| Total Complexity | 57 |
| Total Lines | 524 |
| Duplicated Lines | 10.31 % |
| Coverage | 78.05% |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like sciapy.regress.models_cel often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 2 | # vim:fileencoding=utf-8 |
||
| 3 | # |
||
| 4 | # Copyright (c) 2017-2018 Stefan Bender |
||
| 5 | # |
||
| 6 | # This module is part of sciapy. |
||
| 7 | # sciapy is free software: you can redistribute it or modify |
||
| 8 | # it under the terms of the GNU General Public License as published |
||
| 9 | # by the Free Software Foundation, version 2. |
||
| 10 | # See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
||
| 11 | 1 | """SCIAMACHY regression models (celerite version) |
|
| 12 | |||
| 13 | Model classes for SCIAMACHY data regression fits using the |
||
| 14 | :mod:`celerite` [#]_ modelling protocol. |
||
| 15 | |||
| 16 | .. [#] https://celerite.readthedocs.io |
||
| 17 | """ |
||
| 18 | 1 | from __future__ import absolute_import, division, print_function |
|
| 19 | |||
| 20 | 1 | import numpy as np |
|
| 21 | 1 | from scipy.interpolate import interp1d |
|
| 22 | |||
| 23 | 1 | from celerite.modeling import Model, ModelSet, ConstantModel |
|
| 24 | |||
| 25 | 1 | __all__ = ["ConstantModel", |
|
| 26 | "HarmonicModelCosineSine", "HarmonicModelAmpPhase", |
||
| 27 | "ProxyModel", "TraceGasModelSet", |
||
| 28 | "setup_proxy_model_with_bounds", "trace_gas_model"] |
||
| 29 | |||
| 30 | |||
| 31 | 1 | class HarmonicModelCosineSine(Model): |
|
| 32 | """Model for harmonic terms |
||
| 33 | |||
| 34 | Models harmonic terms using a cosine and sine part. |
||
| 35 | The total amplitude and phase can be inferred from that. |
||
| 36 | |||
| 37 | Parameters |
||
| 38 | ---------- |
||
| 39 | freq : float |
||
| 40 | The frequency in years^-1 |
||
| 41 | cos : float |
||
| 42 | The amplitude of the cosine part |
||
| 43 | sin : float |
||
| 44 | The amplitude of the sine part |
||
| 45 | """ |
||
| 46 | 1 | parameter_names = ("freq", "cos", "sin") |
|
| 47 | |||
| 48 | 1 | def get_value(self, t): |
|
| 49 | 1 | t = np.atleast_1d(t) |
|
| 50 | 1 | return (self.cos * np.cos(self.freq * 2 * np.pi * t) + |
|
| 51 | self.sin * np.sin(self.freq * 2 * np.pi * t)) |
||
| 52 | |||
| 53 | 1 | def get_amplitude(self): |
|
| 54 | return np.sqrt(self.cos**2 + self.sin**2) |
||
| 55 | |||
| 56 | 1 | def get_phase(self): |
|
| 57 | return np.arctan2(self.sin, self.cos) |
||
| 58 | |||
| 59 | 1 | def compute_gradient(self, t): |
|
| 60 | 1 | t = np.atleast_1d(t) |
|
| 61 | 1 | dcos = np.cos(self.freq * 2 * np.pi * t) |
|
| 62 | 1 | dsin = np.sin(self.freq * 2 * np.pi * t) |
|
| 63 | 1 | df = 2 * np.pi * t * (self.sin * dcos - self.cos * dsin) |
|
| 64 | 1 | return np.array([df, dcos, dsin]) |
|
| 65 | |||
| 66 | |||
| 67 | 1 | class HarmonicModelAmpPhase(Model): |
|
| 68 | """Model for harmonic terms |
||
| 69 | |||
| 70 | Models harmonic terms using a cosine and sine part. |
||
