Total Complexity | 41 |
Total Lines | 443 |
Duplicated Lines | 5.42 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like sciapy.regress.models_theano often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
2 | # vim:fileencoding=utf-8 |
||
3 | # |
||
4 | # Copyright (c) 2022 Stefan Bender |
||
5 | # |
||
6 | # This module is part of sciapy. |
||
7 | # sciapy is free software: you can redistribute it or modify |
||
8 | # it under the terms of the GNU General Public License as published |
||
9 | # by the Free Software Foundation, version 2. |
||
10 | # See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
||
11 | """SCIAMACHY regression models (theano/pymc3 version) |
||
12 | |||
13 | Model classes for SCIAMACHY data regression fits using |
||
14 | :mod:`theano` for :mod:`pymc3`. |
||
15 | |||
16 | This interface is still experimental. |
||
17 | """ |
||
18 | from __future__ import absolute_import, division, print_function |
||
19 | from warnings import warn |
||
20 | |||
21 | import numpy as np |
||
22 | |||
23 | try: |
||
24 | import aesara_theano_fallback.tensor as tt |
||
25 | except ImportError as err: |
||
26 | raise ImportError( |
||
27 | "The `aesara_theano_fallback` package is required for the `theano` model interface." |
||
28 | ).with_traceback(err.__traceback__) |
||
29 | try: |
||
30 | import pymc3 as pm |
||
31 | except ImportError as err: |
||
32 | raise ImportError( |
||
33 | "The `pymc3` package is required for the `theano` model interface." |
||
34 | ).with_traceback(err.__traceback__) |
||
35 | |||
36 | __all__ = [ |
||
37 | "HarmonicModelCosineSine", "HarmonicModelAmpPhase", |
||
38 | "LifetimeModel", |
||
39 | "ProxyModel", |
||
40 | "ModelSet", |
||
41 | "setup_proxy_model_theano", |
||
42 | "trace_gas_modelset", |
||
43 | ] |
||
44 | |||
45 | |||
46 | class HarmonicModelCosineSine: |
||
47 | """Model for harmonic terms |
||
48 | |||
49 | Models harmonic terms using a cosine and sine part. |
||
50 | The total amplitude and phase can be inferred from that. |
||
51 | |||
52 | Parameters |
||
53 | ---------- |
||
54 | freq : float |
||
55 | The frequency in years^-1 |
||
56 | cos : float |
||
57 | The amplitude of the cosine part |
||
58 | sin : float |
||
59 | The amplitude of the sine part |
||
60 | """ |
||
61 | def __init__(self, freq, cos, sin): |
||
62 | self.omega = tt.as_tensor_variable(2 * np.pi * freq).astype("float64") |
||
63 | self.cos = tt.as_tensor_variable(cos).astype("float64") |
||
64 | self.sin = tt.as_tensor_variable(sin).astype("float64") |
||
65 | |||
66 | def get_value(self, t): |
||
67 | t = tt.as_tensor_variable(t).astype("float64") |
||
68 | return ( |
||
69 | self.cos * tt.cos(self.omega * t) |
||
70 | + self.sin * tt.sin(self.omega * t) |
||
71 | ) |
||
72 | |||
73 | def get_amplitude(self): |
||
74 | return tt.sqrt(self.cos**2 + self.sin**2) |
||
75 | |||
76 | def get_phase(self): |
||
77 | return tt.arctan2(self.cos, self.sin) |
||
78 | |||
79 | def compute_gradient(self, t): |
||
80 | t = tt.as_tensor_variable(t).astype("float64") |
||
81 | dcos = tt.cos(self.omega * t) |
||
82 | dsin = tt.sin(self.omega * t) |
||
83 | df = 2 * np.pi * t * (self.sin * dcos - self.cos * dsin) |
||
84 | return (df, dcos, dsin) |
||
85 | |||
86 | |||
87 | class HarmonicModelAmpPhase: |
||
88 | """Model for harmonic terms |
||
89 | |||
90 | Models harmonic terms using amplitude and phase of a sine. |
||
91 | |||
92 | Parameters |
||
93 | ---------- |
||
