|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
# vim:fileencoding=utf-8 |
|
3
|
|
|
# |
|
4
|
|
|
# Copyright (c) 2017-2018 Stefan Bender |
|
5
|
|
|
# |
|
6
|
|
|
# This module is part of sciapy. |
|
7
|
|
|
# sciapy is free software: you can redistribute it or modify |
|
8
|
|
|
# it under the terms of the GNU General Public License as published |
|
9
|
|
|
# by the Free Software Foundation, version 2. |
|
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
|
11
|
1 |
|
"""SCIAMACHY regression models (celerite version) |
|
12
|
|
|
|
|
13
|
|
|
Model classes for SCIAMACHY data regression fits using the |
|
14
|
|
|
:mod:`celerite` [#]_ modelling protocol. |
|
15
|
|
|
|
|
16
|
|
|
.. [#] https://celerite.readthedocs.io |
|
17
|
|
|
""" |
|
18
|
1 |
|
from __future__ import absolute_import, division, print_function |
|
19
|
|
|
|
|
20
|
1 |
|
import numpy as np |
|
21
|
1 |
|
from scipy.interpolate import interp1d |
|
22
|
|
|
|
|
23
|
1 |
|
from celerite.modeling import Model, ModelSet, ConstantModel |
|
24
|
|
|
|
|
25
|
1 |
|
__all__ = ["ConstantModel", |
|
26
|
|
|
"HarmonicModelCosineSine", "HarmonicModelAmpPhase", |
|
27
|
|
|
"ProxyModel", "TraceGasModelSet", |
|
28
|
|
|
"setup_proxy_model_with_bounds", "trace_gas_model"] |
|
29
|
|
|
|
|
30
|
|
|
|
|
31
|
1 |
|
class HarmonicModelCosineSine(Model): |
|
32
|
|
|
"""Model for harmonic terms |
|
33
|
|
|
|
|
34
|
|
|
Models harmonic terms using a cosine and sine part. |
|
35
|
|
|
The total amplitude and phase can be inferred from that. |
|
36
|
|
|
|
|
37
|
|
|
Parameters |
|
38
|
|
|
---------- |
|
39
|
|
|
freq : float |
|
40
|
|
|
The frequency in years^-1 |
|
41
|
|
|
cos : float |
|
42
|
|
|
The amplitude of the cosine part |
|
43
|
|
|
sin : float |
|
44
|
|
|
The amplitude of the sine part |
|
45
|
|
|
""" |
|
46
|
1 |
|
parameter_names = ("freq", "cos", "sin") |
|
47
|
|
|
|
|
48
|
1 |
|
def get_value(self, t): |
|
49
|
1 |
|
t = np.atleast_1d(t) |
|
50
|
1 |
|
return (self.cos * np.cos(self.freq * 2 * np.pi * t) + |
|
51
|
|
|
self.sin * np.sin(self.freq * 2 * np.pi * t)) |
|
52
|
|
|
|
|
53
|
1 |
|
def get_amplitude(self): |
|
54
|
|
|
return np.sqrt(self.cos**2 + self.sin**2) |
|
55
|
|
|
|
|
56
|
1 |
|
def get_phase(self): |
|
57
|
|
|
return np.arctan2(self.sin, self.cos) |
|
58
|
|
|
|
|
59
|
1 |
|
def compute_gradient(self, t): |
|
60
|
1 |
|
t = np.atleast_1d(t) |
|
61
|
1 |
|
dcos = np.cos(self.freq * 2 * np.pi * t) |
|
62
|
1 |
|
dsin = np.sin(self.freq * 2 * np.pi * t) |
|
63
|
1 |
|
df = 2 * np.pi * t * (self.sin * dcos - self.cos * dsin) |
|
64
|
1 |
|
return np.array([df, dcos, dsin]) |
|
65
|
|
|
|
|
66
|
|
|
|
|
67
|
1 |
|
class HarmonicModelAmpPhase(Model): |
|
68
|
|
|
"""Model for harmonic terms |
|
69
|
|
|
|
|
70
|
|
|
Models harmonic terms using a cosine and sine part. |
|
71
|
|
|
The total amplitude and phase can be inferred from that. |
|
72
|
|
|
|
|
73
|
|
|
Parameters |
|
74
|
|
|
---------- |
|
75
|
|
|
freq : float |
|
76
|
|
|