| 71 | The total amplitude and phase can be inferred from that. |
||
| 72 | |||
| 73 | Parameters |
||
| 74 | ---------- |
||
| 75 | freq : float |
||
| 76 | The frequency in years^-1 |
||
| 77 | amp : float |
||
| 78 | The amplitude of the harmonic term |
||
| 79 | phase : float |
||
| 80 | The phase of the harmonic part |
||
| 81 | """ |
||
| 82 | 1 | parameter_names = ("freq", "amp", "phase") |
|
| 83 | |||
| 84 | 1 | def get_value(self, t): |
|
| 85 | t = np.atleast_1d(t) |
||
| 86 | return self.amp * np.cos(self.freq * 2 * np.pi * t + self.phase) |
||
| 87 | |||
| 88 | 1 | def get_amplitude(self): |
|
| 89 | return self.amp |
||
| 90 | |||
| 91 | 1 | def get_phase(self): |
|
| 92 | return self.phase |
||
| 93 | |||
| 94 | 1 | def compute_gradient(self, t): |
|
| 95 | t = np.atleast_1d(t) |
||
| 96 | damp = np.cos(self.freq * 2 * np.pi * t + self.phase) |
||
| 97 | dphi = -self.amp * np.sin(self.freq * 2 * np.pi * t + self.phase) |
||
| 98 | df = 2 * np.pi * t * dphi |
||
| 99 | return np.array([df, damp, dphi]) |
||
| 100 | |||
| 101 | |||
| 102 | 1 | class ProxyModel(Model): |
|
| 103 | """Model for proxy terms |
||
| 104 | |||
| 105 | Models proxy terms with a finite and (semi-)annually varying life time. |
||
| 106 | |||
| 107 | Parameters |
||
| 108 | ---------- |
||
| 109 | proxy_times : (N,) array_like |
||
| 110 | The data times of the proxy values |
||
| 111 | proxy_vals : (N,) array_like |
||
| 112 | The proxy values at `proxy_times` |
||
| 113 | amp : float |
||
| 114 | The amplitude of the proxy term |
||
| 115 | lag : float |
||
| 116 | The lag of the proxy value in years. |
||
| 117 | tau0 : float |
||
| 118 | The base life time of the proxy |
||
| 119 | taucos1 : float |
||
| 120 | The amplitude of the cosine part of the annual life time variation. |
||
| 121 | tausin1 : float |
||
| 122 | The amplitude of the sine part of the annual life time variation. |
||
| 123 | taucos2 : float |
||
| 124 | The amplitude of the cosine part of the semi-annual life time variation. |
||
| 125 | tausin2 : float |
||
| 126 | The amplitude of the sine part of the semi-annual life time variation. |
||
| 127 | ltscan : float |
||
| 128 | The number of days to sum the previous proxy values. If it is |
||
| 129 | negative, the value will be set to three times the maximal lifetime. |
||
| 130 | No lifetime adjustemets are calculated when set to zero. |
||
| 131 | center : bool, optional |
||
| 132 | Centers the proxy values by subtracting the overall mean. The mean is |
||
| 133 | calculated from the whole `proxy_vals` array and is stored in the |
||
| 134 | `mean` attribute. |
||
| 135 | Default: False |
||
| 136 | sza_intp : scipy.interpolate.interp1d() instance, optional |
||
| 137 | When not `None`, cos(sza) and sin(sza) are used instead |
||
| 138 | of the time to model the annual variation of the lifetime. |
||
| 139 | Semi-annual variations are not used in that case. |
||
| 140 | Default: None |
||
