|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
# vim:fileencoding=utf-8 |
|
3
|
|
|
# |
|
4
|
|
|
# Copyright (c) 2022 Stefan Bender |
|
5
|
|
|
# |
|
6
|
|
|
# This module is part of sciapy. |
|
7
|
|
|
# sciapy is free software: you can redistribute it or modify |
|
8
|
|
|
# it under the terms of the GNU General Public License as published |
|
9
|
|
|
# by the Free Software Foundation, version 2. |
|
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
|
11
|
|
|
"""SCIAMACHY regression models (theano/pymc3 version) |
|
12
|
|
|
|
|
13
|
|
|
Model classes for SCIAMACHY data regression fits using |
|
14
|
|
|
:mod:`theano` for :mod:`pymc3`. |
|
15
|
|
|
|
|
16
|
|
|
This interface is still experimental. |
|
17
|
|
|
""" |
|
18
|
|
|
from __future__ import absolute_import, division, print_function |
|
19
|
|
|
from warnings import warn |
|
20
|
|
|
|
|
21
|
|
|
import numpy as np |
|
22
|
|
|
|
|
23
|
|
|
try: |
|
24
|
|
|
import aesara_theano_fallback.tensor as tt |
|
25
|
|
|
except ImportError as err: |
|
26
|
|
|
raise ImportError( |
|
27
|
|
|
"The `aesara_theano_fallback` package is required for the `theano` model interface." |
|
28
|
|
|
).with_traceback(err.__traceback__) |
|
29
|
|
|
try: |
|
30
|
|
|
import pymc3 as pm |
|
31
|
|
|
except ImportError as err: |
|
32
|
|
|
raise ImportError( |
|
33
|
|
|
"The `pymc3` package is required for the `theano` model interface." |
|
34
|
|
|
).with_traceback(err.__traceback__) |
|
35
|
|
|
|
|
36
|
|
|
__all__ = [ |
|
37
|
|
|
"HarmonicModelCosineSine", "HarmonicModelAmpPhase", |
|
38
|
|
|
"LifetimeModel", |
|
39
|
|
|
"ProxyModel", |
|
40
|
|
|
"ModelSet", |
|
41
|
|
|
"setup_proxy_model_theano", |
|
42
|
|
|
"trace_gas_modelset", |
|
43
|
|
|
] |
|
44
|
|
|
|
|
45
|
|
|
|
|
46
|
|
|
class HarmonicModelCosineSine: |
|
47
|
|
|
"""Model for harmonic terms |
|
48
|
|
|
|
|
49
|
|
|
Models harmonic terms using a cosine and sine part. |
|
50
|
|
|
The total amplitude and phase can be inferred from that. |
|
51
|
|
|
|
|
52
|
|
|
Parameters |
|
53
|
|
|
---------- |
|
54
|
|
|
freq : float |
|
55
|
|
|
The frequency in years^-1 |
|
56
|
|
|
cos : float |
|
57
|
|
|
The amplitude of the cosine part |
|
58
|
|
|
sin : float |
|
59
|
|
|
The amplitude of the sine part |
|
60
|
|
|
""" |
|
61
|
|
|
def __init__(self, freq, cos, sin): |
|
62
|
|
|
self.omega = tt.as_tensor_variable(2 * np.pi * freq).astype("float64") |
|
63
|
|
|
self.cos = tt.as_tensor_variable(cos).astype("float64") |
|
64
|
|
|
self.sin = tt.as_tensor_variable(sin).astype("float64") |
|
65
|
|
|
|
|
66
|
|
|
def get_value(self, t): |
|
67
|
|
|
t = tt.as_tensor_variable(t).astype("float64") |
|
68
|
|
|
return ( |
|
69
|
|
|
self.cos * tt.cos(self.omega * t) |
|
70
|
|
|
+ self.sin * tt.sin(self.omega * t) |
|
71
|
|
|
) |
|
72
|
|
|
|
|
73
|
|
|
def get_amplitude(self): |
|
74
|
|
|
return tt.sqrt(self.cos**2 + self.sin**2) |
|
75
|
|
|
|
|
76
|
|
|
def get_phase(self): |
|
77
|
|
|
return tt.arctan2(self.cos, self.sin) |
|
78
|
|
|
|
|
79
|
|
|
def compute_gradient(self, t): |
|
80
|
|
|