The frequency in years^-1 |
|
77
|
|
|
amp : float |
|
78
|
|
|
The amplitude of the harmonic term |
|
79
|
|
|
phase : float |
|
80
|
|
|
The phase of the harmonic part |
|
81
|
|
|
""" |
|
82
|
1 |
|
parameter_names = ("freq", "amp", "phase") |
|
83
|
|
|
|
|
84
|
1 |
|
def get_value(self, t): |
|
85
|
|
|
t = np.atleast_1d(t) |
|
86
|
|
|
return self.amp * np.cos(self.freq * 2 * np.pi * t + self.phase) |
|
87
|
|
|
|
|
88
|
1 |
|
def get_amplitude(self): |
|
89
|
|
|
return self.amp |
|
90
|
|
|
|
|
91
|
1 |
|
def get_phase(self): |
|
92
|
|
|
return self.phase |
|
93
|
|
|
|
|
94
|
1 |
|
def compute_gradient(self, t): |
|
95
|
|
|
t = np.atleast_1d(t) |
|
96
|
|
|
damp = np.cos(self.freq * 2 * np.pi * t + self.phase) |
|
97
|
|
|
dphi = -self.amp * np.sin(self.freq * 2 * np.pi * t + self.phase) |
|
98
|
|
|
df = 2 * np.pi * t * dphi |
|
99
|
|
|
return np.array([df, damp, dphi]) |
|
100
|
|
|
|
|
101
|
|
|
|
|
102
|
1 |
|
class ProxyModel(Model): |
|
103
|
|
|
"""Model for proxy terms |
|
104
|
|
|
|
|
105
|
|
|
Models proxy terms with a finite and (semi-)annually varying life time. |
|
106
|
|
|
|
|
107
|
|
|
Parameters |
|
108
|
|
|
---------- |
|
109
|
|
|
proxy_times : (N,) array_like |
|
110
|
|
|
The data times of the proxy values |
|
111
|
|
|
proxy_vals : (N,) array_like |
|
112
|
|
|
The proxy values at `proxy_times` |
|
113
|
|
|
amp : float |
|
114
|
|
|
The amplitude of the proxy term |
|
115
|
|
|
lag : float |
|
116
|
|
|
The lag of the proxy value in years. |
|
117
|
|
|
tau0 : float |
|
118
|
|
|
The base life time of the proxy |
|
119
|
|
|
taucos1 : float |
|
120
|
|
|
The amplitude of the cosine part of the annual life time variation. |
|
121
|
|
|
tausin1 : float |
|
122
|
|
|
The amplitude of the sine part of the annual life time variation. |
|
123
|
|
|
taucos2 : float |
|
124
|
|
|
The amplitude of the cosine part of the semi-annual life time variation. |
|
125
|
|
|
tausin2 : float |
|
126
|
|
|
The amplitude of the sine part of the semi-annual life time variation. |
|
127
|
|
|
ltscan : float |
|
128
|
|
|
The number of days to sum the previous proxy values. If it is |
|
129
|
|
|
negative, the value will be set to three times the maximal lifetime. |
|
130
|
|
|
No lifetime adjustemets are calculated when set to zero. |
|
131
|
|
|
center : bool, optional |
|
132
|
|
|
Centers the proxy values by subtracting the overall mean. The mean is |
|
133
|
|
|
calculated from the whole `proxy_vals` array and is stored in the |
|
134
|
|
|
`mean` attribute. |
|
135
|
|
|
Default: False |
|
136
|
|
|
sza_intp : scipy.interpolate.interp1d() instance, optional |
|
137
|
|
|
When not `None`, cos(sza) and sin(sza) are used instead |
|
138
|
|
|
of the time to model the annual variation of the lifetime. |
|
139
|
|
|
Semi-annual variations are not used in that case. |
|
140
|
|
|
Default: None |
|
141
|
|
|
fit_phase : bool, optional |
|
142
|
|
|
Fit the phase shift directly instead of using sine and cosine |
|
143
|
|
|