94 | freq : float |
||
95 | The frequency in years^-1 |
||
96 | amp : float |
||
97 | The amplitude of the harmonic term |
||
98 | phase : float |
||
99 | The phase of the harmonic part |
||
100 | """ |
||
101 | def __init__(self, freq, amp, phase): |
||
102 | self.omega = tt.as_tensor_variable(2 * np.pi * freq).astype("float64") |
||
103 | self.amp = tt.as_tensor_variable(amp).astype("float64") |
||
104 | self.phase = tt.as_tensor_variable(phase).astype("float64") |
||
105 | |||
106 | def get_value(self, t): |
||
107 | t = tt.as_tensor_variable(t).astype("float64") |
||
108 | return self.amp * tt.sin(self.omega * t + self.phase) |
||
109 | |||
110 | def get_amplitude(self): |
||
111 | return self.amp |
||
112 | |||
113 | def get_phase(self): |
||
114 | return self.phase |
||
115 | |||
116 | def compute_gradient(self, t): |
||
117 | t = tt.as_tensor_variable(t).astype("float64") |
||
118 | damp = tt.sin(self.omega * t + self.phase) |
||
119 | dphi = self.amp * tt.cos(self.omega * t + self.phase) |
||
120 | df = 2 * np.pi * t * dphi |
||
121 | return (df, damp, dphi) |
||
122 | |||
123 | |||
124 | class LifetimeModel: |
||
125 | """Model for variable lifetime |
||
126 | |||
127 | Returns the positive values of the sine/cosine. |
||
128 | |||
129 | Parameters |
||
130 | ---------- |
||
131 | harmonics : HarmonicModelCosineSine or HarmonicModelAmpPhase or list |
||
132 | """ |
||
133 | def __init__(self, harmonics, lower=0.): |
||
134 | if not hasattr(harmonics, "getitem"): |
||
135 | harmonics = [harmonics] |
||
136 | self.harmonics = harmonics |
||
137 | self.lower = lower |
||
138 | |||
139 | def get_value(self, t): |
||
140 | tau_cs = tt.zeros(t.shape[:-1], dtype="float64") |
||
141 | for h in self.harmonics: |
||
142 | tau_cs += h.get_value(t) |
||
143 | return tt.maximum(self.lower, tau_cs) |
||
144 | |||
145 | |||
146 | def _interp(x, xs, ys, fill_value=0.): |
||
147 | idx = xs.searchsorted(x) |
||
148 | out_of_bounds = tt.zeros(x.shape[:-1], dtype=bool) |
||
149 | out_of_bounds |= (idx < 1) | (idx >= xs.shape[0]) |
||
150 | idx = tt.clip(idx, 1, xs.shape[0] - 1) |
||
151 | dl = x - xs[idx - 1] |
||
152 | dr = xs[idx] - x |
||
153 | d = dl + dr |
||
154 | wl = dr / d |
||
155 | ret = tt.zeros(x.shape[:-1], dtype="float64") |
||
156 | ret += wl * ys[idx - 1] + (1 - wl) * ys[idx] |
||
157 | ret = tt.switch(out_of_bounds, fill_value, ret) |
||
158 | return ret |
||
159 | |||
160 | |||
161 | class ProxyModel: |
||
162 | """Model for proxy terms |
||
163 | |||
164 | Models proxy terms with a finite and (semi-)annually varying life time. |
||
165 | |||
166 | Parameters |
||
167 | ---------- |
||
168 | proxy_times : (N,) array_like |
||
169 | The data times of the proxy values |
||
170 | proxy_vals : (N,) array_like |
||
171 | The proxy values at `proxy_times` |
||
172 | amp : float |
||
173 | The amplitude of the proxy term |
||
174 | lag : float, optional |
||
175 | The lag of the proxy value in years. |
||
176 | tau0 : float, optional |
||
177 | The base life time of the proxy |
||
178 | tau_harm : LifetimeModel, optional |
||
179 | The lifetime harmonic model with a lower limit. |
||
180 | tau_scan : float, optional |
||
181 | The number of days to sum the previous proxy values. If it is |
||
182 | negative, the value will be set to three times the maximal lifetime. |
||
183 | No lifetime adjustemets are calculated when set to zero. |
||
184 | days_per_time_unit : float, optional |
||