t = tt.as_tensor_variable(t).astype("float64") |
|
81
|
|
|
dcos = tt.cos(self.omega * t) |
|
82
|
|
|
dsin = tt.sin(self.omega * t) |
|
83
|
|
|
df = 2 * np.pi * t * (self.sin * dcos - self.cos * dsin) |
|
84
|
|
|
return (df, dcos, dsin) |
|
85
|
|
|
|
|
86
|
|
|
|
|
87
|
|
|
class HarmonicModelAmpPhase: |
|
88
|
|
|
"""Model for harmonic terms |
|
89
|
|
|
|
|
90
|
|
|
Models harmonic terms using amplitude and phase of a sine. |
|
91
|
|
|
|
|
92
|
|
|
Parameters |
|
93
|
|
|
---------- |
|
94
|
|
|
freq : float |
|
95
|
|
|
The frequency in years^-1 |
|
96
|
|
|
amp : float |
|
97
|
|
|
The amplitude of the harmonic term |
|
98
|
|
|
phase : float |
|
99
|
|
|
The phase of the harmonic part |
|
100
|
|
|
""" |
|
101
|
|
|
def __init__(self, freq, amp, phase): |
|
102
|
|
|
self.omega = tt.as_tensor_variable(2 * np.pi * freq).astype("float64") |
|
103
|
|
|
self.amp = tt.as_tensor_variable(amp).astype("float64") |
|
104
|
|
|
self.phase = tt.as_tensor_variable(phase).astype("float64") |
|
105
|
|
|
|
|
106
|
|
|
def get_value(self, t): |
|
107
|
|
|
t = tt.as_tensor_variable(t).astype("float64") |
|
108
|
|
|
return self.amp * tt.sin(self.omega * t + self.phase) |
|
109
|
|
|
|
|
110
|
|
|
def get_amplitude(self): |
|
111
|
|
|
return self.amp |
|
112
|
|
|
|
|
113
|
|
|
def get_phase(self): |
|
114
|
|
|
return self.phase |
|
115
|
|
|
|
|
116
|
|
|
def compute_gradient(self, t): |
|
117
|
|
|
t = tt.as_tensor_variable(t).astype("float64") |
|
118
|
|
|
damp = tt.sin(self.omega * t + self.phase) |
|
119
|
|
|
dphi = self.amp * tt.cos(self.omega * t + self.phase) |
|
120
|
|
|
df = 2 * np.pi * t * dphi |
|
121
|
|
|
return (df, damp, dphi) |
|
122
|
|
|
|
|
123
|
|
|
|
|
124
|
|
|
class LifetimeModel: |
|
125
|
|
|
"""Model for variable lifetime |
|
126
|
|
|
|
|
127
|
|
|
Returns the positive values of the sine/cosine. |
|
128
|
|
|
|
|
129
|
|
|
Parameters |
|
130
|
|
|
---------- |
|
131
|
|
|
harmonics : HarmonicModelCosineSine or HarmonicModelAmpPhase or list |
|
132
|
|
|
""" |
|
133
|
|
|
def __init__(self, harmonics, lower=0.): |
|
134
|
|
|
if not hasattr(harmonics, "getitem"): |
|
135
|
|
|
harmonics = [harmonics] |
|
136
|
|
|
self.harmonics = harmonics |
|
137
|
|
|
self.lower = lower |
|
138
|
|
|
|
|
139
|
|
|
def get_value(self, t): |
|
140
|
|
|
tau_cs = tt.zeros(t.shape[:-1], dtype="float64") |
|
141
|
|
|
for h in self.harmonics: |
|
142
|
|
|
tau_cs += h.get_value(t) |
|
143
|
|
|
return tt.maximum(self.lower, tau_cs) |
|
144
|
|
|
|
|
145
|
|
|
|
|
146
|
|
|
def _interp(x, xs, ys, fill_value=0.): |
|
147
|
|
|
idx = xs.searchsorted(x) |
|
148
|
|
|
out_of_bounds = tt.zeros(x.shape[:-1], dtype=bool) |
|
149
|
|
|
out_of_bounds |= (idx < 1) | (idx >= xs.shape[0]) |
|
150
|
|
|
idx = tt.clip(idx, 1, xs.shape[0] - 1) |
|
151
|
|
|
dl = x - xs[idx - 1] |
|
152
|
|
|
dr = xs[idx] - x |
|
153
|
|
|
d = dl + dr |
|
154
|
|
|
wl = dr / d |
|
155
|
|
|
ret = tt.zeros(x.shape[:-1], dtype="float64") |
|
156
|
|
|
ret += wl * ys[idx - 1] + (1 - wl) * ys[idx] |
|
157
|
|
|
ret = tt.switch(out_of_bounds, fill_value, ret) |
|
158
|
|
|
return ret |