terms for the (semi-)annual lifetime variations. If True, the fitted |
|
144
|
|
|
cosine parameter is the amplitude and the sine parameter the phase. |
|
145
|
|
|
Default: False (= fit sine and cosine terms) |
|
146
|
|
|
lifetime_prior : str, optional |
|
147
|
|
|
The prior probability density for each coefficient of the lifetime. |
|
148
|
|
|
Possible types are "flat" or `None` for a flat prior, "exp" for an |
|
149
|
|
|
exponential density ~ :math:`\\text{exp}(-|\\tau| / \\text{metric})`, |
|
150
|
|
|
and "normal" for a normal distribution |
|
151
|
|
|
~ :math:`\\text{exp}(-\\tau^2 / (2 * \\text{metric}^2))`. |
|
152
|
|
|
Default: None (= flat prior). |
|
153
|
|
|
lifetime_metric : float, optional |
|
154
|
|
|
The metric (scale) of the lifetime priors in days, see `prior`. |
|
155
|
|
|
Default 1. |
|
156
|
|
|
days_per_time_unit : float, optional |
|
157
|
|
|
The number of days per time unit, used to normalize the lifetime |
|
158
|
|
|
units. Use 365.25 if the times are in fractional years, or 1 if |
|
159
|
|
|
they are in days. |
|
160
|
|
|
Default: 365.25 |
|
161
|
|
|
""" |
|
162
|
1 |
|
parameter_names = ("amp", "lag", "tau0", |
|
163
|
|
|
"taucos1", "tausin1", "taucos2", "tausin2", |
|
164
|
|
|
"ltscan") |
|
165
|
|
|
|
|
166
|
1 |
|
def __init__(self, proxy_times, proxy_vals, |
|
167
|
|
|
center=False, |
|
168
|
|
|
sza_intp=None, fit_phase=False, |
|
169
|
|
|
lifetime_prior=None, lifetime_metric=1., |
|
170
|
|
|
days_per_time_unit=365.25, |
|
171
|
|
|
*args, **kwargs): |
|
172
|
1 |
|
self.mean = 0. |
|
173
|
1 |
|
if center: |
|
174
|
|
|
self.mean = np.nanmean(proxy_vals) |
|
175
|
1 |
|
self.times = proxy_times |
|
176
|
1 |
|
self.dt = 1. |
|
177
|
1 |
|
self.values = proxy_vals - self.mean |
|
178
|
1 |
|
self.sza_intp = sza_intp |
|
179
|
1 |
|
self.fit_phase = fit_phase |
|
180
|
1 |
|
self.days_per_time_unit = days_per_time_unit |
|
181
|
1 |
|
self.omega = 2 * np.pi * days_per_time_unit / 365.25 |
|
182
|
1 |
|
self.lifetime_prior = lifetime_prior |
|
183
|
1 |
|
self.lifetime_metric = lifetime_metric |
|
184
|
|
|
# Makes "(m)jd" and "jyear" compatible for the lifetime |
|
185
|
|
|
# seasonal variation. The julian epoch (the default) |
|
186
|
|
|
# is slightly offset with respect to (modified) julian days. |
|
187
|
1 |
|
self.t_adj = 0. |
|
188
|
1 |
|
if self.days_per_time_unit == 1: |
|
189
|
|
|
# discriminate between julian days and modified julian days, |
|
190
|
|
|
# 1.8e6 is year 216 in julian days and year 6787 in |
|
191
|
|
|
# modified julian days. It should be pretty safe to judge on |
|
192
|
|
|
# that for most use cases. |
|
193
|
|
|
if self.times[0] > 1.8e6: |
|
194
|
|
|
# julian days |
|
195
|
|
|
self.t_adj = 13. |
|
196
|
|
|
else: |
|
197
|
|
|
# modified julian days |
|
198
|
|
|
self.t_adj = -44.25 |
|
199
|
1 |
|
super(ProxyModel, self).__init__(*args, **kwargs) |
|
200
|
|
|
|
|
201
|
1 |
View Code Duplication |
def _lt_corr(self, t, tau, tmax=60.): |
|
|
|
|
|
|
202
|
|
|
