| Total Complexity | 67 |
| Total Lines | 379 |
| Duplicated Lines | 6.33 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like app.cashflow often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | from app import db |
||
| 2 | from .models import Schedule, Skip |
||
| 3 | from datetime import datetime, date |
||
| 4 | import pandas as pd |
||
| 5 | import json |
||
| 6 | import plotly |
||
| 7 | import os |
||
| 8 | from dateutil.relativedelta import relativedelta |
||
| 9 | from natsort import index_natsorted |
||
| 10 | import numpy as np |
||
| 11 | import decimal |
||
| 12 | import plotly.graph_objs as go |
||
| 13 | |||
| 14 | |||
| 15 | def update_cash(balance, schedules, holds, skips): |
||
| 16 | """ |
||
| 17 | Calculate cash flow with pre-filtered user data |
||
| 18 | |||
| 19 | Args: |
||
| 20 | balance: Current balance amount (Decimal) |
||
| 21 | schedules: List of Schedule objects (pre-filtered for user) |
||
| 22 | holds: List of Hold objects (pre-filtered for user) |
||
| 23 | skips: List of Skip objects (pre-filtered for user) |
||
| 24 | |||
| 25 | Returns: |
||
| 26 | trans: DataFrame of upcoming transactions |
||
| 27 | run: DataFrame of running balance projections |
||
| 28 | """ |
||
| 29 | # calculate total events for the year amount |
||
| 30 | total = calc_schedule(schedules, holds, skips) |
||
| 31 | |||
| 32 | # calculate sum of running transactions |
||
| 33 | trans, run = calc_transactions(balance, total) |
||
| 34 | |||
| 35 | return trans, run |
||
| 36 | |||
| 37 | |||
| 38 | def calc_schedule(schedules, holds, skips): |
||
| 39 | """ |
||
| 40 | Process schedules, holds, and skips into projected transactions |
||
| 41 | |||
| 42 | Args: |
||
| 43 | schedules: List of Schedule objects (pre-filtered for user) |
||
| 44 | holds: List of Hold objects (pre-filtered for user) |
||
| 45 | skips: List of Skip objects (pre-filtered for user) |
||
| 46 | |||
| 47 | Returns: |
||
| 48 | DataFrame of all projected transactions |
||
| 49 | """ |
||
| 50 | months = 13 |
||
| 51 | weeks = 53 |
||
| 52 | years = 1 |
||
| 53 | quarters = 4 |
||
| 54 | biweeks = 27 |
||
| 55 | |||
| 56 | # Create lookup dictionaries to avoid re-querying |
||
| 57 | schedule_objects = {s.name: s for s in schedules} |
||
| 58 | skip_objects = {s.name: s for s in skips} |
||
| 59 | |||
| 60 | # Convert schedules to DataFrame |
||
| 61 | if schedules: |
||
| 62 | df = pd.DataFrame([{ |
||
| 63 | 'name': s.name, |
||
| 64 | 'startdate': s.startdate.strftime('%Y-%m-%d') if s.startdate else None, |
||
| 65 | 'firstdate': s.firstdate.strftime('%Y-%m-%d') if s.firstdate else None, |
||
| 66 | 'frequency': s.frequency, |
||
| 67 | 'amount': s.amount, |
||
| 68 | 'type': s.type |
||
| 69 | } for s in schedules]) |
||
| 70 | else: |
||
| 71 | # Empty DataFrame if no schedules |
||
| 72 | df = pd.DataFrame(columns=['name', 'startdate', 'firstdate', 'frequency', 'amount', 'type']) |
||
| 73 | |||
| 74 | total_dict = {} |
||
| 75 | |||
| 76 | # loop through the schedule and create transactions in a table out to the future number of years |
||
| 77 | todaydate = datetime.today().date() |
||
| 78 | for i in df.itertuples(index=False): |
||
| 79 | format = '%Y-%m-%d' |
||
| 80 | name = i.name |
||
| 81 | startdate = i.startdate |
||
| 82 | firstdate = i.firstdate |
||
| 83 | frequency = i.frequency |
||
| 84 | amount = i.amount |
||
| 85 | type = i.type |
||
| 86 | existing = schedule_objects.get(name) |
||
| 87 | if not existing: |
||
| 88 | continue # Skip if schedule object not found |
||
| 89 | if not firstdate: |
||
| 90 | existing.firstdate = datetime.strptime(startdate, format).date() |
||
| 91 | firstdate = existing.firstdate.strftime(format) |
||
| 92 | db.session.commit() |
||
| 93 | if frequency == 'Monthly': |
||
| 94 | for k in range(months): |
||
| 95 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=k) |
||
| 96 | futuredateday = futuredate.day |
||
| 97 | firstdateday = datetime.strptime(firstdate, format).date().day |