|
159
|
|
|
|
|
160
|
|
|
|
|
161
|
|
|
class ProxyModel: |
|
162
|
|
|
"""Model for proxy terms |
|
163
|
|
|
|
|
164
|
|
|
Models proxy terms with a finite and (semi-)annually varying life time. |
|
165
|
|
|
|
|
166
|
|
|
Parameters |
|
167
|
|
|
---------- |
|
168
|
|
|
proxy_times : (N,) array_like |
|
169
|
|
|
The data times of the proxy values |
|
170
|
|
|
proxy_vals : (N,) array_like |
|
171
|
|
|
The proxy values at `proxy_times` |
|
172
|
|
|
amp : float |
|
173
|
|
|
The amplitude of the proxy term |
|
174
|
|
|
lag : float, optional |
|
175
|
|
|
The lag of the proxy value in years. |
|
176
|
|
|
tau0 : float, optional |
|
177
|
|
|
The base life time of the proxy |
|
178
|
|
|
tau_harm : LifetimeModel, optional |
|
179
|
|
|
The lifetime harmonic model with a lower limit. |
|
180
|
|
|
tau_scan : float, optional |
|
181
|
|
|
The number of days to sum the previous proxy values. If it is |
|
182
|
|
|
negative, the value will be set to three times the maximal lifetime. |
|
183
|
|
|
No lifetime adjustemets are calculated when set to zero. |
|
184
|
|
|
days_per_time_unit : float, optional |
|
185
|
|
|
The number of days per time unit, used to normalize the lifetime |
|
186
|
|
|
units. Use 365.25 if the times are in fractional years, or 1 if |
|
187
|
|
|
they are in days. |
|
188
|
|
|
Default: 365.25 |
|
189
|
|
|
""" |
|
190
|
|
|
def __init__( |
|
191
|
|
|
self, ptimes, pvalues, amp, |
|
192
|
|
|
lag=0., |
|
193
|
|
|
tau0=0., |
|
194
|
|
|
tau_harm=None, |
|
195
|
|
|
tau_scan=0, |
|
196
|
|
|
days_per_time_unit=365.25, |
|
197
|
|
|
): |
|
198
|
|
|
# data |
|
199
|
|
|
self.times = tt.as_tensor_variable(ptimes).astype("float64") |
|
200
|
|
|
self.values = tt.as_tensor_variable(pvalues).astype("float64") |
|
201
|
|
|
# parameters |
|
202
|
|
|
self.amp = tt.as_tensor_variable(amp).astype("float64") |
|
203
|
|
|
self.days_per_time_unit = tt.as_tensor_variable(days_per_time_unit).astype("float64") |
|
204
|
|
|
self.lag = tt.as_tensor_variable(lag / days_per_time_unit).astype("float64") |
|
205
|
|
|
self.tau0 = tt.as_tensor_variable(tau0).astype("float64") |
|
206
|
|
|
self.tau_harm = tau_harm |
|
207
|
|
|
self.tau_scan = tau_scan |
|
208
|
|
|
dt = 1.0 |
|
209
|
|
|
bs = np.arange(dt, tau_scan + dt, dt) / days_per_time_unit |
|
210
|
|
|
self.bs = tt.as_tensor_variable(bs).astype("float64") |
|
211
|
|
|
self.dt = tt.as_tensor_variable(dt).astype("float64") |
|
212
|
|
|
# Makes "(m)jd" and "jyear" compatible for the lifetime |
|
213
|
|
|
# seasonal variation. The julian epoch (the default) |
|
214
|
|
|
# is slightly offset with respect to (modified) julian days. |
|
215
|
|
|
self.t_adj = 0. |
|
216
|
|
|
if self.days_per_time_unit == 1: |
|
217
|
|
|
# discriminate between julian days and modified julian days, |
|
218
|
|
|
# 1.8e6 is year 216 in julian days and year 6787 in |
|
219
|
|
|
# modified julian days. It should be pretty safe to judge on |
|
220
|
|
|
# that for most use cases. |
|
221
|
|
|
if self.times[0] > 1.8e6: |
|
222
|
|
|
# julian days |
|
223
|
|
|
self.t_adj = 13. |
|
224
|