| 141 | fit_phase : bool, optional |
||
| 142 | Fit the phase shift directly instead of using sine and cosine |
||
| 143 | terms for the (semi-)annual lifetime variations. If True, the fitted |
||
| 144 | cosine parameter is the amplitude and the sine parameter the phase. |
||
| 145 | Default: False (= fit sine and cosine terms) |
||
| 146 | lifetime_prior : str, optional |
||
| 147 | The prior probability density for each coefficient of the lifetime. |
||
| 148 | Possible types are "flat" or `None` for a flat prior, "exp" for an |
||
| 149 | exponential density ~ :math:`\\text{exp}(-|\\tau| / \\text{metric})`, |
||
| 150 | and "normal" for a normal distribution |
||
| 151 | ~ :math:`\\text{exp}(-\\tau^2 / (2 * \\text{metric}^2))`. |
||
| 152 | Default: None (= flat prior). |
||
| 153 | lifetime_metric : float, optional |
||
| 154 | The metric (scale) of the lifetime priors in days, see `prior`. |
||
| 155 | Default 1. |
||
| 156 | days_per_time_unit : float, optional |
||
| 157 | The number of days per time unit, used to normalize the lifetime |
||
| 158 | units. Use 365.25 if the times are in fractional years, or 1 if |
||
| 159 | they are in days. |
||
| 160 | Default: 365.25 |
||
| 161 | """ |
||
| 162 | 1 | parameter_names = ("amp", "lag", "tau0", |
|
| 163 | "taucos1", "tausin1", "taucos2", "tausin2", |
||
| 164 | "ltscan") |
||
| 165 | |||
| 166 | 1 | def __init__(self, proxy_times, proxy_vals, |
|
| 167 | center=False, |
||
| 168 | sza_intp=None, fit_phase=False, |
||
| 169 | lifetime_prior=None, lifetime_metric=1., |
||
| 170 | days_per_time_unit=365.25, |
||
| 171 | *args, **kwargs): |
||
| 172 | 1 | self.mean = 0. |
|
| 173 | 1 | if center: |
|
| 174 | self.mean = np.nanmean(proxy_vals) |
||
| 175 | 1 | self.times = proxy_times |
|
| 176 | 1 | self.dt = 1. |
|
| 177 | 1 | self.values = proxy_vals - self.mean |
|
| 178 | 1 | self.sza_intp = sza_intp |
|
| 179 | 1 | self.fit_phase = fit_phase |
|
| 180 | 1 | self.days_per_time_unit = days_per_time_unit |
|
| 181 | 1 | self.omega = 2 * np.pi * days_per_time_unit / 365.25 |
|
| 182 | 1 | self.lifetime_prior = lifetime_prior |
|
| 183 | 1 | self.lifetime_metric = lifetime_metric |
|
| 184 | # Makes "(m)jd" and "jyear" compatible for the lifetime |
||
| 185 | # seasonal variation. The julian epoch (the default) |
||
| 186 | # is slightly offset with respect to (modified) julian days. |
||
| 187 | 1 | self.t_adj = 0. |
|
| 188 | 1 | if self.days_per_time_unit == 1: |
|
| 189 | # discriminate between julian days and modified julian days, |
||
| 190 | # 1.8e6 is year 216 in julian days and year 6787 in |
||
| 191 | # modified julian days. It should be pretty safe to judge on |
||
| 192 | # that for most use cases. |
||
| 193 | if self.times[0] > 1.8e6: |
||
| 194 | # julian days |
||
| 195 | self.t_adj = 13. |
||
| 196 | else: |
||
| 197 | # modified julian days |
||
| 198 | self.t_adj = -44.25 |
||
| 199 | 1 | super(ProxyModel, self).__init__(*args, **kwargs) |
|
