| Total Complexity | 44 |
| Total Lines | 441 |
| Duplicated Lines | 12.47 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like app.core often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # This is a tool to automate cyclic voltametry analysis. |
||
| 2 | # Current Version = 1 |
||
| 3 | |||
| 4 | import pandas as pd |
||
| 5 | import numpy as np |
||
| 6 | import csv |
||
| 7 | import matplotlib.pyplot as plt |
||
| 8 | import warnings |
||
| 9 | import matplotlib.cbook |
||
| 10 | import peakutils |
||
| 11 | import copy |
||
| 12 | from matplotlib import rcParams |
||
| 13 | |||
| 14 | |||
| 15 | def read_cycle(data): |
||
| 16 | """This function reads a segment of datafile (corresponding a cycle) |
||
| 17 | and generates a dataframe with columns 'Potential' and 'Current' |
||
| 18 | |||
| 19 | Parameters |
||
| 20 | __________ |
||
| 21 | data: segment of data file |
||
| 22 | |||
| 23 | Returns |
||
| 24 | _______ |
||
| 25 | A dataframe with potential and current columns |
||
| 26 | """ |
||
| 27 | |||
| 28 | current = [] |
||
| 29 | potential = [] |
||
| 30 | for i in data[3:]: |
||
| 31 | current.append(float(i.split("\t")[4]))
|
||
| 32 | potential.append(float(i.split("\t")[3]))
|
||
| 33 | zippedList = list(zip(potential, current)) |
||
| 34 | df = pd.DataFrame(zippedList, columns = ['Potential' , 'Current']) |
||
| 35 | return df |
||
| 36 | |||
| 37 | |||
| 38 | def read_file_dash(lines): |
||
| 39 | """This function is exactly similar to read_file, but it is for dash |
||
| 40 | |||
| 41 | Parameters |
||
| 42 | __________ |
||
| 43 | file: lines from dash input file |
||
| 44 | |||
| 45 | Returns: |
||
| 46 | ________ |
||
| 47 | dict_of_df: dictionary of dataframes with keys = cycle numbers and |
||
| 48 | values = dataframes for each cycle |
||
| 49 | n_cycle: number of cycles in the raw file |
||
| 50 | """ |
||
| 51 | dict_of_df = {}
|
||
| 52 | h = 0 |
||
| 53 | l = 0 |
||
| 54 | n_cycle = 0 |
||
| 55 | number = 0 |
||
| 56 | #a = [] |
||
| 57 | #with open(file, 'rt') as f: |
||
| 58 | # print(file + ' Opened') |
||
| 59 | for line in lines: |
||
| 60 | record = 0 |
||
| 61 | if not (h and l): |
||
| 62 | if line.startswith('SCANRATE'):
|
||
| 63 | scan_rate = float(line.split()[2]) |
||
| 64 | h = 1 |
||
| 65 | if line.startswith('STEPSIZE'):
|
||
| 66 | step_size = float(line.split()[2]) |
||
| 67 | l = 1 |
||
| 68 | if line.startswith('CURVE'):
|
||
| 69 | n_cycle += 1 |
||
| 70 | if n_cycle > 1: |
||
| 71 | number = n_cycle - 1 |
||
| 72 | df = read_cycle(a) |
||
| 73 | key_name = 'cycle_' + str(number) |
||
| 74 | #key_name = number |
||
| 75 | dict_of_df[key_name] = copy.deepcopy(df) |
||
| 76 | a = [] |
||
| 77 | if n_cycle: |
||
| 78 | a.append(line) |
||
| 79 | return dict_of_df, number |
||
| 80 | |||
| 81 | |||
| 82 | def read_file(file): |
||
| 83 | """This function reads the raw data file, gets the scanrate and stepsize |
||
| 84 | and then reads the lines according to cycle number. Once it reads the data |
||
| 85 | for one cycle, it calls read_cycle function to generate a dataframe. It |
||
| 86 | does the same thing for all the cycles and finally returns a dictionary, |
||
| 87 | the keys of which are the cycle numbers and the values are the |
||
| 88 | corresponding dataframes. |
||
| 89 | |||
| 90 | Parameters |
||
| 91 | __________ |
||
| 92 | file: raw data file |
||
| 93 | |||
| 94 | Returns: |
||
| 95 | ________ |
||
| 96 | dict_of_df: dictionary of dataframes with keys = cycle numbers and |
||
| 97 | values = dataframes for each cycle |
||
| 98 | n_cycle: number of cycles in the raw file |