"""Lifetime corrected values |
|
203
|
|
|
|
|
204
|
|
|
Corrects for a finite lifetime by summing over the last `tmax` |
|
205
|
|
|
days with an exponential decay given of lifetime(s) `taus`. |
|
206
|
|
|
""" |
|
207
|
1 |
|
bs = np.arange(self.dt, tmax + self.dt, self.dt) |
|
208
|
1 |
|
yp = np.zeros_like(t) |
|
209
|
1 |
|
tauexp = np.exp(-self.dt / tau) |
|
210
|
1 |
|
taufac = np.ones_like(tau) |
|
211
|
1 |
|
for b in bs: |
|
212
|
1 |
|
taufac *= tauexp |
|
213
|
1 |
|
yp += np.interp(t - self.lag - b / self.days_per_time_unit, |
|
214
|
|
|
self.times, self.values, left=0., right=0.) * taufac |
|
215
|
1 |
|
return yp * self.dt |
|
216
|
|
|
|
|
217
|
1 |
View Code Duplication |
def _lt_corr_grad(self, t, tau, tmax=60.): |
|
|
|
|
|
|
218
|
|
|
"""Lifetime corrected gradient |
|
219
|
|
|
|
|
220
|
|
|
Corrects for a finite lifetime by summing over the last `tmax` |
|
221
|
|
|
days with an exponential decay given of lifetime(s) `taus`. |
|
222
|
|
|
""" |
|
223
|
1 |
|
bs = np.arange(self.dt, tmax + self.dt, self.dt) |
|
224
|
1 |
|
ypg = np.zeros_like(t) |
|
225
|
1 |
|
tauexp = np.exp(-self.dt / tau) |
|
226
|
1 |
|
taufac = np.ones_like(tau) |
|
227
|
1 |
|
for b in bs: |
|
228
|
1 |
|
taufac *= tauexp |
|
229
|
1 |
|
ypg += np.interp(t - self.lag - b / self.days_per_time_unit, |
|
230
|
|
|
self.times, self.values, left=0., right=0.) * taufac * b |
|
231
|
1 |
|
return ypg * self.dt / tau**2 |
|
232
|
|
|
|
|
233
|
1 |
|
def get_value(self, t): |
|
234
|
1 |
|
t = np.atleast_1d(t) |
|
235
|
1 |
|
proxy_val = np.interp(t - self.lag, |
|
236
|
|
|
self.times, self.values, left=0., right=0.) |
|
237
|
1 |
|
if self.ltscan == 0: |
|
238
|
|
|
# no lifetime, nothing else to do |
|
239
|
1 |
|
return self.amp * proxy_val |
|
240
|
|
|
# annual variation of the proxy lifetime |
|
241
|
1 |
|
if self.sza_intp is not None: |
|
242
|
|
|
# using the solar zenith angle |
|
243
|
|
|
tau_cs = (self.taucos1 * np.cos(np.radians(self.sza_intp(t))) |
|
244
|
|
|
+ self.tausin1 * np.sin(np.radians(self.sza_intp(t)))) |
|
245
|
1 |
|
elif self.fit_phase: |
|
246
|
|
|
# using time (cos) and phase (sin) |
|
247
|
|
|
tau_cs = (self.taucos1 * np.cos(1 * self.omega * (t + self.t_adj) + self.tausin1) |
|
248
|
|
|
+ self.taucos2 * np.cos(2 * self.omega * (t + self.t_adj) + self.tausin2)) |
|
249
|
|
|
else: |
|
250
|
|
|
# using time |
|
251
|
1 |
|
tau_cs = (self.taucos1 * np.cos(1 * self.omega * (t + self.t_adj)) |
|
252
|
|
|
+ self.tausin1 * np.sin(1 * self.omega * (t + self.t_adj)) |
|
253
|
|
|
+ self.taucos2 * np.cos(2 * self.omega * (t + self.t_adj)) |
|
254
|
|
|
+ self.tausin2 * np.sin(2 * self.omega * (t + self.t_adj))) |
|
255
|
1 |
|
tau_cs = np.maximum(0., tau_cs) # clip to zero |
|
256
|
1 |
|
tau = self.tau0 + tau_cs |
|
257
|
1 |
|
if self.ltscan > 0: |
|
258
|
1 |
|
_ltscn = int(np.floor(self.ltscan)) |
|
259
|
|
|
else: |
|
260
|
|
|
# infer the scan time from the maximal lifetime |
|
261
|
|
|
_ltscn = 3 * int(np.ceil(self.tau0 + |
|
