Conditions | 13 |
Total Lines | 155 |
Lines | 0 |
Ratio | 0 % |
Changes | 3 | ||
Bugs | 0 | Features | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like test_example() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | #!/usr/bin/env python |
||
43 | @pytest.mark.skip(reason="requires pydot - works in py2.7 but not py3.4 and 3.5") |
||
44 | def test_example(log=sys.stdout): |
||
45 | """Run Gene Ontology Enrichment Analysis (GOEA) on Nature data.""" |
||
46 | # -------------------------------------------------------------------- |
||
47 | # -------------------------------------------------------------------- |
||
48 | # Gene Ontology Enrichment Analysis (GOEA) |
||
49 | # -------------------------------------------------------------------- |
||
50 | # -------------------------------------------------------------------- |
||
51 | taxid = 10090 # Mouse study |
||
52 | # Load ontologies, associations, and population ids |
||
53 | geneids_pop = GeneID2nt_mus.keys() |
||
54 | geneids_study = get_geneid2symbol("nbt.3102-S4_GeneIDs.xlsx") |
||
55 | goeaobj = get_goeaobj("fdr_bh", geneids_pop, taxid) |
||
56 | # Run GOEA on study |
||
57 | #keep_if = lambda nt: getattr(nt, "p_fdr_bh" ) < 0.05 # keep if results are significant |
||
58 | goea_results_all = goeaobj.run_study(geneids_study) |
||
59 | goea_results_sig = [r for r in goea_results_all if r.p_fdr_bh < 0.05] |
||
60 | compare_results(goea_results_all) |
||
61 | geneids = get_study_items(goea_results_sig) |
||
62 | # Print GOEA results to files |
||
63 | goeaobj.wr_xlsx("nbt3102.xlsx", goea_results_sig) |
||
64 | goeaobj.wr_txt("nbt3102_sig.txt", goea_results_sig) |
||
65 | goeaobj.wr_txt("nbt3102_all.txt", goea_results_all) |
||
66 | # Plot all significant GO terms w/annotated study info (large plots) |
||
67 | #plot_results("nbt3102_{NS}.png", goea_results_sig) |
||
68 | #plot_results("nbt3102_{NS}_sym.png", goea_results_sig, study_items=5, items_p_line=2, id2symbol=geneids_study) |
||
69 | |||
70 | |||
71 | |||
72 | # -------------------------------------------------------------------- |
||
73 | # -------------------------------------------------------------------- |
||
74 | # Further examination of GOEA results... |
||
75 | # -------------------------------------------------------------------- |
||
76 | # -------------------------------------------------------------------- |
||
77 | obo = goeaobj.obo_dag |
||
78 | dpi = 150 # For review: Figures can be saved in .jpg, .gif, .tif or .eps, at 150 dpi |
||
79 | |||
80 | |||
81 | # -------------------------------------------------------------------- |
||
82 | # Item 1) Words in GO names associated with large numbers of study genes |
||
83 | # -------------------------------------------------------------------- |
||
84 | # What GO term words are associated with the largest number of study genes? |
||
85 | prt_word2genecnt("nbt3102_genecnt_GOword.txt", goea_results_sig, log) |
||
86 | # Curated selection of GO words associated with large numbers of study genes |
||
87 | freq_seen = ['RNA', 'translation', 'mitochondr', 'ribosom', # 'ribosomal', 'ribosome', |
||
88 | 'adhesion', 'endoplasmic', 'nucleotide', 'apoptotic', 'myelin'] |
||
89 | # Collect the GOs which contains the chosen frequently seen words |
||
90 | word2NS2gos = get_word2NS2gos(freq_seen, goea_results_sig) |
||
91 | go2res = {nt.GO:nt for nt in goea_results_sig} |
||
92 | # Print words of interest, the sig GO terms which contain that word, and study genes. |
||
93 | prt_word_GO_genes("nbt3102_GO_word_genes.txt", word2NS2gos, go2res, geneids_study, log) |
||
94 | # Plot each set of GOs along w/study gene info |
||
95 | for word, NS2gos in word2NS2gos.items(): |
||
96 | for NS in ['BP', 'MF', 'CC']: |
||
97 | if NS in NS2gos: |
||
98 | gos = NS2gos[NS] |
||
99 | goid2goobj = {go:go2res[go].goterm for go in gos} |
||
100 | # dpi: 150 for review, 1200 for publication |
||
101 | #dpis = [150, 1200] if word == "RNA" else [150] |
||
102 | dpis = [150] |
||
103 | for dpi in dpis: |
||
104 | fmts = ['png', 'tif', 'eps'] if word == "RNA" else ['png'] |
||
105 | for fmt in fmts: |
||
106 | plot_goid2goobj( |
||
107 | "nbt3102_{WORD}_{NS}_dpi{DPI}.{FMT}".format(WORD=word, NS=NS, DPI=dpi, FMT=fmt), |
||
108 | goid2goobj, # source GOs and their GOTerm object |
||
109 | items_p_line=3, |
||
110 | study_items=6, # Max number of gene symbols to print in each GO term |
||
111 | id2symbol=geneids_study, # Contains GeneID-to-Symbol |
||
112 | goea_results=goea_results_all, # pvals used for GO Term coloring |
||
113 | dpi=dpi) |
||
114 | |||
115 | |||
116 | # -------------------------------------------------------------------- |
||