||
| 98 | if firstdateday > futuredateday: |
||
| 99 | try: |
||
| 100 | for m in range(3): |
||
| 101 | futuredateday += 1 |
||
| 102 | if firstdateday >= futuredateday: |
||
| 103 | futuredate = futuredate.replace(day=futuredateday) |
||
| 104 | except ValueError: |
||
| 105 | pass |
||
| 106 | View Code Duplication | if futuredate <= todaydate and datetime.today().weekday() < 5: |
|
|
|
|||
| 107 | existing.startdate = futuredate + relativedelta(months=1) |
||
| 108 | daycheckdate = futuredate + relativedelta(months=1) |
||
| 109 | daycheck = daycheckdate.day |
||
| 110 | if firstdateday > daycheck: |
||
| 111 | try: |
||
| 112 | for m in range(3): |
||
| 113 | daycheck += 1 |
||
| 114 | if firstdateday >= daycheck: |
||
| 115 | existing.startdate = daycheckdate.replace(day=daycheck) |
||
| 116 | except ValueError: |
||
| 117 | pass |
||
| 118 | if type == 'Income': |
||
| 119 | rollbackdate = datetime.combine(futuredate, datetime.min.time()) |
||
| 120 | # Create a new row |
||
| 121 | new_row = { |
||
| 122 | 'type': type, |
||
| 123 | 'name': name, |
||
| 124 | 'amount': amount, |
||
| 125 | 'date': pd.tseries.offsets.BDay(1).rollback(rollbackdate).date() |
||
| 126 | } |
||
| 127 | # Append the row to the DataFrame |
||
| 128 | total_dict[len(total_dict)] = new_row |
||
| 129 | else: |
||
| 130 | # Create a new row |
||
| 131 | new_row = { |
||
| 132 | 'type': type, |
||
| 133 | 'name': name, |
||
| 134 | 'amount': amount, |
||
| 135 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
| 136 | } |
||
| 137 | # Append the row to the DataFrame |
||
| 138 | total_dict[len(total_dict)] = new_row |
||
| 139 | elif frequency == 'Weekly': |
||
| 140 | for k in range(weeks): |
||
| 141 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=k) |
||
| 142 | if futuredate <= todaydate and datetime.today().weekday() < 5: |
||
| 143 | existing.startdate = futuredate + relativedelta(weeks=1) |
||
| 144 | # Create a new row |
||
| 145 | new_row = { |
||
| 146 | 'type': type, |
||
| 147 | 'name': name, |
||
| 148 | 'amount': amount, |
||
| 149 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
| 150 | } |
||
| 151 | # Append the row to the DataFrame |
||
| 152 | total_dict[len(total_dict)] = new_row |
||
| 153 | elif frequency == 'Yearly': |
||
| 154 | for k in range(years): |
||
| 155 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(years=k) |
||
| 156 | if futuredate <= todaydate and datetime.today().weekday() < 5: |
||
| 157 | existing.startdate = futuredate + relativedelta(years=1) |
||
| 158 | # Create a new row |
||
| 159 | new_row = { |
||
| 160 | 'type': type, |
||
| 161 | 'name': name, |
||
| 162 | 'amount': amount, |
||
| 163 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
| 164 | } |
||
| 165 | # Append the row to the DataFrame |
||
| 166 | total_dict[len(total_dict)] = new_row |
||
| 167 | elif frequency == 'Quarterly': |
||
| 168 | for k in range(quarters): |
||
| 169 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=3 * k) |
||
| 170 | futuredateday = futuredate.day |
||
| 171 | firstdateday = datetime.strptime(firstdate, format).date().day |
||
| 172 | if firstdateday > futuredateday: |
||
| 173 | try: |
||
| 174 | for m in range(3): |
||
| 175 | futuredateday += 1 |
||
| 176 | if firstdateday >= futuredateday: |
||
| 177 | futuredate = futuredate.replace(day=futuredateday) |
||
| 178 | except ValueError: |
||
| 179 | pass |
||
| 180 | View Code Duplication | if futuredate <= todaydate and datetime.today().weekday() < 5: |
|
| 181 | existing.startdate = futuredate + relativedelta(months=3) |
||
| 182 | daycheckdate = futuredate + relativedelta(months=3) |
||
| 183 | daycheck = daycheckdate.day |
||
| 184 | if firstdateday > daycheck: |
||
| 185 | try: |
||
| 186 | for m in range(3): |
||
| 187 | daycheck += 1 |
||
| 188 | if firstdateday >= daycheck: |
||
| 189 | existing.startdate = daycheckdate.replace(day=daycheck) |
||
| 190 | except ValueError: |
||
| 191 | pass |
||