185 | The number of days per time unit, used to normalize the lifetime |
||
186 | units. Use 365.25 if the times are in fractional years, or 1 if |
||
187 | they are in days. |
||
188 | Default: 365.25 |
||
189 | """ |
||
190 | def __init__( |
||
191 | self, ptimes, pvalues, amp, |
||
192 | lag=0., |
||
193 | tau0=0., |
||
194 | tau_harm=None, |
||
195 | tau_scan=0, |
||
196 | days_per_time_unit=365.25, |
||
197 | ): |
||
198 | # data |
||
199 | self.times = tt.as_tensor_variable(ptimes).astype("float64") |
||
200 | self.values = tt.as_tensor_variable(pvalues).astype("float64") |
||
201 | # parameters |
||
202 | self.amp = tt.as_tensor_variable(amp).astype("float64") |
||
203 | self.days_per_time_unit = tt.as_tensor_variable(days_per_time_unit).astype("float64") |
||
204 | self.lag = tt.as_tensor_variable(lag / days_per_time_unit).astype("float64") |
||
205 | self.tau0 = tt.as_tensor_variable(tau0).astype("float64") |
||
206 | self.tau_harm = tau_harm |
||
207 | self.tau_scan = tau_scan |
||
208 | dt = 1.0 |
||
209 | bs = np.arange(dt, tau_scan + dt, dt) / days_per_time_unit |
||
210 | self.bs = tt.as_tensor_variable(bs).astype("float64") |
||
211 | self.dt = tt.as_tensor_variable(dt).astype("float64") |
||
212 | # Makes "(m)jd" and "jyear" compatible for the lifetime |
||
213 | # seasonal variation. The julian epoch (the default) |
||
214 | # is slightly offset with respect to (modified) julian days. |
||
215 | self.t_adj = 0. |
||
216 | if self.days_per_time_unit == 1: |
||
217 | # discriminate between julian days and modified julian days, |
||
218 | # 1.8e6 is year 216 in julian days and year 6787 in |
||
219 | # modified julian days. It should be pretty safe to judge on |
||
220 | # that for most use cases. |
||
221 | if self.times[0] > 1.8e6: |
||
222 | # julian days |
||
223 | self.t_adj = 13. |
||
224 | else: |
||
225 | # modified julian days |
||
226 | self.t_adj = -44.25 |
||
227 | self.t_adj = tt.as_tensor_variable(self.t_adj).astype("float64") |
||
228 | |||
229 | def _lt_corr(self, t, tau): |
||
230 | """Lifetime corrected values |
||
231 | |||
232 | Corrects for a finite lifetime by summing over the last `tmax` |
||
233 | days with an exponential decay given of lifetime(s) `tau`. |
||
234 | """ |
||
235 | yp = tt.zeros(t.shape[:-1], dtype="float64") |
||
236 | tauexp = tt.exp(-self.dt / tau) |
||
237 | taufac = tt.ones(tau.shape[:-1], dtype="float64") |
||
238 | for b in self.bs: |
||
239 | taufac *= tauexp |
||
240 | yp += taufac * _interp( |
||
241 | t - self.lag - b, |
||
242 | self.times, self.values, |
||
243 | ) |
||
244 | return yp * self.dt |
||
245 | |||
246 | def get_value(self, t): |
||
247 | t = tt.as_tensor_variable(t) |
||
248 | proxy_val = _interp( |
||
249 | t - self.lag, |
||
250 | self.times, self.values, |
||
251 | ) |
||
252 | if self.tau_scan == 0: |
||
253 | # no lifetime, nothing else to do |
||
254 | return self.amp * proxy_val |
||
255 | tau = self.tau0 |
||
256 | if self.tau_harm is not None: |
||
257 | tau_cs = self.tau_harm.get_value(t + self.t_adj) |
||
258 | tau += tau_cs |
||
259 | proxy_val += self._lt_corr(t, tau) |
||
260 | return self.amp * proxy_val |
||
261 | |||
262 | |||
263 | class ModelSet: |
||
264 | def __init__(self, models): |
||
265 | self.models = models |
||
266 | |||
267 | def get_value(self, t): |
||
268 | v = tt.zeros(t.shape[:-1], dtype="float64") |
||
269 | for m in self.models: |
||
270 | v += m.get_value(t) |
||
271 | return v |
||
272 | |||
273 | |||