262
|
|
|
np.sqrt(self.taucos1**2 + self.tausin1**2))) |
|
263
|
1 |
|
if np.all(tau > 0): |
|
264
|
1 |
|
proxy_val += self._lt_corr(t, tau, tmax=_ltscn) |
|
265
|
1 |
|
return self.amp * proxy_val |
|
266
|
|
|
|
|
267
|
1 |
|
def compute_gradient(self, t): |
|
268
|
1 |
|
t = np.atleast_1d(t) |
|
269
|
1 |
|
proxy_val = np.interp(t - self.lag, |
|
270
|
|
|
self.times, self.values, left=0., right=0.) |
|
271
|
1 |
|
proxy_val_grad0 = proxy_val.copy() |
|
272
|
|
|
# annual variation of the proxy lifetime |
|
273
|
1 |
|
if self.sza_intp is not None: |
|
274
|
|
|
# using the solar zenith angle |
|
275
|
|
|
dtau_cos1 = np.cos(np.radians(self.sza_intp(t))) |
|
276
|
|
|
dtau_sin1 = np.sin(np.radians(self.sza_intp(t))) |
|
277
|
|
|
dtau_cos2 = np.zeros_like(t) |
|
278
|
|
|
dtau_sin2 = np.zeros_like(t) |
|
279
|
|
|
tau_cs = self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 |
|
280
|
1 |
|
elif self.fit_phase: |
|
281
|
|
|
# using time (cos) and phase (sin) |
|
282
|
|
|
dtau_cos1 = np.cos(1 * self.omega * (t + self.t_adj) + self.tausin1) |
|
283
|
|
|
dtau_sin1 = -self.taucos1 * np.sin(1 * self.omega * t + self.tausin1) |
|
284
|
|
|
dtau_cos2 = np.cos(2 * self.omega * (t + self.t_adj) + self.tausin2) |
|
285
|
|
|
dtau_sin2 = -self.taucos2 * np.sin(2 * self.omega * t + self.tausin2) |
|
286
|
|
|
tau_cs = self.taucos1 * dtau_cos1 + self.taucos2 * dtau_cos2 |
|
287
|
|
|
else: |
|
288
|
|
|
# using time |
|
289
|
1 |
|
dtau_cos1 = np.cos(1 * self.omega * (t + self.t_adj)) |
|
290
|
1 |
|
dtau_sin1 = np.sin(1 * self.omega * (t + self.t_adj)) |
|
291
|
1 |
|
dtau_cos2 = np.cos(2 * self.omega * (t + self.t_adj)) |
|
292
|
1 |
|
dtau_sin2 = np.sin(2 * self.omega * (t + self.t_adj)) |
|
293
|
1 |
|
tau_cs = (self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 + |
|
294
|
|
|
self.taucos2 * dtau_cos2 + self.tausin2 * dtau_sin2) |
|
295
|
1 |
|
tau_cs = np.maximum(0., tau_cs) # clip to zero |
|
296
|
1 |
|
tau = self.tau0 + tau_cs |
|
297
|
1 |
|
if self.ltscan > 0: |
|
298
|
1 |
|
_ltscn = int(np.floor(self.ltscan)) |
|
299
|
|
|
else: |
|
300
|
|
|
# infer the scan time from the maximal lifetime |
|
301
|
1 |
|
_ltscn = 3 * int(np.ceil(self.tau0 + |
|
302
|
|
|
np.sqrt(self.taucos1**2 + self.tausin1**2))) |
|
303
|
1 |
|
if np.all(tau > 0): |
|
304
|
1 |
|
proxy_val += self._lt_corr(t, tau, tmax=_ltscn) |
|
305
|
1 |
|
proxy_val_grad0 += self._lt_corr_grad(t, tau, tmax=_ltscn) |
|
306
|
1 |
|
return np.array([proxy_val, |
|
307
|
|
|
# set the gradient wrt lag to zero for now |
|
308
|
|
|
np.zeros_like(t), |
|
309
|
|
|
self.amp * proxy_val_grad0, |
|
310
|
|
|
self.amp * proxy_val_grad0 * dtau_cos1, |
|
311
|
|
|
self.amp * proxy_val_grad0 * dtau_sin1, |
|
312
|
|
|
self.amp * proxy_val_grad0 * dtau_cos2, |
|
313
|
|
|
self.amp * proxy_val_grad0 * dtau_sin2, |
|
314
|
|
|
# set the gradient wrt lifetime scan to zero for now |
|
315
|
|
|
np.zeros_like(t)]) |
|
316
|
|
|
|
|
317
|
1 |
|
def _log_prior_normal(self): |
|
318
|
|