| 200 | |||
| 201 | 1 | View Code Duplication | def _lt_corr(self, t, tau, tmax=60.): |
|
|
|||
| 202 | """Lifetime corrected values |
||
| 203 | |||
| 204 | Corrects for a finite lifetime by summing over the last `tmax` |
||
| 205 | days with an exponential decay given of lifetime(s) `taus`. |
||
| 206 | """ |
||
| 207 | 1 | bs = np.arange(self.dt, tmax + self.dt, self.dt) |
|
| 208 | 1 | yp = np.zeros_like(t) |
|
| 209 | 1 | tauexp = np.exp(-self.dt / tau) |
|
| 210 | 1 | taufac = np.ones_like(tau) |
|
| 211 | 1 | for b in bs: |
|
| 212 | 1 | taufac *= tauexp |
|
| 213 | 1 | yp += np.interp(t - self.lag - b / self.days_per_time_unit, |
|
| 214 | self.times, self.values, left=0., right=0.) * taufac |
||
| 215 | 1 | return yp * self.dt |
|
| 216 | |||
| 217 | 1 | View Code Duplication | def _lt_corr_grad(self, t, tau, tmax=60.): |
| 218 | """Lifetime corrected gradient |
||
| 219 | |||
| 220 | Corrects for a finite lifetime by summing over the last `tmax` |
||
| 221 | days with an exponential decay given of lifetime(s) `taus`. |
||
| 222 | """ |
||
| 223 | 1 | bs = np.arange(self.dt, tmax + self.dt, self.dt) |
|
| 224 | 1 | ypg = np.zeros_like(t) |
|
| 225 | 1 | tauexp = np.exp(-self.dt / tau) |
|
| 226 | 1 | taufac = np.ones_like(tau) |
|
| 227 | 1 | for b in bs: |
|
| 228 | 1 | taufac *= tauexp |
|
| 229 | 1 | ypg += np.interp(t - self.lag - b / self.days_per_time_unit, |
|
| 230 | self.times, self.values, left=0., right=0.) * taufac * b |
||
| 231 | 1 | return ypg * self.dt / tau**2 |
|
| 232 | |||
| 233 | 1 | def get_value(self, t): |
|
| 234 | 1 | t = np.atleast_1d(t) |
|
| 235 | 1 | proxy_val = np.interp(t - self.lag, |
|
| 236 | self.times, self.values, left=0., right=0.) |
||
| 237 | 1 | if self.ltscan == 0: |
|
| 238 | # no lifetime, nothing else to do |
||
| 239 | 1 | return self.amp * proxy_val |
|
| 240 | # annual variation of the proxy lifetime |
||
| 241 | 1 | if self.sza_intp is not None: |
|
| 242 | # using the solar zenith angle |
||
| 243 | tau_cs = (self.taucos1 * np.cos(np.radians(self.sza_intp(t))) |
||
| 244 | + self.tausin1 * np.sin(np.radians(self.sza_intp(t)))) |
||
| 245 | 1 | elif self.fit_phase: |
|
| 246 | # using time (cos) and phase (sin) |
||
| 247 | tau_cs = (self.taucos1 * np.cos(1 * self.omega * (t + self.t_adj) + self.tausin1) |
||
| 248 | + self.taucos2 * np.cos(2 * self.omega * (t + self.t_adj) + self.tausin2)) |
||
| 249 | else: |
||
| 250 | # using time |
||
| 251 | 1 | tau_cs = (self.taucos1 * np.cos(1 * self.omega * (t + self.t_adj)) |
|
| 252 | + self.tausin1 * np.sin(1 * self.omega * (t + self.t_adj)) |
||
| 253 | + self.taucos2 * np.cos(2 * self.omega * (t + self.t_adj)) |
||
| 254 | + self.tausin2 * np.sin(2 * self.omega * (t + self.t_adj))) |
||
| 255 | 1 | tau_cs = np.maximum(0., tau_cs) # clip to zero |
|
| 256 | 1 | tau = self.tau0 + tau_cs |
|
| 257 | 1 | if self.ltscan > 0: |
|
| 258 | 1 | _ltscn = int(np.floor(self.ltscan)) |
|
| 259 | else: |
||