|
|
else: |
|
225
|
|
|
# modified julian days |
|
226
|
|
|
self.t_adj = -44.25 |
|
227
|
|
|
self.t_adj = tt.as_tensor_variable(self.t_adj).astype("float64") |
|
228
|
|
|
|
|
229
|
|
|
def _lt_corr(self, t, tau): |
|
230
|
|
|
"""Lifetime corrected values |
|
231
|
|
|
|
|
232
|
|
|
Corrects for a finite lifetime by summing over the last `tmax` |
|
233
|
|
|
days with an exponential decay given of lifetime(s) `tau`. |
|
234
|
|
|
""" |
|
235
|
|
|
yp = tt.zeros(t.shape[:-1], dtype="float64") |
|
236
|
|
|
tauexp = tt.exp(-self.dt / tau) |
|
237
|
|
|
taufac = tt.ones(tau.shape[:-1], dtype="float64") |
|
238
|
|
|
for b in self.bs: |
|
239
|
|
|
taufac *= tauexp |
|
240
|
|
|
yp += taufac * _interp( |
|
241
|
|
|
t - self.lag - b, |
|
242
|
|
|
self.times, self.values, |
|
243
|
|
|
) |
|
244
|
|
|
return yp * self.dt |
|
245
|
|
|
|
|
246
|
|
|
def get_value(self, t): |
|
247
|
|
|
t = tt.as_tensor_variable(t) |
|
248
|
|
|
proxy_val = _interp( |
|
249
|
|
|
t - self.lag, |
|
250
|
|
|
self.times, self.values, |
|
251
|
|
|
) |
|
252
|
|
|
if self.tau_scan == 0: |
|
253
|
|
|
# no lifetime, nothing else to do |
|
254
|
|
|
return self.amp * proxy_val |
|
255
|
|
|
tau = self.tau0 |
|
256
|
|
|
if self.tau_harm is not None: |
|
257
|
|
|
tau_cs = self.tau_harm.get_value(t + self.t_adj) |
|
258
|
|
|
tau += tau_cs |
|
259
|
|
|
proxy_val += self._lt_corr(t, tau) |
|
260
|
|
|
return self.amp * proxy_val |
|
261
|
|
|
|
|
262
|
|
|
|
|
263
|
|
|
class ModelSet: |
|
264
|
|
|
def __init__(self, models): |
|
265
|
|
|
self.models = models |
|
266
|
|
|
|
|
267
|
|
|
def get_value(self, t): |
|
268
|
|
|
v = tt.zeros(t.shape[:-1], dtype="float64") |
|
269
|
|
|
for m in self.models: |
|
270
|
|
|
v += m.get_value(t) |
|
271
|
|
|
return v |
|
272
|
|
|
|
|
273
|
|
|
|
|
274
|
|
|
def setup_proxy_model_theano( |
|
275
|
|
|
model, name, |
|
276
|
|
|
times, values, |
|
277
|
|
|
max_amp=1e10, max_days=100, |
|
278
|
|
|
**kwargs |
|
279
|
|
|
): |
|
280
|
|
|
warn( |
|
281
|
|
|
"This method to set up the `theano`/`pymc3` interface is experimental, " |
|
282
|
|
|
"and the interface will most likely change in future versions. " |
|
283
|
|
|
"It is recommended to use the `ProxyModel` class instead." |
|
284
|
|
|
) |
|
285
|
|
|
# extract setup from `kwargs` |
|
286
|
|
|
fit_lag = kwargs.get("fit_lag", False) |
|
287
|
|
|
lag = kwargs.get("lag", 0.) |
|
288
|
|
|
lifetime_scan = kwargs.get("lifetime_scan", 60) |
|
289
|
|
|
positive = kwargs.get("positive", False) |
|
290
|
|
|
time_format = kwargs.get("time_format", "jyear") |
|
291
|
|
|
|
|
292
|
|
|
with model: |
|
293
|
|
|
if positive: |
|
294
|
|
|
log_amp = pm.Normal("log_{0}_amp".format(name), mu=0.0, sd=np.log(max_amp)) |
|
295
|
|
|
amp = pm.Deterministic("{0}_amp".format(name), pm.math.exp(log_amp)) |
|
296
|
|
|
else: |
|
297
|
|
|
amp = pm.Normal("{0}_amp".format(name), mu=0.0, sd=max_amp) |
|
298
|
|
|
if fit_lag: |
|
299
|
|
|
log_lag = pm.Normal("log_{0}_lag".format(name), mu=-5.0, sd=np.log(max_days)) |
|
300
|
|
|
lag = pm.Deterministic("{0}_lag".format(name), pm.math.exp(log_lag)) |