|
l_prior = super(ProxyModel, self).log_prior() |
|
319
|
|
|
if not np.isfinite(l_prior): |
|
320
|
|
|
return -np.inf |
|
321
|
|
|
for n, p in self.get_parameter_dict().items(): |
|
322
|
|
|
if n.startswith("tau"): |
|
323
|
|
|
# Gaussian prior for the lifetimes |
|
324
|
|
|
l_prior -= 0.5 * (p / self.lifetime_metric)**2 |
|
325
|
|
|
return l_prior |
|
326
|
|
|
|
|
327
|
1 |
|
def _log_prior_exp(self): |
|
328
|
1 |
|
l_prior = super(ProxyModel, self).log_prior() |
|
329
|
1 |
|
if not np.isfinite(l_prior): |
|
330
|
1 |
|
return -np.inf |
|
331
|
1 |
|
for n, p in self.get_parameter_dict().items(): |
|
332
|
1 |
|
if n.startswith("tau"): |
|
333
|
|
|
# exponential prior for the lifetimes |
|
334
|
1 |
|
l_prior -= np.abs(p / self.lifetime_metric) |
|
335
|
1 |
|
return l_prior |
|
336
|
|
|
|
|
337
|
1 |
|
def log_prior(self): |
|
338
|
1 |
|
_priors = {"exp": self._log_prior_exp, |
|
339
|
|
|
"normal": self._log_prior_normal} |
|
340
|
1 |
|
if self.lifetime_prior is None or self.lifetime_prior == "flat": |
|
341
|
1 |
|
return super(ProxyModel, self).log_prior() |
|
342
|
1 |
|
return _priors[self.lifetime_prior]() |
|
343
|
|
|
|
|
344
|
|
|
|
|
345
|
1 |
|
class TraceGasModelSet(ModelSet): |
|
346
|
|
|
"""Combined model class for trace gases (and probably other data) |
|
347
|
|
|
|
|
348
|
|
|
Inherited from :class:`celerite.ModelSet`, provides `get_value()` |
|
349
|
|
|
and `compute_gradient()` methods. |
|
350
|
|
|
""" |
|
351
|
1 |
|
def get_value(self, t): |
|
352
|
1 |
|
t = np.atleast_1d(t) |
|
353
|
1 |
|
v = np.zeros_like(t) |
|
354
|
1 |
|
for m in self.models.values(): |
|
355
|
1 |
|
v += m.get_value(t) |
|
356
|
1 |
|
return v |
|
357
|
|
|
|
|
358
|
1 |
|
def compute_gradient(self, t): |
|
359
|
1 |
|
t = np.atleast_1d(t) |
|
360
|
1 |
|
grad = [] |
|
361
|
1 |
|
for m in self.models.values(): |
|
362
|
1 |
|
grad.extend(list(m.compute_gradient(t))) |
|
363
|
1 |
|
return np.array(grad) |
|
364
|
|
|
|
|
365
|
|
|
|
|
366
|
1 |
|
def setup_proxy_model_with_bounds(times, values, |
|
367
|
|
|
max_amp=1e10, max_days=100, |
|
368
|
|
|
**kwargs): |
|
369
|
|
|
# extract setup from `kwargs` |
|
370
|
1 |
|
center = kwargs.get("center", False) |
|
371
|
1 |
|
fit_phase = kwargs.get("fit_phase", False) |
|
372
|
1 |
|
lag = kwargs.get("lag", 0.) |
|
373
|
1 |
|
lt_metric = kwargs.get("lifetime_metric", 1) |
|
374
|
1 |
|
lt_prior = kwargs.get("lifetime_prior", "exp") |
|
375
|
1 |
|
lt_scan = kwargs.get("lifetime_scan", 60) |
|
376
|
1 |
|
positive = kwargs.get("positive", False) |
|
377
|
1 |
|
sza_intp = kwargs.get("sza_intp", None) |
|
378
|
1 |
|
time_format = kwargs.get("time_format", "jyear") |
|
379
|
|
|
|
|
380
|
1 |
|
return ProxyModel(times, values, |
|
381
|
|
|
center=center, |
|
382
|
|
|
sza_intp=sza_intp, |
|
383
|
|
|
fit_phase=fit_phase, |
|
384
|
|
|
lifetime_prior=lt_prior, |
|
385
|
|
|
lifetime_metric=lt_metric, |
|
386
|
|
|
days_per_time_unit=1 if time_format.endswith("d") else 365.25, |
|