| 260 | # infer the scan time from the maximal lifetime |
||
| 261 | _ltscn = 3 * int(np.ceil(self.tau0 + |
||
| 262 | np.sqrt(self.taucos1**2 + self.tausin1**2))) |
||
| 263 | 1 | if np.all(tau > 0): |
|
| 264 | 1 | proxy_val += self._lt_corr(t, tau, tmax=_ltscn) |
|
| 265 | 1 | return self.amp * proxy_val |
|
| 266 | |||
| 267 | 1 | def compute_gradient(self, t): |
|
| 268 | 1 | t = np.atleast_1d(t) |
|
| 269 | 1 | proxy_val = np.interp(t - self.lag, |
|
| 270 | self.times, self.values, left=0., right=0.) |
||
| 271 | 1 | proxy_val_grad0 = proxy_val.copy() |
|
| 272 | # annual variation of the proxy lifetime |
||
| 273 | 1 | if self.sza_intp is not None: |
|
| 274 | # using the solar zenith angle |
||
| 275 | dtau_cos1 = np.cos(np.radians(self.sza_intp(t))) |
||
| 276 | dtau_sin1 = np.sin(np.radians(self.sza_intp(t))) |
||
| 277 | dtau_cos2 = np.zeros_like(t) |
||
| 278 | dtau_sin2 = np.zeros_like(t) |
||
| 279 | tau_cs = self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 |
||
| 280 | 1 | elif self.fit_phase: |
|
| 281 | # using time (cos) and phase (sin) |
||
| 282 | dtau_cos1 = np.cos(1 * self.omega * (t + self.t_adj) + self.tausin1) |
||
| 283 | dtau_sin1 = -self.taucos1 * np.sin(1 * self.omega * t + self.tausin1) |
||
| 284 | dtau_cos2 = np.cos(2 * self.omega * (t + self.t_adj) + self.tausin2) |
||
| 285 | dtau_sin2 = -self.taucos2 * np.sin(2 * self.omega * t + self.tausin2) |
||
| 286 | tau_cs = self.taucos1 * dtau_cos1 + self.taucos2 * dtau_cos2 |
||
| 287 | else: |
||
| 288 | # using time |
||
| 289 | 1 | dtau_cos1 = np.cos(1 * self.omega * (t + self.t_adj)) |
|
| 290 | 1 | dtau_sin1 = np.sin(1 * self.omega * (t + self.t_adj)) |
|
| 291 | 1 | dtau_cos2 = np.cos(2 * self.omega * (t + self.t_adj)) |
|
| 292 | 1 | dtau_sin2 = np.sin(2 * self.omega * (t + self.t_adj)) |
|
| 293 | 1 | tau_cs = (self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 + |
|
| 294 | self.taucos2 * dtau_cos2 + self.tausin2 * dtau_sin2) |
||
| 295 | 1 | tau_cs = np.maximum(0., tau_cs) # clip to zero |
|
| 296 | 1 | tau = self.tau0 + tau_cs |
|
| 297 | 1 | if self.ltscan > 0: |
|
| 298 | 1 | _ltscn = int(np.floor(self.ltscan)) |
|
| 299 | else: |
||
| 300 | # infer the scan time from the maximal lifetime |
||
| 301 | 1 | _ltscn = 3 * int(np.ceil(self.tau0 + |
|
| 302 | np.sqrt(self.taucos1**2 + self.tausin1**2))) |
||
| 303 | 1 | if np.all(tau > 0): |
|
| 304 | 1 | proxy_val += self._lt_corr(t, tau, tmax=_ltscn) |
|
| 305 | 1 | proxy_val_grad0 += self._lt_corr_grad(t, tau, tmax=_ltscn) |
|
| 306 | 1 | return np.array([proxy_val, |
|
| 307 | # set the gradient wrt lag to zero for now |
||
| 308 | np.zeros_like(t), |
||
| 309 | self.amp * proxy_val_grad0, |
||
| 310 | self.amp * proxy_val_grad0 * dtau_cos1, |
||
| 311 | self.amp * proxy_val_grad0 * dtau_sin1, |
||
| 312 | self.amp * proxy_val_grad0 * dtau_cos2, |
||
| 313 | self.amp * proxy_val_grad0 * dtau_sin2, |
||
| 314 | # set the gradient wrt lifetime scan to zero for now |
||