274 | def setup_proxy_model_theano( |
||
275 | model, name, |
||
276 | times, values, |
||
277 | max_amp=1e10, max_days=100, |
||
278 | **kwargs |
||
279 | ): |
||
280 | warn( |
||
281 | "This method to set up the `theano`/`pymc3` interface is experimental, " |
||
282 | "and the interface will most likely change in future versions. " |
||
283 | "It is recommended to use the `ProxyModel` class instead." |
||
284 | ) |
||
285 | # extract setup from `kwargs` |
||
286 | fit_lag = kwargs.get("fit_lag", False) |
||
287 | lag = kwargs.get("lag", 0.) |
||
288 | lifetime_scan = kwargs.get("lifetime_scan", 60) |
||
289 | positive = kwargs.get("positive", False) |
||
290 | time_format = kwargs.get("time_format", "jyear") |
||
291 | |||
292 | with model: |
||
293 | if positive: |
||
294 | log_amp = pm.Normal("log_{0}_amp".format(name), mu=0.0, sd=np.log(max_amp)) |
||
295 | amp = pm.Deterministic("{0}_amp".format(name), pm.math.exp(log_amp)) |
||
296 | else: |
||
297 | amp = pm.Normal("{0}_amp".format(name), mu=0.0, sd=max_amp) |
||
298 | if fit_lag: |
||
299 | log_lag = pm.Normal("log_{0}_lag".format(name), mu=-5.0, sd=np.log(max_days)) |
||
300 | lag = pm.Deterministic("{0}_lag".format(name), pm.math.exp(log_lag)) |
||
301 | if lifetime_scan > 0: |
||
302 | log_tau0 = pm.Normal("log_{0}_tau0".format(name), mu=-5.0, sd=np.log(max_days)) |
||
303 | tau0 = pm.Deterministic("{0}_tau0".format(name), pm.math.exp(log_tau0)) |
||
304 | cos1 = pm.Normal("{0}_tau_cos1".format(name), mu=0.0, sd=max_amp) |
||
305 | sin1 = pm.Normal("{0}_tau_sin1".format(name), mu=0.0, sd=max_amp) |
||
306 | harm1 = HarmonicModelCosineSine(1., cos1, sin1) |
||
307 | tau1 = LifetimeModel(harm1, lower=0) |
||
308 | else: |
||
309 | tau0 = 0. |
||
310 | tau1 = None |
||
311 | proxy = ProxyModel( |
||
312 | times, values, |
||
313 | amp, |
||
314 | lag=lag, |
||
315 | tau0=tau0, |
||
316 | tau_harm=tau1, |
||
317 | tau_scan=lifetime_scan, |
||
318 | days_per_time_unit=1 if time_format.endswith("d") else 365.25, |
||
319 | ) |
||
320 | return proxy |
||
321 | |||
322 | |||
323 | View Code Duplication | def _default_proxy_config(tfmt="jyear"): |
|
|
|||
324 | from .load_data import load_dailymeanLya, load_dailymeanAE |
||
325 | proxy_config = {} |
||
326 | # Lyman-alpha |
||
327 | plyat, plyadf = load_dailymeanLya(tfmt=tfmt) |
||
328 | proxy_config.update({ |
||
329 | "Lya": { |
||
330 | "times": plyat, |
||
331 | "values": plyadf["Lya"], |
||
332 | "lifetime_scan": 0, |
||
333 | "positive": False, |
||
334 | } |
||
335 | }) |
||
336 | # AE index |
||
337 | paet, paedf = load_dailymeanAE(name="GM", tfmt=tfmt) |
||
338 | proxy_config.update({ |
||
339 | "GM": { |
||
340 | "times": paet, |
||
341 | "values": paedf["GM"], |
||
342 | "lifetime_scan": 60, |
||
343 | "positive": True, |
||
344 | } |
||
345 | }) |
||
346 | return proxy_config |
||
347 | |||
348 | |||
349 | def trace_gas_modelset(constant=True, freqs=None, proxy_config=None, **kwargs): |
||
350 | """Trace gas model set |
||
351 | |||
352 | Sets up the trace gas model for easy access. All parameters are optional, |
||
353 | defaults to an offset, no harmonics, proxies are uncentered and unscaled |
||
354 | Lyman-alpha and AE. AE with only positive amplitude and a seasonally |
||
355 | varying lifetime. |
||
356 | |||
357 | Parameters |
||
358 | ---------- |
||
359 | constant : bool, optional |
||
360 | Whether or not to include a constant (offset) term, default is True. |
||
361 | freqs : list, optional |
