read_sql('SELECT * FROM skip;', engine) |
||
212 | for i in df.itertuples(index=False): |
||
213 | format = '%Y-%m-%d' |
||
214 | name = i.name |
||
215 | amount = i.amount |
||
216 | type = i.type |
||
217 | date = i.date |
||
218 | if datetime.strptime(date, format).date() < todaydate: |
||
219 | skip = Skip.query.filter_by(name=name).first() |
||
220 | db.session.delete(skip) |
||
221 | else: |
||
222 | # Create a new row |
||
223 | new_row = { |
||
224 | 'type': type, |
||
225 | 'name': name, |
||
226 | 'amount': amount, |
||
227 | 'date': datetime.strptime(date, format).date() |
||
228 | } |
||
229 | # Append the row to the DataFrame |
||
230 | total_dict[len(total_dict)] = new_row |
||
231 | |||
232 | total = pd.DataFrame.from_dict(total_dict, orient="index") |
||
233 | |||
234 | return total |
||
235 | |||
236 | |||
237 | def calc_transactions(balance, total): |
||
238 | # retrieve the total future transactions |
||
239 | df = total.sort_values(by="date", key=lambda x: np.argsort(index_natsorted(total["date"]))) |
||
240 | trans_dict = {} |
||
241 | # collect the next 60 days of transactions for the transactions table |
||
242 | todaydate = datetime.today().date() |
||
243 | todaydateplus = todaydate + relativedelta(months=2) |
||
244 | for i in df.itertuples(index=False): |
||
245 | if todaydateplus > \ |
||
246 | i.date > todaydate and "(SKIP)" not in i.name: |
||
247 | # Create a new row from i[1] |
||
248 | new_row = { |
||
249 | 'name': i.name, # Accessing the 4th column value |
||
250 | 'type': i.type, |
||
251 | 'amount': i.amount, |
||
252 | 'date': i.date |
||
253 | } |
||
254 | # Append the row to the DataFrame |
||
255 | trans_dict[len(trans_dict)] = new_row |
||
0 ignored issues
–
show
Comprehensibility
Best Practice
introduced
by
|
|||
256 | |||
257 | trans = pd.DataFrame.from_dict(trans_dict, orient="index") |
||
258 | |||
259 | # for schedules marked as expenses, make the value negative for the sum |
||
260 | for i in df.itertuples(): |
||
261 | amount = i.amount |
||
262 | exp_type = i.type |
||
263 | if exp_type == 'Expense': |
||
264 | amount = float(amount) * -1 |
||
265 | df.loc[i.Index, 'amount'] = amount |
||
266 | elif exp_type == 'Income': |
||
267 | pass |
||
268 | |||
269 | # group total transactions by date and sum the amounts for each date |
||
270 | df = df.groupby("date")['amount'].sum().reset_index() |
||
271 | |||
272 | # loop through the total transactions by date and add the sums to the total balance amount |
||
273 | runbalance = balance |
||
274 | run_dict = {} |
||
275 | # Create a new row |
||
276 | new_row = { |
||
277 | 'amount': runbalance, |
||
278 | 'date': datetime.today().date() |
||
279 | } |
||
280 | # Append the row to the DataFrame |
||
281 | run_dict[len(run_dict)] = new_row |
||
282 | for i in df.itertuples(index=False): |
||
283 | rundate = i.date |
||
284 | amount = i.amount |
||
285 | if i.date > todaydate: |
||
286 | runbalance += amount |
||
287 | # Create a new row |
||
288 | new_row = { |
||
289 | 'amount': runbalance, |
||
290 | 'date': rundate |
||
291 | } |
||
292 | # Append the row to the DataFrame |
||
293 | run_dict[len(run_dict)] = new_row |
||
294 | |||
295 | run = pd.DataFrame.from_dict(run_dict, orient="index") |
||
296 | |||
297 | return trans, run |
||
298 | |||
299 | |||
300 | def plot_cash(run): |
||
301 | # plot the running balances by date on a line plot |
||
302 | df = run.sort_values(by='date', ascending=False) |
||
303 | minbalance = df['amount'].min() |
||
304 | minbalance = decimal.Decimal(str(minbalance)).quantize(decimal.Decimal('.01')) |
||
305 | if float(minbalance) >= 0: |
||
306 | minrange = 0 |
||
307 | else: |
||
308 | minrange = float(minbalance) * 1.1 |
||
309 | maxbalance = 0 |
||
310 | todaydate = datetime.today().date() |
||
311 | todaydateplus = todaydate + relativedelta(months=2) |
||
312 | for i in df.itertuples(index=False): |
||
313 | if todaydateplus > i.date > todaydate: |
||
314 | if i.amount > maxbalance: |
||
315 | maxbalance = i.amount |
||
316 | maxrange = maxbalance * 1.1 |
||
317 | start_date = str(datetime.today().date()) |
||
318 | end_date = str(datetime.today().date() + relativedelta(months=2)) |
||
319 | layout = go.Layout(yaxis=dict(range=[minrange, maxrange]), xaxis=dict(range=[start_date, end_date]), |
||
320 | margin=dict(l=5, r=20, t=35, b=5), dragmode='pan') |
||
321 | fig = go.Figure(data=go.Scatter(x=df['date'].values.tolist(), y=df['amount'].values.tolist(), mode='lines', line=dict(shape='spline', smoothing=0.8))) |
||
322 | fig.update_layout(layout) |
||
323 | fig.update_xaxes(title_text='Date') |
||
324 | fig.update_yaxes(title_text='Amount') |
||
325 | fig.update_layout(paper_bgcolor="PaleTurquoise") |
||
326 | fig.update_layout(title="Cash Flow") |
||
327 | fig.update_layout(xaxis_type='date') |
||
328 | fig.update_layout(yaxis_tickformat='$,.2f') |
||
329 | |||
330 | graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) |
||
331 | |||
332 | return minbalance, graphJSON |