| 315 | np.zeros_like(t)]) |
||
| 316 | |||
| 317 | 1 | def _log_prior_normal(self): |
|
| 318 | l_prior = super(ProxyModel, self).log_prior() |
||
| 319 | if not np.isfinite(l_prior): |
||
| 320 | return -np.inf |
||
| 321 | for n, p in self.get_parameter_dict().items(): |
||
| 322 | if n.startswith("tau"): |
||
| 323 | # Gaussian prior for the lifetimes |
||
| 324 | l_prior -= 0.5 * (p / self.lifetime_metric)**2 |
||
| 325 | return l_prior |
||
| 326 | |||
| 327 | 1 | def _log_prior_exp(self): |
|
| 328 | 1 | l_prior = super(ProxyModel, self).log_prior() |
|
| 329 | 1 | if not np.isfinite(l_prior): |
|
| 330 | 1 | return -np.inf |
|
| 331 | 1 | for n, p in self.get_parameter_dict().items(): |
|
| 332 | 1 | if n.startswith("tau"): |
|
| 333 | # exponential prior for the lifetimes |
||
| 334 | 1 | l_prior -= np.abs(p / self.lifetime_metric) |
|
| 335 | 1 | return l_prior |
|
| 336 | |||
| 337 | 1 | def log_prior(self): |
|
| 338 | 1 | _priors = {"exp": self._log_prior_exp, |
|
| 339 | "normal": self._log_prior_normal} |
||
| 340 | 1 | if self.lifetime_prior is None or self.lifetime_prior == "flat": |
|
| 341 | 1 | return super(ProxyModel, self).log_prior() |
|
| 342 | 1 | return _priors[self.lifetime_prior]() |
|
| 343 | |||
| 344 | |||
| 345 | 1 | class TraceGasModelSet(ModelSet): |
|
| 346 | """Combined model class for trace gases (and probably other data) |
||
| 347 | |||
| 348 | Inherited from :class:`celerite.ModelSet`, provides `get_value()` |
||
| 349 | and `compute_gradient()` methods. |
||
| 350 | """ |
||
| 351 | 1 | def get_value(self, t): |
|
| 352 | 1 | t = np.atleast_1d(t) |
|
| 353 | 1 | v = np.zeros_like(t) |
|
| 354 | 1 | for m in self.models.values(): |
|
| 355 | 1 | v += m.get_value(t) |
|
| 356 | 1 | return v |
|
| 357 | |||
| 358 | 1 | def compute_gradient(self, t): |
|
| 359 | 1 | t = np.atleast_1d(t) |
|
| 360 | 1 | grad = [] |
|
| 361 | 1 | for m in self.models.values(): |
|
| 362 | 1 | grad.extend(list(m.compute_gradient(t))) |
|
| 363 | 1 | return np.array(grad) |
|
| 364 | |||
| 365 | |||
| 366 | 1 | def setup_proxy_model_with_bounds(times, values, |
|
| 367 | max_amp=1e10, max_days=100, |
||
| 368 | **kwargs): |
||
| 369 | # extract setup from `kwargs` |
||
| 370 | 1 | center = kwargs.get("center", False) |
|
| 371 | 1 | fit_phase = kwargs.get("fit_phase", False) |
|
| 372 | 1 | lag = kwargs.get("lag", 0.) |
|
| 373 | 1 | lt_metric = kwargs.get("lifetime_metric", 1) |
|
| 374 | 1 | lt_prior = kwargs.get("lifetime_prior", "exp") |
|
| 375 | 1 | lt_scan = kwargs.get("lifetime_scan", 60) |
|
| 376 | 1 | positive = kwargs.get("positive", False) |
|
| 377 | 1 | sza_intp = kwargs.get("sza_intp", None) |
|
| 378 | 1 | time_format = kwargs.get("time_format", "jyear") |
|
| 379 | |||
| 380 | 1 | return ProxyModel(times, values, |
|
| 381 | center=center, |
||
| 382 | sza_intp=sza_intp, |
||
| 383 | fit_phase=fit_phase, |
||
| 384 | lifetime_prior=lt_prior, |
||
| 385 | lifetime_metric=lt_metric, |