| 192 | # Create a new row |
||
| 193 | new_row = { |
||
| 194 | 'type': type, |
||
| 195 | 'name': name, |
||
| 196 | 'amount': amount, |
||
| 197 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
| 198 | } |
||
| 199 | # Append the row to the DataFrame |
||
| 200 | total_dict[len(total_dict)] = new_row |
||
| 201 | elif frequency == 'BiWeekly': |
||
| 202 | for k in range(biweeks): |
||
| 203 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=2 * k) |
||
| 204 | if futuredate <= todaydate and datetime.today().weekday() < 5: |
||
| 205 | existing.startdate = futuredate + relativedelta(weeks=2) |
||
| 206 | # Create a new row |
||
| 207 | new_row = { |
||
| 208 | 'type': type, |
||
| 209 | 'name': name, |
||
| 210 | 'amount': amount, |
||
| 211 | 'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
||
| 212 | } |
||
| 213 | # Append the row to the DataFrame |
||
| 214 | total_dict[len(total_dict)] = new_row |
||
| 215 | elif frequency == 'Onetime': |
||
| 216 | futuredate = datetime.strptime(startdate, format).date() |
||
| 217 | if futuredate < todaydate: |
||
| 218 | db.session.delete(existing) |
||
| 219 | else: |
||
| 220 | # Create a new row |
||
| 221 | new_row = { |
||
| 222 | 'type': type, |
||
| 223 | 'name': name, |
||
| 224 | 'amount': amount, |
||
| 225 | 'date': futuredate |
||
| 226 | } |
||
| 227 | # Append the row to the DataFrame |
||
| 228 | total_dict[len(total_dict)] = new_row |
||
| 229 | db.session.commit() |
||
| 230 | |||
| 231 | # add the hold items |
||
| 232 | for hold in holds: |
||
| 233 | # Create a new row |
||
| 234 | new_row = { |
||
| 235 | 'type': hold.type, |
||
| 236 | 'name': hold.name, |
||
| 237 | 'amount': hold.amount, |
||
| 238 | 'date': todaydate + relativedelta(days=1) |
||
| 239 | } |
||
| 240 | # Append the row to the DataFrame |
||
| 241 | total_dict[len(total_dict)] = new_row |
||
| 242 | |||
| 243 | # add the skip items |
||
| 244 | for skip in skips: |
||
| 245 | format = '%Y-%m-%d' |
||
| 246 | skip_date = skip.date if isinstance(skip.date, date) else datetime.strptime(skip.date, format).date() |
||
| 247 | |||
| 248 | if skip_date < todaydate: |
||
| 249 | # Delete past skip items |
||
| 250 | db.session.delete(skip) |
||
| 251 | else: |
||
| 252 | # Create a new row |
||
| 253 | new_row = { |
||
| 254 | 'type': skip.type, |
||
| 255 | 'name': skip.name, |
||
| 256 | 'amount': skip.amount, |
||
| 257 | 'date': skip_date |
||
| 258 | } |
||
| 259 | # Append the row to the DataFrame |
||
| 260 | total_dict[len(total_dict)] = new_row |
||
| 261 | |||
| 262 | # Create DataFrame from total_dict |
||
| 263 | if total_dict: |
||
| 264 | total = pd.DataFrame.from_dict(total_dict, orient="index") |
||
| 265 | else: |
||
| 266 | # Return empty DataFrame with expected columns |
||
| 267 | total = pd.DataFrame(columns=['type', 'name', 'amount', 'date']) |
||
| 268 | |||
| 269 | return total |
||
| 270 | |||
| 271 | |||
| 272 | def calc_transactions(balance, total): |
||
| 273 | # retrieve the total future transactions |
||
| 274 | # Check if total DataFrame is empty |
||
| 275 | if total.empty: |
||
| 276 | # Return empty DataFrames if no transactions |
||
| 277 | trans = pd.DataFrame(columns=['name', 'type', 'amount', 'date']) |
||
| 278 | # Convert balance to float for type consistency |
||
| 279 | run_dict = {0: {'amount': float(balance), 'date': datetime.today().date()}} |
||
| 280 | run = pd.DataFrame.from_dict(run_dict, orient="index") |
||
| 281 | return trans, run |
||
| 282 | |||
| 283 | df = total.sort_values(by="date", key=lambda x: np.argsort(index_natsorted(total["date"]))).reset_index(drop=True) |
||
| 284 | trans_dict = {} |
||
| 285 | # collect the next 60 days of transactions for the transactions table |
||
| 286 | todaydate = datetime.today().date() |
||
| 287 | todaydateplus = todaydate + relativedelta(months=2) |
||
| 288 | for i in df.itertuples(index=False): |
||
| 289 | if todaydateplus > \ |
||
| 290 | i.date > todaydate and "(SKIP)" not in i.name: |