|
301
|
|
|
if lifetime_scan > 0: |
|
302
|
|
|
log_tau0 = pm.Normal("log_{0}_tau0".format(name), mu=-5.0, sd=np.log(max_days)) |
|
303
|
|
|
tau0 = pm.Deterministic("{0}_tau0".format(name), pm.math.exp(log_tau0)) |
|
304
|
|
|
cos1 = pm.Normal("{0}_tau_cos1".format(name), mu=0.0, sd=max_amp) |
|
305
|
|
|
sin1 = pm.Normal("{0}_tau_sin1".format(name), mu=0.0, sd=max_amp) |
|
306
|
|
|
harm1 = HarmonicModelCosineSine(1., cos1, sin1) |
|
307
|
|
|
tau1 = LifetimeModel(harm1, lower=0) |
|
308
|
|
|
else: |
|
309
|
|
|
tau0 = 0. |
|
310
|
|
|
tau1 = None |
|
311
|
|
|
proxy = ProxyModel( |
|
312
|
|
|
times, values, |
|
313
|
|
|
amp, |
|
314
|
|
|
lag=lag, |
|
315
|
|
|
tau0=tau0, |
|
316
|
|
|
tau_harm=tau1, |
|
317
|
|
|
tau_scan=lifetime_scan, |
|
318
|
|
|
days_per_time_unit=1 if time_format.endswith("d") else 365.25, |
|
319
|
|
|
) |
|
320
|
|
|
return proxy |
|
321
|
|
|
|
|
322
|
|
|
|
|
323
|
|
View Code Duplication |
def _default_proxy_config(tfmt="jyear"): |
|
|
|
|
|
|
324
|
|
|
from .load_data import load_dailymeanLya, load_dailymeanAE |
|
325
|
|
|
proxy_config = {} |
|
326
|
|
|
# Lyman-alpha |
|
327
|
|
|
plyat, plyadf = load_dailymeanLya(tfmt=tfmt) |
|
328
|
|
|
proxy_config.update({ |
|
329
|
|
|
"Lya": { |
|
330
|
|
|
"times": plyat, |
|
331
|
|
|
"values": plyadf["Lya"], |
|
332
|
|
|
"lifetime_scan": 0, |
|
333
|
|
|
"positive": False, |
|
334
|
|
|
} |
|
335
|
|
|
}) |
|
336
|
|
|
# AE index |
|
337
|
|
|
paet, paedf = load_dailymeanAE(name="GM", tfmt=tfmt) |
|
338
|
|
|
proxy_config.update({ |
|
339
|
|
|
"GM": { |
|
340
|
|
|
"times": paet, |
|
341
|
|
|
"values": paedf["GM"], |
|
342
|
|
|
"lifetime_scan": 60, |
|
343
|
|
|
"positive": True, |
|
344
|
|
|
} |
|
345
|
|
|
}) |
|
346
|
|
|
return proxy_config |
|
347
|
|
|
|
|
348
|
|
|
|
|
349
|
|
|
def trace_gas_modelset(constant=True, freqs=None, proxy_config=None, **kwargs): |
|
350
|
|
|
"""Trace gas model set |
|
351
|
|
|
|
|
352
|
|
|
Sets up the trace gas model for easy access. All parameters are optional, |
|
353
|
|
|
defaults to an offset, no harmonics, proxies are uncentered and unscaled |
|
354
|
|
|
Lyman-alpha and AE. AE with only positive amplitude and a seasonally |
|
355
|
|
|
varying lifetime. |
|
356
|
|
|
|
|
357
|
|
|
Parameters |
|
358
|
|
|
---------- |
|
359
|
|
|
constant : bool, optional |
|
360
|
|
|
Whether or not to include a constant (offset) term, default is True. |
|
361
|
|
|
freqs : list, optional |
|
362
|
|
|
Frequencies of the harmonic terms in 1 / a^-1 (inverse years). |
|
363
|
|
|
proxy_config : dict, optional |
|
364
|
|
|
Proxy configuration if different from the standard setup. |
|
365
|
|
|
**kwargs : optional |
|
366
|
|
|
Additional keyword arguments, all of them are also passed on to |
|
367
|
|
|
the proxy setup. For now, supported are the following which are |
|
368
|
|
|
also passed along to the proxy setup with |
|
369
|
|
|
`setup_proxy_model_with_bounds()`: |
|
370
|
|
|
|
|
371
|
|
|
* fit_phase : bool |
|
372
|
|
|
fit amplitude and phase instead of sine and cosine |
|
373
|
|
|
* scale : float |