387
|
|
|
amp=0., |
|
388
|
|
|
lag=lag, |
|
389
|
|
|
tau0=0, |
|
390
|
|
|
taucos1=0, tausin1=0, |
|
391
|
|
|
taucos2=0, tausin2=0, |
|
392
|
|
|
ltscan=lt_scan, |
|
393
|
|
|
bounds=dict([ |
|
394
|
|
|
("amp", [0, max_amp] if positive else [-max_amp, max_amp]), |
|
395
|
|
|
("lag", [0, max_days]), |
|
396
|
|
|
("tau0", [0, max_days]), |
|
397
|
|
|
("taucos1", [0, max_days] if fit_phase else [-max_days, max_days]), |
|
398
|
|
|
("tausin1", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
|
399
|
|
|
# semi-annual cycles for the life time |
|
400
|
|
|
("taucos2", [0, max_days] if fit_phase else [-max_days, max_days]), |
|
401
|
|
|
("tausin2", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
|
402
|
|
|
("ltscan", [0, 200])]) |
|
403
|
|
|
) |
|
404
|
|
|
|
|
405
|
|
|
|
|
406
|
1 |
View Code Duplication |
def _default_proxy_config(tfmt="jyear"): |
|
|
|
|
|
|
407
|
|
|
from .load_data import load_dailymeanLya, load_dailymeanAE |
|
408
|
|
|
proxy_config = {} |
|
409
|
|
|
# Lyman-alpha |
|
410
|
|
|
plyat, plyadf = load_dailymeanLya(tfmt=tfmt) |
|
411
|
|
|
proxy_config.update({"Lya": { |
|
412
|
|
|
"times": plyat, |
|
413
|
|
|
"values": plyadf["Lya"], |
|
414
|
|
|
"center": False, |
|
415
|
|
|
"positive": False, |
|
416
|
|
|
"lifetime_scan": 0, |
|
417
|
|
|
}} |
|
418
|
|
|
) |
|
419
|
|
|
# AE index |
|
420
|
|
|
paet, paedf = load_dailymeanAE(name="GM", tfmt=tfmt) |
|
421
|
|
|
proxy_config.update({"GM": { |
|
422
|
|
|
"times": paet, |
|
423
|
|
|
"values": paedf["GM"], |
|
424
|
|
|
"center": False, |
|
425
|
|
|
"positive": True, |
|
426
|
|
|
"lifetime_scan": 60, |
|
427
|
|
|
}} |
|
428
|
|
|
) |
|
429
|
|
|
return proxy_config |
|
430
|
|
|
|
|
431
|
|
|
|
|
432
|
1 |
|
def trace_gas_model(constant=True, freqs=None, proxy_config=None, **kwargs): |
|
433
|
|
|
"""Trace gas model setup |
|
434
|
|
|
|
|
435
|
|
|
Sets up the trace gas model for easy access. All parameters are optional, |
|
436
|
|
|
defaults to an offset, no harmonics, proxies are uncentered and unscaled |
|
437
|
|
|
Lyman-alpha and AE. AE with only positive amplitude and a seasonally |
|
438
|
|
|
varying lifetime. |
|
439
|
|
|
|
|
440
|
|
|
Parameters |
|
441
|
|
|
---------- |
|
442
|
|
|
constant : bool, optional |
|
443
|
|
|
Whether or not to include a constant (offset) term, default is True. |
|
444
|
|
|
freqs : list, optional |
|
445
|
|
|
Frequencies of the harmonic terms in 1 / a^-1 (inverse years). |
|
446
|
|
|
proxy_config : dict, optional |
|
447
|
|
|
Proxy configuration if different from the standard setup. |
|
448
|
|
|
**kwargs : optional |
|
449
|
|
|
Additional keyword arguments, all of them are also passed on to |
|
450
|
|
|
the proxy setup. For now, supported are the following which are |
|
451
|
|
|
also passed along to the proxy setup with |
|
452
|
|
|
`setup_proxy_model_with_bounds()`: |
|
453
|
|
|
|
|
454
|
|
|
* fit_phase : bool |
|
455
|
|
|
fit amplitude and phase instead of sine and cosine |
|
456
|
|
|