117 | # Item 2) Explore findings of Nature paper: |
||
118 | # |
||
119 | # Gene Ontology (GO) enrichment analysis showed that the |
||
120 | # differentially expressed genes contained statistically |
||
121 | # significant enrichments of genes involved in |
||
122 | # glycolysis, |
||
123 | # cellular response to IL-4 stimulation and |
||
124 | # positive regulation of B-cell proliferation |
||
125 | # -------------------------------------------------------------------- |
||
126 | goid_subset = [ |
||
127 | 'GO:0006096', # BP 4.24e-12 10 glycolytic process |
||
128 | 'GO:0071353', # BP 7.45e-06 5 cellular response to interleukin-4 |
||
129 | 'GO:0030890', # BP 8.22e-07 7 positive regulation of B cell proliferation |
||
130 | ] |
||
131 | plot_gos("nbt3102_GOs.png", goid_subset, obo, dpi=dpi) |
||
132 | plot_gos("nbt3102_GOs_genecnt.png", goid_subset, obo, goea_results=goea_results_all, dpi=dpi) |
||
133 | plot_gos("nbt3102_GOs_genelst.png", goid_subset, obo, |
||
134 | study_items=True, goea_results=goea_results_all, dpi=dpi) |
||
135 | plot_gos("nbt3102_GOs_symlst.png", goid_subset, obo, |
||
136 | study_items=True, id2symbol=geneids_study, goea_results=goea_results_all, dpi=dpi) |
||
137 | plot_gos("nbt3102_GOs_symlst_trunc.png", goid_subset, obo, |
||
138 | study_items=5, id2symbol=geneids_study, goea_results=goea_results_all, dpi=dpi) |
||
139 | plot_gos("nbt3102_GOs_GO0005743.png", ["GO:0005743"], obo, |
||
140 | items_p_line=2, study_items=6, |
||
141 | id2symbol=geneids_study, goea_results=goea_results_all, dpi=dpi) |
||
142 | |||
143 | # -------------------------------------------------------------------- |
||
144 | # Item 3) Create one GO sub-plot per significant GO term from study |
||
145 | # -------------------------------------------------------------------- |
||
146 | for rec in goea_results_sig: |
||
147 | png = "nbt3102_{NS}_{GO}.png".format(GO=rec.GO.replace(':', '_'), NS=rec.NS) |
||
148 | goid2goobj = {rec.GO:rec.goterm} |
||
149 | plot_goid2goobj(png, |
||
150 | goid2goobj, # source GOs and their GOTerm object |
||
151 | study_items=15, # Max number of gene symbols to print in each GO term |
||
152 | id2symbol=geneids_study, # Contains GeneID-to-Symbol |
||
153 | goea_results=goea_results_all, # pvals used for GO Term coloring |
||
154 | dpi=dpi) |
||
155 | |||
156 | # -------------------------------------------------------------------- |
||
157 | # Item 4) Explore using manually curated lists of GO terms |
||
158 | # -------------------------------------------------------------------- |
||
159 | goid_subset = [ |
||
160 | 'GO:0030529', # CC D03 intracellular ribonucleoprotein complex (42 genes) |
||
161 | 'GO:0015934', # CC D05 large ribosomal subunit (4 genes) |
||
162 | 'GO:0015935', # CC D05 small ribosomal subunit (13 genes) |
||
163 | 'GO:0022625', # CC D06 cytosolic large ribosomal subunit (16 genes) |
||
164 | 'GO:0022627', # CC D06 cytosolic small ribosomal subunit (19 genes) |
||
165 | 'GO:0036464', # CC D06 cytoplasmic ribonucleoprotein granule (4 genes) |
||
166 | 'GO:0005840', # CC D05 ribosome (35 genes) |
||
167 | 'GO:0005844', # CC D04 polysome (6 genes) |
||
168 | ] |
||
169 | plot_gos("nbt3102_CC_ribosome.png", goid_subset, obo, |
||
170 | study_items=6, id2symbol=geneids_study, items_p_line=3, |
||
171 | goea_results=goea_results_sig, dpi=dpi) |
||
172 | |||
173 | goid_subset = [ |
||
174 | 'GO:0003723', # MF D04 RNA binding (32 genes) |
||
175 | 'GO:0044822', # MF D05 poly(A) RNA binding (86 genes) |
||
176 | 'GO:0003729', # MF D06 mRNA binding (11 genes) |
||
177 | 'GO:0019843', # MF D05 rRNA binding (6 genes) |
||
178 | 'GO:0003746', # MF D06 translation elongation factor activity (5 genes) |
||
179 | ] |
||
180 | plot_gos("nbt3102_MF_RNA_genecnt.png", |
||
181 | goid_subset, |
||
182 | obo, |
||
183 | goea_results=goea_results_all, dpi=150) |
||
184 | for dpi in [150, 1200]: # 150 for review, 1200 for publication |
||
185 | plot_gos("nbt3102_MF_RNA_dpi{DPI}.png".format(DPI=dpi), |
||
186 | goid_subset, |
||
187 | obo, |
||
188 | study_items=6, id2symbol=geneids_study, items_p_line=3, |
||
189 | goea_results=goea_results_all, dpi=dpi) |
||
190 | |||
191 | # -------------------------------------------------------------------- |
||
192 | # Item 5) Are any significant geneids related to cell cycle? |
||
193 | # -------------------------------------------------------------------- |
||
194 | import test_genes_cell_cycle as CC |
||
195 | genes_cell_cycle = CC.get_genes_cell_cycle(taxid, log=log) |
||
196 | genes_cell_cycle_sig = genes_cell_cycle.intersection(geneids) |
||
197 | CC.prt_genes("nbt3102_cell_cycle.txt", genes_cell_cycle_sig, taxid, log=None) |
||
198 | |||
363 |