||
| 99 | """ |
||
| 100 | dict_of_df = {}
|
||
| 101 | h = 0 |
||
| 102 | l = 0 |
||
| 103 | n_cycle = 0 |
||
| 104 | #a = [] |
||
| 105 | with open(file, 'rt') as f: |
||
| 106 | print(file + ' Opened') |
||
| 107 | for line in f: |
||
| 108 | record = 0 |
||
| 109 | if not (h and l): |
||
| 110 | if line.startswith('SCANRATE'):
|
||
| 111 | scan_rate = float(line.split()[2]) |
||
| 112 | h = 1 |
||
| 113 | if line.startswith('STEPSIZE'):
|
||
| 114 | step_size = float(line.split()[2]) |
||
| 115 | l = 1 |
||
| 116 | if line.startswith('CURVE'):
|
||
| 117 | n_cycle += 1 |
||
| 118 | if n_cycle > 1: |
||
| 119 | number = n_cycle - 1 |
||
| 120 | df = read_cycle(a) |
||
| 121 | key_name = 'cycle_' + str(number) |
||
| 122 | #key_name = number |
||
| 123 | dict_of_df[key_name] = copy.deepcopy(df) |
||
| 124 | a = [] |
||
| 125 | if n_cycle: |
||
| 126 | a.append(line) |
||
| 127 | return dict_of_df, number |
||
| 128 | |||
| 129 | |||
| 130 | #df = pd.DataFrame(list(dict1['df_1'].items())) |
||
| 131 | #list1, list2 = list(dict1['df_1'].items()) |
||
| 132 | #list1, list2 = list(dict1.get('df_'+str(1)))
|
||
| 133 | |||
| 134 | def data_frame(dict_cycle, n): |
||
| 135 | """Reads the dictionary of dataframes and returns dataframes for each cycle |
||
| 136 | |||
| 137 | Parameters |
||
| 138 | __________ |
||
| 139 | dict_cycle: Dictionary of dataframes |
||
| 140 | n: cycle number |
||
| 141 | |||
| 142 | Returns: |
||
| 143 | _______ |
||
| 144 | Dataframe correcponding to the cycle number |
||
| 145 | """ |
||
| 146 | list1, list2 = (list(dict_cycle.get('cycle_'+str(n)).items()))
|
||
| 147 | zippedList = list(zip(list1[1], list2[1])) |
||
| 148 | data = pd.DataFrame(zippedList, columns = ['Potential' , 'Current']) |
||
| 149 | return data |
||
| 150 | |||
| 151 | |||
| 152 | def plot_fig(dict_cycle, n): |
||
| 153 | """For basic plotting of the cycle data |
||
| 154 | |||
| 155 | Parameters |
||
| 156 | __________ |
||
| 157 | dict: dictionary of dataframes for all the cycles |
||
| 158 | n: number of cycles |
||
| 159 | |||
| 160 | Saves the plot in a file called cycle.png |
||
| 161 | """ |
||
| 162 | |||
| 163 | for i in range(n): |
||
| 164 | print(i+1) |
||
| 165 | df = data_frame(dict_cycle, i+1) |
||
| 166 | plt.plot(df.Potential, df.Current, label = "Cycle{}".format(i+1))
|
||
| 167 | |||
| 168 | #print(df.head()) |
||
| 169 | plt.xlabel('Voltage')
|
||
| 170 | plt.ylabel('Current')
|
||
| 171 | plt.legend() |
||
| 172 | plt.savefig('cycle.png')
|
||
| 173 | print('executed')
|
||
| 174 | |||
| 175 | |||
| 176 | #split forward and backward sweping data, to make it easier for processing. |
||
| 177 | def split(vector): |
||
| 178 | """ |
||
| 179 | This function takes an array and splits it into two half. |
||
| 180 | """ |
||
| 181 | split = int(len(vector)/2) |
||
| 182 | end = int(len(vector)) |
||
| 183 | vector1 = np.array(vector)[0:split] |
||
| 184 | vector2 = np.array(vector)[split:end] |
||
| 185 | return vector1, vector2 |
||
| 186 | |||
| 187 | |||
| 188 | def critical_idx(x, y): ## Finds index where data set is no longer linear |
||
| 189 | """ |
||
| 190 | This function takes x and y values callculate the derrivative of x and y, and calculate moving average of 5 and 15 points. |
||
| 191 | Finds intercepts of different moving average curves and return the indexs of the first intercepts. |
||
| 192 | """ |
||
| 193 | k = np.diff(y)/(np.diff(x)) #calculated slops of x and y |
||
| 194 | ## Calculate moving average for 5 and 15 points. |
||
| 195 | ## This two arbitrary number can be tuned to get better fitting. |