|
374
|
|
|
the factor by which the data is scaled, used to constrain |
|
375
|
|
|
the maximum and minimum amplitudes to be fitted. |
|
376
|
|
|
* time_format : string |
|
377
|
|
|
The `astropy.time.Time` format string to setup the time axis. |
|
378
|
|
|
* days_per_time_unit : float |
|
379
|
|
|
The number of days per time unit, used to normalize the frequencies |
|
380
|
|
|
for the harmonic terms. Use 365.25 if the times are in fractional years, |
|
381
|
|
|
1 if they are in days. Default: 365.25 |
|
382
|
|
|
* max_amp : float |
|
383
|
|
|
Maximum magnitude of the coefficients, used to constrain the |
|
384
|
|
|
parameter search. |
|
385
|
|
|
* max_days : float |
|
386
|
|
|
Maximum magnitude of the lifetimes, used to constrain the |
|
387
|
|
|
parameter search. |
|
388
|
|
|
|
|
389
|
|
|
Returns |
|
390
|
|
|
------- |
|
391
|
|
|
model : :class:`TraceGasModelSet` (extends :class:`celerite.ModelSet`) |
|
392
|
|
|
""" |
|
393
|
|
|
warn( |
|
394
|
|
|
"This method to set up the `theano`/`pymc3` interface is experimental, " |
|
395
|
|
|
"and the interface will most likely change in future versions. " |
|
396
|
|
|
"It is recommended to use the `ProxyModel` class instead." |
|
397
|
|
|
) |
|
398
|
|
|
fit_phase = kwargs.get("fit_phase", False) |
|
399
|
|
|
scale = kwargs.get("scale", 1e-6) |
|
400
|
|
|
tfmt = kwargs.get("time_format", "jyear") |
|
401
|
|
|
delta_t = kwargs.get("days_per_time_unit", 365.25) |
|
402
|
|
|
|
|
403
|
|
|
max_amp = kwargs.pop("max_amp", 1e10 * scale) |
|
404
|
|
|
max_days = kwargs.pop("max_days", 100) |
|
405
|
|
|
|
|
406
|
|
|
proxy_config = proxy_config or _default_proxy_config(tfmt=tfmt) |
|
407
|
|
|
|
|
408
|
|
|
with pm.Model() as model: |
|
409
|
|
|
offset = 0. |
|
410
|
|
|
if constant: |
|
411
|
|
|
offset = pm.Normal("offset", mu=0.0, sd=max_amp) |
|
412
|
|
|
|
|
413
|
|
|
modelset = [] |
|
414
|
|
|
for freq in freqs: |
|
415
|
|
|
if not fit_phase: |
|
416
|
|
|
cos = pm.Normal("cos{0}".format(freq), mu=0., sd=max_amp) |
|
417
|
|
|
sin = pm.Normal("sin{0}".format(freq), mu=0., sd=max_amp) |
|
418
|
|
|
harm = HarmonicModelCosineSine( |
|
419
|
|
|
freq * delta_t / 365.25, |
|
420
|
|
|
cos, sin, |
|
421
|
|
|
) |
|
422
|
|
|
else: |
|
423
|
|
|
amp = pm.Normal("amp{0}".format(freq), mu=0., sd=max_amp) |
|
424
|
|
|
phase = pm.Normal("phase{0}".format(freq), mu=0., sd=max_amp) |
|
425
|
|
|
harm = HarmonicModelAmpPhase( |
|
426
|
|
|
freq * delta_t / 365.25, |
|
427
|
|
|
amp, phase, |
|
428
|
|
|
) |
|
429
|
|
|
modelset.append(harm) |
|
430
|
|
|
|
|
431
|
|
|
for pn, conf in proxy_config.items(): |
|
432
|
|
|
if "max_amp" not in conf: |
|
433
|
|
|
conf.update(dict(max_amp=max_amp)) |
|
434
|
|
|
if "max_days" not in conf: |
|
435
|
|
|
conf.update(dict(max_days=max_days)) |
|
436
|
|
|
kw = kwargs.copy() # don't mess with the passed arguments |
|
437
|
|
|
kw.update(conf) |
|
438
|
|
|
modelset.append( |
|
439
|
|
|
setup_proxy_model_theano(model, pn, **kw) |
|
440
|
|
|
) |
|
441
|
|
|
|
|
442
|
|
|
return model, ModelSet(modelset), offset |
|
443
|
|
|
|