||
| 386 | days_per_time_unit=1 if time_format.endswith("d") else 365.25, |
||
| 387 | amp=0., |
||
| 388 | lag=lag, |
||
| 389 | tau0=0, |
||
| 390 | taucos1=0, tausin1=0, |
||
| 391 | taucos2=0, tausin2=0, |
||
| 392 | ltscan=lt_scan, |
||
| 393 | bounds=dict([ |
||
| 394 | ("amp", [0, max_amp] if positive else [-max_amp, max_amp]), |
||
| 395 | ("lag", [0, max_days]), |
||
| 396 | ("tau0", [0, max_days]), |
||
| 397 | ("taucos1", [0, max_days] if fit_phase else [-max_days, max_days]), |
||
| 398 | ("tausin1", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
||
| 399 | # semi-annual cycles for the life time |
||
| 400 | ("taucos2", [0, max_days] if fit_phase else [-max_days, max_days]), |
||
| 401 | ("tausin2", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
||
| 402 | ("ltscan", [0, 200])]) |
||
| 403 | ) |
||
| 404 | |||
| 405 | |||
| 406 | 1 | View Code Duplication | def _default_proxy_config(tfmt="jyear"): |
| 407 | from .load_data import load_dailymeanLya, load_dailymeanAE |
||
| 408 | proxy_config = {} |
||
| 409 | # Lyman-alpha |
||
| 410 | plyat, plyadf = load_dailymeanLya(tfmt=tfmt) |
||
| 411 | proxy_config.update({"Lya": { |
||
| 412 | "times": plyat, |
||
| 413 | "values": plyadf["Lya"], |
||
| 414 | "center": False, |
||
| 415 | "positive": False, |
||
| 416 | "lifetime_scan": 0, |
||
| 417 | }} |
||
| 418 | ) |
||
| 419 | # AE index |
||
| 420 | paet, paedf = load_dailymeanAE(name="GM", tfmt=tfmt) |
||
| 421 | proxy_config.update({"GM": { |
||
| 422 | "times": paet, |
||
| 423 | "values": paedf["GM"], |
||
| 424 | "center": False, |
||
| 425 | "positive": True, |
||
| 426 | "lifetime_scan": 60, |
||
| 427 | }} |
||
| 428 | ) |
||
| 429 | return proxy_config |
||
| 430 | |||
| 431 | |||
| 432 | 1 | def trace_gas_model(constant=True, freqs=None, proxy_config=None, **kwargs): |
|
| 433 | """Trace gas model setup |
||
| 434 | |||
| 435 | Sets up the trace gas model for easy access. All parameters are optional, |
||
| 436 | defaults to an offset, no harmonics, proxies are uncentered and unscaled |
||
| 437 | Lyman-alpha and AE. AE with only positive amplitude and a seasonally |
||
| 438 | varying lifetime. |
||
| 439 | |||
| 440 | Parameters |
||
| 441 | ---------- |
||
| 442 | constant : bool, optional |
||
| 443 | Whether or not to include a constant (offset) term, default is True. |
||
| 444 | freqs : list, optional |
||
| 445 | Frequencies of the harmonic terms in 1 / a^-1 (inverse years). |
||
| 446 | proxy_config : dict, optional |
||
| 447 | Proxy configuration if different from the standard setup. |
||
| 448 | **kwargs : optional |
||
| 449 | Additional keyword arguments, all of them are also passed on to |
||
| 450 | the proxy setup. For now, supported are the following which are |
||
| 451 | also passed along to the proxy setup with |
||
| 452 | `setup_proxy_model_with_bounds()`: |
||
| 453 | |||
| 454 | * fit_phase : bool |
||
| 455 | fit amplitude and phase instead of sine and cosine |