||
| 196 | ave5 = [] |
||
| 197 | ave15 = [] |
||
| 198 | for i in range(len(k)-10): # The reason to minus 5 is to prevent j from running out of index. |
||
| 199 | a = 0 |
||
| 200 | for j in range(0,10): |
||
| 201 | a = a + k[i+j] |
||
| 202 | ave5.append(round(a/10, 5)) # keeping 9 desimal points for more accuracy |
||
| 203 | |||
| 204 | for i in range(len(k)-15): |
||
| 205 | b = 0 |
||
| 206 | for j in range(0,15): |
||
| 207 | b = b + k[i+j] |
||
| 208 | ave15.append(round(b/15, 5)) |
||
| 209 | ave5i = np.asarray(ave5) |
||
| 210 | #print(ave10i) |
||
| 211 | ave15i = np.asarray(ave15) |
||
| 212 | #print(ave15i) |
||
| 213 | ## Find intercepts of different moving average curves |
||
| 214 | idx = np.argwhere(np.diff(np.sign(ave15i - ave5i[:len(ave15i)])!= 0)).reshape(-1)+0 #reshape into one row. |
||
| 215 | return idx[5] |
||
| 216 | |||
| 217 | # This is based on the method 1 where user can't choose the baseline. |
||
| 218 | # If wanted to add that, choose method2. |
||
| 219 | def sum_mean(vector): |
||
| 220 | """ |
||
| 221 | This function returns the mean values. |
||
| 222 | """ |
||
| 223 | a = 0 |
||
| 224 | for i in vector: |
||
| 225 | a = a + i |
||
| 226 | return [a,a/len(vector)] |
||
| 227 | |||
| 228 | |||
| 229 | def multiplica(vetor_x, vetor_y): |
||
| 230 | a = 0 |
||
| 231 | for x,y in zip(vetor_x, vetor_y): |
||
| 232 | a = a + (x * y) |
||
| 233 | return a |
||
| 234 | |||
| 235 | |||
| 236 | def linear_coeff(x, y): |
||
| 237 | """ |
||
| 238 | This function returns the inclination coeffecient and y axis interception coeffecient m and b. |
||
| 239 | """ |
||
| 240 | m = (multiplica(x,y) - sum_mean(x)[0] * sum_mean(y)[1]) / (multiplica(x,x) - sum_mean(x)[0] * sum_mean(x)[1]) |
||
| 241 | b = sum_mean(y)[1] - m * sum_mean(x)[1] |
||
| 242 | return m, b |
||
| 243 | |||
| 244 | |||
| 245 | def y_fitted_line(m, b, x): |
||
| 246 | y_base = [] |
||
| 247 | for i in x: |
||
| 248 | y = m * i + b |
||
| 249 | y_base.append(y) |
||
| 250 | return y_base |
||
| 251 | |||
| 252 | |||
| 253 | def linear_background(x, y): |
||
| 254 | idx = critical_idx(x, y) + 5 #this is also arbitrary number we can play with. |
||
| 255 | m, b = linear_coeff(x[(idx - int(0.5 * idx)) : (idx + int(0.5 * idx))], y[(idx - int(0.5 * idx)) : (idx + int(0.5 * idx))]) |
||
| 256 | y_base = y_fitted_line(m, b, x) |
||
| 257 | return y_base |
||
| 258 | |||
| 259 | View Code Duplication | def peak_detection_fxn(data_y): |
|
|
|
|||
| 260 | """The function takes an input of the column containing the y variables in the dataframe, |
||
| 261 | associated with the current. The function calls the split function, which splits the |
||
| 262 | column into two arrays, one of the positive and one of the negative values. |
||
| 263 | This is because cyclic voltammetry delivers negative peaks, but the peakutils function works |
||
| 264 | better with positive peaks. The function also runs on the middle 80% of data to eliminate |
||
| 265 | unnecessary noise and messy values associated with pseudo-peaks.The vectors are then imported |
||
| 266 | into the peakutils.indexes function to determine the significant peak for each array. |
||
| 267 | The values are stored in a list, with the first index corresponding to the top peak and the |
||
| 268 | second corresponding to the bottom peak. |
||
| 269 | Parameters |
||
| 270 | ______________ |
||
| 271 | y column: must be a column from a pandas dataframe |
||
| 272 | |||
| 273 | Returns |
||
| 274 | _____________ |
||