* scale : float |
|
457
|
|
|
the factor by which the data is scaled, used to constrain |
|
458
|
|
|
the maximum and minimum amplitudes to be fitted. |
|
459
|
|
|
* time_format : string |
|
460
|
|
|
The `astropy.time.Time` format string to setup the time axis. |
|
461
|
|
|
* days_per_time_unit : float |
|
462
|
|
|
The number of days per time unit, used to normalize the frequencies |
|
463
|
|
|
for the harmonic terms. Use 365.25 if the times are in fractional years, |
|
464
|
|
|
1 if they are in days. Default: 365.25 |
|
465
|
|
|
* max_amp : float |
|
466
|
|
|
Maximum magnitude of the coefficients, used to constrain the |
|
467
|
|
|
parameter search. |
|
468
|
|
|
* max_days : float |
|
469
|
|
|
Maximum magnitude of the lifetimes, used to constrain the |
|
470
|
|
|
parameter search. |
|
471
|
|
|
|
|
472
|
|
|
Returns |
|
473
|
|
|
------- |
|
474
|
|
|
model : :class:`TraceGasModelSet` (extends :class:`celerite.ModelSet`) |
|
475
|
|
|
""" |
|
476
|
1 |
|
fit_phase = kwargs.get("fit_phase", False) |
|
477
|
1 |
|
scale = kwargs.get("scale", 1e-6) |
|
478
|
1 |
|
tfmt = kwargs.get("time_format", "jyear") |
|
479
|
1 |
|
delta_t = kwargs.get("days_per_time_unit", 365.25) |
|
480
|
|
|
|
|
481
|
1 |
|
max_amp = kwargs.pop("max_amp", 1e10 * scale) |
|
482
|
1 |
|
max_days = kwargs.pop("max_days", 100) |
|
483
|
|
|
|
|
484
|
1 |
|
offset_model = [] |
|
485
|
1 |
|
if constant: |
|
486
|
1 |
|
offset_model = [("offset", |
|
487
|
|
|
ConstantModel(value=0., |
|
488
|
|
|
bounds={"value": [-max_amp, max_amp]}))] |
|
489
|
|
|
|
|
490
|
1 |
|
freqs = freqs or [] |
|
491
|
1 |
|
harmonic_models = [] |
|
492
|
1 |
|
for freq in freqs: |
|
493
|
1 |
|
if not fit_phase: |
|
494
|
1 |
|
harm = HarmonicModelCosineSine(freq=freq * delta_t / 365.25, |
|
495
|
|
|
cos=0, sin=0, |
|
496
|
|
|
bounds=dict([ |
|
497
|
|
|
("cos", [-max_amp, max_amp]), |
|
498
|
|
|
("sin", [-max_amp, max_amp])]) |
|
499
|
|
|
) |
|
500
|
|
|
else: |
|
501
|
|
|
harm = HarmonicModelAmpPhase(freq=freq * delta_t / 365.25, |
|
502
|
|
|
amp=0, phase=0, |
|
503
|
|
|
bounds=dict([ |
|
504
|
|
|
("amp", [0, max_amp]), |
|
505
|
|
|
("phase", [-np.pi, np.pi])]) |
|
506
|
|
|
) |
|
507
|
1 |
|
harm.freeze_parameter("freq") |
|
508
|
1 |
|
harmonic_models.append(("f{0:.0f}".format(freq), harm)) |
|
509
|
|
|
|
|
510
|
1 |
|
proxy_config = proxy_config or _default_proxy_config(tfmt=tfmt) |
|
511
|
1 |
|
proxy_models = [] |
|
512
|
1 |
|
for pn, conf in proxy_config.items(): |
|
513
|
1 |
|
if "max_amp" not in conf: |
|
514
|
|
|
conf.update(dict(max_amp=max_amp)) |
|
515
|
1 |
|
if "max_days" not in conf: |
|
516
|
|
|
conf.update(dict(max_days=max_days)) |
|
517
|
1 |
|
kw = kwargs.copy() # don't mess with the passed arguments |
|
518
|
1 |
|
kw.update(conf) |
|
519
|
1 |
|
proxy_models.append( |
|
520
|
|
|
(pn, setup_proxy_model_with_bounds(**kw)) |
|
521
|
|
|
) |
|
522
|
|
|
|
|
523
|
|
|
return TraceGasModelSet(offset_model + harmonic_models + proxy_models) |
|
524
|
|
|
|