||
362 | Frequencies of the harmonic terms in 1 / a^-1 (inverse years). |
||
363 | proxy_config : dict, optional |
||
364 | Proxy configuration if different from the standard setup. |
||
365 | **kwargs : optional |
||
366 | Additional keyword arguments, all of them are also passed on to |
||
367 | the proxy setup. For now, supported are the following which are |
||
368 | also passed along to the proxy setup with |
||
369 | `setup_proxy_model_with_bounds()`: |
||
370 | |||
371 | * fit_phase : bool |
||
372 | fit amplitude and phase instead of sine and cosine |
||
373 | * scale : float |
||
374 | the factor by which the data is scaled, used to constrain |
||
375 | the maximum and minimum amplitudes to be fitted. |
||
376 | * time_format : string |
||
377 | The `astropy.time.Time` format string to setup the time axis. |
||
378 | * days_per_time_unit : float |
||
379 | The number of days per time unit, used to normalize the frequencies |
||
380 | for the harmonic terms. Use 365.25 if the times are in fractional years, |
||
381 | 1 if they are in days. Default: 365.25 |
||
382 | * max_amp : float |
||
383 | Maximum magnitude of the coefficients, used to constrain the |
||
384 | parameter search. |
||
385 | * max_days : float |
||
386 | Maximum magnitude of the lifetimes, used to constrain the |
||
387 | parameter search. |
||
388 | |||
389 | Returns |
||
390 | ------- |
||
391 | model : :class:`TraceGasModelSet` (extends :class:`celerite.ModelSet`) |
||
392 | """ |
||
393 | warn( |
||
394 | "This method to set up the `theano`/`pymc3` interface is experimental, " |
||
395 | "and the interface will most likely change in future versions. " |
||
396 | "It is recommended to use the `ProxyModel` class instead." |
||
397 | ) |
||
398 | fit_phase = kwargs.get("fit_phase", False) |
||
399 | scale = kwargs.get("scale", 1e-6) |
||
400 | tfmt = kwargs.get("time_format", "jyear") |
||
401 | delta_t = kwargs.get("days_per_time_unit", 365.25) |
||
402 | |||
403 | max_amp = kwargs.pop("max_amp", 1e10 * scale) |
||
404 | max_days = kwargs.pop("max_days", 100) |
||
405 | |||
406 | proxy_config = proxy_config or _default_proxy_config(tfmt=tfmt) |
||
407 | |||
408 | with pm.Model() as model: |
||
409 | offset = 0. |
||
410 | if constant: |
||
411 | offset = pm.Normal("offset", mu=0.0, sd=max_amp) |
||
412 | |||
413 | modelset = [] |
||
414 | for freq in freqs: |
||
415 | if not fit_phase: |
||
416 | cos = pm.Normal("cos{0}".format(freq), mu=0., sd=max_amp) |
||
417 | sin = pm.Normal("sin{0}".format(freq), mu=0., sd=max_amp) |
||
418 | harm = HarmonicModelCosineSine( |
||
419 | freq * delta_t / 365.25, |
||
420 | cos, sin, |
||
421 | ) |
||
422 | else: |
||
423 | amp = pm.Normal("amp{0}".format(freq), mu=0., sd=max_amp) |
||
424 | phase = pm.Normal("phase{0}".format(freq), mu=0., sd=max_amp) |
||
425 | harm = HarmonicModelAmpPhase( |
||
426 | freq * delta_t / 365.25, |
||
427 | amp, phase, |
||
428 | ) |
||
429 | modelset.append(harm) |
||
430 | |||
431 | for pn, conf in proxy_config.items(): |
||
432 | if "max_amp" not in conf: |
||
433 | conf.update(dict(max_amp=max_amp)) |
||
434 | if "max_days" not in conf: |
||
435 | conf.update(dict(max_days=max_days)) |
||
436 | kw = kwargs.copy() # don't mess with the passed arguments |
||
437 | kw.update(conf) |
||
438 | modelset.append( |
||
439 | setup_proxy_model_theano(model, pn, **kw) |
||
440 | ) |
||
441 | |||
442 | return model, ModelSet(modelset), offset |
||
443 |