| 275 | A list with the index of the peaks from the top curve and bottom curve. |
||
| 276 | """ |
||
| 277 | |||
| 278 | # initialize storage list |
||
| 279 | index_list = [] |
||
| 280 | |||
| 281 | # split data into above and below the baseline |
||
| 282 | col_y1, col_y2 = split(data_y) # removed main. head. |
||
| 283 | |||
| 284 | # detemine length of data and what 10% of the data is |
||
| 285 | len_y = len(col_y1) |
||
| 286 | ten_percent = int(np.around(0.1*len_y)) |
||
| 287 | |||
| 288 | # adjust both input columns to be the middle 80% of data |
||
| 289 | # (take of the first and last 10% of data) |
||
| 290 | # this avoid detecting peaks from electrolysis |
||
| 291 | # (from water splitting and not the molecule itself, |
||
| 292 | # which can form random "peaks") |
||
| 293 | mod_col_y2 = col_y2[ten_percent:len_y-ten_percent] |
||
| 294 | mod_col_y1 = col_y1[ten_percent:len_y-ten_percent] |
||
| 295 | |||
| 296 | # run peakutils package to detect the peaks for both top and bottom |
||
| 297 | peak_top = peakutils.indexes(mod_col_y2, thres=0.99, min_dist=20) |
||
| 298 | peak_bottom = peakutils.indexes(abs(mod_col_y1), thres=0.99, min_dist=20) |
||
| 299 | |||
| 300 | # detemine length of both halves of data |
||
| 301 | len_top = len(peak_top) |
||
| 302 | len_bot = len(peak_bottom) |
||
| 303 | |||
| 304 | # append the values to the storage list |
||
| 305 | # manipulate values by adding the ten_percent value back |
||
| 306 | # (as the indecies have moved) |
||
| 307 | # to detect the actual peaks and not the modified values |
||
| 308 | index_list.append(peak_top[int(len_top/2)]+ten_percent) |
||
| 309 | index_list.append(peak_bottom[int(len_bot/2)]+ten_percent) |
||
| 310 | |||
| 311 | # return storage list |
||
| 312 | # first value is the top, second value is the bottom |
||
| 313 | return index_list |
||
| 314 | |||
| 315 | |||
| 316 | def peak_values(DataFrame_x, DataFrame_y): |
||
| 317 | """Outputs x (potentials) and y (currents) values from data indices |
||
| 318 | given by peak_detection function. |
||
| 319 | |||
| 320 | ---------- |
||
| 321 | Parameters |
||
| 322 | ---------- |
||
| 323 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 324 | For example, df['potentials'] could be input as the column of x |
||
| 325 | data. |
||
| 326 | |||
| 327 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 328 | For example, df['currents'] could be input as the column of y |
||
| 329 | data. |
||
| 330 | |||
| 331 | Returns |
||
| 332 | ------- |
||
| 333 | Result : numpy array of coordinates at peaks in the following order: |
||
| 334 | potential of peak on top curve, current of peak on top curve, |
||
| 335 | potential of peak on bottom curve, current of peak on bottom curve""" |
||
| 336 | index = peak_detection_fxn(DataFrame_y) |
||
| 337 | potential1, potential2 = split(DataFrame_x) |
||
| 338 | current1, current2 = split(DataFrame_y) |
||
| 339 | Peak_values = [] |
||
| 340 | Peak_values.append(potential2[(index[0])]) # TOPX (bottom part of curve is |
||
| 341 | # the first part of DataFrame) |
||
| 342 | Peak_values.append(current2[(index[0])]) # TOPY |
||
| 343 | Peak_values.append(potential1[(index[1])]) # BOTTOMX |
||
| 344 | Peak_values.append(current1[(index[1])]) # BOTTOMY |
||
| 345 | Peak_array = np.array(Peak_values) |
||
| 346 | return Peak_array |
||
| 347 | |||
| 348 | |||
| 349 | def del_potential(DataFrame_x, DataFrame_y): |
||
| 350 | """Outputs the difference in potentials between anoidc and |
||
| 351 | cathodic peaks in cyclic voltammetry data. |
||
| 352 | |||
| 353 | Parameters |
||
| 354 | ---------- |