||
| 456 | * scale : float |
||
| 457 | the factor by which the data is scaled, used to constrain |
||
| 458 | the maximum and minimum amplitudes to be fitted. |
||
| 459 | * time_format : string |
||
| 460 | The `astropy.time.Time` format string to setup the time axis. |
||
| 461 | * days_per_time_unit : float |
||
| 462 | The number of days per time unit, used to normalize the frequencies |
||
| 463 | for the harmonic terms. Use 365.25 if the times are in fractional years, |
||
| 464 | 1 if they are in days. Default: 365.25 |
||
| 465 | * max_amp : float |
||
| 466 | Maximum magnitude of the coefficients, used to constrain the |
||
| 467 | parameter search. |
||
| 468 | * max_days : float |
||
| 469 | Maximum magnitude of the lifetimes, used to constrain the |
||
| 470 | parameter search. |
||
| 471 | |||
| 472 | Returns |
||
| 473 | ------- |
||
| 474 | model : :class:`TraceGasModelSet` (extends :class:`celerite.ModelSet`) |
||
| 475 | """ |
||
| 476 | 1 | fit_phase = kwargs.get("fit_phase", False) |
|
| 477 | 1 | scale = kwargs.get("scale", 1e-6) |
|
| 478 | 1 | tfmt = kwargs.get("time_format", "jyear") |
|
| 479 | 1 | delta_t = kwargs.get("days_per_time_unit", 365.25) |
|
| 480 | |||
| 481 | 1 | max_amp = kwargs.pop("max_amp", 1e10 * scale) |
|
| 482 | 1 | max_days = kwargs.pop("max_days", 100) |
|
| 483 | |||
| 484 | 1 | offset_model = [] |
|
| 485 | 1 | if constant: |
|
| 486 | 1 | offset_model = [("offset", |
|
| 487 | ConstantModel(value=0., |
||
| 488 | bounds={"value": [-max_amp, max_amp]}))] |
||
| 489 | |||
| 490 | 1 | freqs = freqs or [] |
|
| 491 | 1 | harmonic_models = [] |
|
| 492 | 1 | for freq in freqs: |
|
| 493 | 1 | if not fit_phase: |
|
| 494 | 1 | harm = HarmonicModelCosineSine(freq=freq * delta_t / 365.25, |
|
| 495 | cos=0, sin=0, |
||
| 496 | bounds=dict([ |
||
| 497 | ("cos", [-max_amp, max_amp]), |
||
| 498 | ("sin", [-max_amp, max_amp])]) |
||
| 499 | ) |
||
| 500 | else: |
||
| 501 | harm = HarmonicModelAmpPhase(freq=freq * delta_t / 365.25, |
||
| 502 | amp=0, phase=0, |
||
| 503 | bounds=dict([ |
||
| 504 | ("amp", [0, max_amp]), |
||
| 505 | ("phase", [-np.pi, np.pi])]) |
||
| 506 | ) |
||
| 507 | 1 | harm.freeze_parameter("freq") |
|
| 508 | 1 | harmonic_models.append(("f{0:.0f}".format(freq), harm)) |
|
| 509 | |||
| 510 | 1 | proxy_config = proxy_config or _default_proxy_config(tfmt=tfmt) |
|
| 511 | 1 | proxy_models = [] |
|
| 512 | 1 | for pn, conf in proxy_config.items(): |
|
| 513 | 1 | if "max_amp" not in conf: |
|
| 514 | conf.update(dict(max_amp=max_amp)) |
||
| 515 | 1 | if "max_days" not in conf: |
|
| 516 | conf.update(dict(max_days=max_days)) |
||
| 517 | 1 | kw = kwargs.copy() # don't mess with the passed arguments |
|
| 518 | 1 | kw.update(conf) |
|
| 519 | 1 | proxy_models.append( |
|
| 520 | (pn, setup_proxy_model_with_bounds(**kw)) |
||
| 521 | ) |
||
| 522 | |||
| 523 | return TraceGasModelSet(offset_model + harmonic_models + proxy_models) |
||
| 524 |