||
| 291 | # Create a new row from i[1] |
||
| 292 | new_row = { |
||
| 293 | 'name': i.name, # Accessing the 4th column value |
||
| 294 | 'type': i.type, |
||
| 295 | 'amount': i.amount, |
||
| 296 | 'date': i.date |
||
| 297 | } |
||
| 298 | # Append the row to the DataFrame |
||
| 299 | trans_dict[len(trans_dict)] = new_row |
||
| 300 | |||
| 301 | trans = pd.DataFrame.from_dict(trans_dict, orient="index") |
||
| 302 | |||
| 303 | # for schedules marked as expenses, make the value negative for the sum |
||
| 304 | # Create a copy to avoid modifying during iteration |
||
| 305 | df = df.copy() |
||
| 306 | # Convert all amounts to float to avoid Decimal/float mixing |
||
| 307 | df['amount'] = df['amount'].astype(float) |
||
| 308 | for idx in df.index: |
||
| 309 | if df.loc[idx, 'type'] == 'Expense': |
||
| 310 | df.loc[idx, 'amount'] = df.loc[idx, 'amount'] * -1 |
||
| 311 | |||
| 312 | # group total transactions by date and sum the amounts for each date |
||
| 313 | df = df.groupby("date")['amount'].sum().reset_index() |
||
| 314 | |||
| 315 | # loop through the total transactions by date and add the sums to the total balance amount |
||
| 316 | # Convert balance to float to avoid Decimal/float mixing |
||
| 317 | runbalance = float(balance) |
||
| 318 | run_dict = {} |
||
| 319 | # Create a new row |
||
| 320 | new_row = { |
||
| 321 | 'amount': runbalance, |
||
| 322 | 'date': datetime.today().date() |
||
| 323 | } |
||
| 324 | # Append the row to the DataFrame |
||
| 325 | run_dict[len(run_dict)] = new_row |
||
| 326 | for i in df.itertuples(index=False): |
||
| 327 | rundate = i.date |
||
| 328 | amount = i.amount |
||
| 329 | if i.date > todaydate: |
||
| 330 | runbalance += amount |
||
| 331 | # Create a new row |
||
| 332 | new_row = { |
||
| 333 | 'amount': runbalance, |
||
| 334 | 'date': rundate |
||
| 335 | } |
||
| 336 | # Append the row to the DataFrame |
||
| 337 | run_dict[len(run_dict)] = new_row |
||
| 338 | |||
| 339 | run = pd.DataFrame.from_dict(run_dict, orient="index") |
||
| 340 | |||
| 341 | return trans, run |
||
| 342 | |||
| 343 | |||
| 344 | def plot_cash(run): |
||
| 345 | # plot the running balances by date on a line plot |
||
| 346 | df = run.sort_values(by='date', ascending=False) |
||
| 347 | # Convert amounts to float to avoid Decimal/float mixing |
||
| 348 | df['amount'] = df['amount'].astype(float) |
||
| 349 | minbalance = df['amount'].min() |
||
| 350 | minbalance = decimal.Decimal(str(minbalance)).quantize(decimal.Decimal('.01')) |
||
| 351 | if float(minbalance) >= 0: |
||
| 352 | minrange = 0.0 |
||
| 353 | else: |
||
| 354 | minrange = float(minbalance) * 1.1 |
||
| 355 | maxbalance = 0.0 |
||
| 356 | todaydate = datetime.today().date() |
||
| 357 | todaydateplus = todaydate + relativedelta(months=2) |
||
| 358 | for i in df.itertuples(index=False): |
||
| 359 | if todaydateplus > i.date > todaydate: |
||
| 360 | if i.amount > maxbalance: |
||
| 361 | maxbalance = i.amount |
||
| 362 | maxrange = maxbalance * 1.1 |
||
| 363 | start_date = str(datetime.today().date()) |
||
| 364 | end_date = str(datetime.today().date() + relativedelta(months=2)) |
||
| 365 | layout = go.Layout(yaxis=dict(range=[minrange, maxrange]), xaxis=dict(range=[start_date, end_date]), |
||
| 366 | margin=dict(l=5, r=20, t=35, b=5), dragmode='pan') |
||
| 367 | fig = go.Figure(data=go.Scatter(x=df['date'].values.tolist(), y=df['amount'].values.tolist(), mode='lines', line=dict(shape='spline', smoothing=0.8))) |
||
| 368 | fig.update_layout(layout) |
||
| 369 | fig.update_xaxes(title_text='Date') |
||
| 370 | fig.update_yaxes(title_text='Amount') |
||
| 371 | fig.update_layout(paper_bgcolor="PaleTurquoise") |
||
| 372 | fig.update_layout(title="Cash Flow") |
||
| 373 | fig.update_layout(xaxis_type='date') |
||
| 374 | fig.update_layout(yaxis_tickformat='$,.2f') |
||
| 375 | |||
| 376 | graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) |
||
| 377 | |||
| 378 | return minbalance, graphJSON |