||
| 355 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 356 | For example, df['potentials'] could be input as the column of x |
||
| 357 | data. |
||
| 358 | |||
| 359 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 360 | For example, df['currents'] could be input as the column of y |
||
| 361 | data. |
||
| 362 | |||
| 363 | Returns |
||
| 364 | ------- |
||
| 365 | Results: difference in peak potentials in the form of a numpy array.""" |
||
| 366 | del_potentials = (peak_values(DataFrame_x, DataFrame_y)[0] - |
||
| 367 | peak_values(DataFrame_x, DataFrame_y)[2]) |
||
| 368 | return del_potentials |
||
| 369 | |||
| 370 | |||
| 371 | def half_wave_potential(DataFrame_x, DataFrame_y): |
||
| 372 | """Outputs the half wave potential(redox potential) from cyclic |
||
| 373 | voltammetry data. |
||
| 374 | |||
| 375 | Parameters |
||
| 376 | ---------- |
||
| 377 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 378 | For example, df['potentials'] could be input as the column of x |
||
| 379 | data. |
||
| 380 | |||
| 381 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 382 | For example, df['currents'] could be input as the column of y |
||
| 383 | data. |
||
| 384 | |||
| 385 | Returns |
||
| 386 | ------- |
||
| 387 | Results : the half wave potential in the form of a |
||
| 388 | floating point number.""" |
||
| 389 | half_wave_potential = (del_potential(DataFrame_x, DataFrame_y))/2 |
||
| 390 | return half_wave_potential |
||
| 391 | |||
| 392 | |||
| 393 | def peak_heights(DataFrame_x, DataFrame_y): |
||
| 394 | """Outputs heights of minimum peak and maximum |
||
| 395 | peak from cyclic voltammetry data. |
||
| 396 | |||
| 397 | Parameters |
||
| 398 | ---------- |
||
| 399 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 400 | For example, df['potentials'] could be input as the column of x |
||
| 401 | data. |
||
| 402 | |||
| 403 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 404 | For example, df['currents'] could be input as the column of y |
||
| 405 | data. |
||
| 406 | |||
| 407 | Returns |
||
| 408 | ------- |
||
| 409 | Results: height of maximum peak, height of minimum peak |
||
| 410 | in that order in the form of a list.""" |
||
| 411 | current_max = peak_values(DataFrame_x, DataFrame_y)[1] |
||
| 412 | current_min = peak_values(DataFrame_x, DataFrame_y)[3] |
||
| 413 | x1, x2 = split(DataFrame_x) |
||
| 414 | y1, y2 = split(DataFrame_y) |
||
| 415 | line_at_min = linear_background(x1, y1)[peak_detection_fxn(DataFrame_y)[1]] |
||
| 416 | line_at_max = linear_background(x2, y2)[peak_detection_fxn(DataFrame_y)[0]] |
||
| 417 | height_of_max = current_max - line_at_max |
||
| 418 | height_of_min = abs(current_min - line_at_min) |
||
| 419 | return [height_of_max, height_of_min] |
||
| 420 | |||
| 421 | |||
| 422 | def peak_ratio(DataFrame_x, DataFrame_y): |
||
| 423 | """Outputs the peak ratios from cyclic voltammetry data. |
||
| 424 | |||
| 425 | Parameters |
||
| 426 | ---------- |
||
| 427 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 428 | For example, df['potentials'] could be input as the column of x |
||
| 429 | data. |
||
| 430 | |||
| 431 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 432 | For example, df['currents'] could be input as the column of y |
||
| 433 | data. |
||
| 434 | |||
| 435 | Returns |
||
| 436 | ------- |
||
| 437 | Result : returns a floating point number, the peak ratio.""" |
||
| 438 | ratio = (peak_heights(DataFrame_x, DataFrame_y)[0] / |
||
| 439 | peak_heights(DataFrame_x, DataFrame_y)[1]) |
||
| 440 | return ratio |
||
| 441 |