|
1
|
|
|
# This is a tool to automate cyclic voltametry analysis.
|
|
2
|
|
|
# Current Version = 1
|
|
3
|
|
|
|
|
4
|
|
|
import pandas as pd
|
|
5
|
|
|
import numpy as np
|
|
6
|
|
|
import csv
|
|
7
|
|
|
import matplotlib.pyplot as plt
|
|
8
|
|
|
import warnings
|
|
9
|
|
|
import matplotlib.cbook
|
|
10
|
|
|
import peakutils
|
|
11
|
|
|
import copy
|
|
12
|
|
|
from matplotlib import rcParams
|
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
def read_cycle(data):
|
|
16
|
|
|
"""This function reads a segment of datafile (corresponding a cycle)
|
|
17
|
|
|
and generates a dataframe with columns 'Potential' and 'Current'
|
|
18
|
|
|
|
|
19
|
|
|
Parameters
|
|
20
|
|
|
__________
|
|
21
|
|
|
data: segment of data file
|
|
22
|
|
|
|
|
23
|
|
|
Returns
|
|
24
|
|
|
_______
|
|
25
|
|
|
A dataframe with potential and current columns
|
|
26
|
|
|
"""
|
|
27
|
|
|
|
|
28
|
|
|
current = []
|
|
29
|
|
|
potential = []
|
|
30
|
|
|
for i in data[3:]:
|
|
31
|
|
|
current.append(float(i.split("\t")[4]))
|
|
32
|
|
|
potential.append(float(i.split("\t")[3]))
|
|
33
|
|
|
zippedList = list(zip(potential, current))
|
|
34
|
|
|
df = pd.DataFrame(zippedList, columns = ['Potential' , 'Current'])
|
|
35
|
|
|
return df
|
|
36
|
|
|
|
|
37
|
|
|
|
|
38
|
|
|
def read_file_dash(lines):
|
|
39
|
|
|
"""This function is exactly similar to read_file, but it is for dash
|
|
40
|
|
|
|
|
41
|
|
|
Parameters
|
|
42
|
|
|
__________
|
|
43
|
|
|
file: lines from dash input file
|
|
44
|
|
|
|
|
45
|
|
|
Returns:
|
|
46
|
|
|
________
|
|
47
|
|
|
dict_of_df: dictionary of dataframes with keys = cycle numbers and
|
|
48
|
|
|
values = dataframes for each cycle
|
|
49
|
|
|
n_cycle: number of cycles in the raw file
|
|
50
|
|
|
"""
|
|
51
|
|
|
dict_of_df = {}
|
|
52
|
|
|
h = 0
|
|
53
|
|
|
l = 0
|
|
54
|
|
|
n_cycle = 0
|
|
55
|
|
|
number = 0
|
|
56
|
|
|
#a = []
|
|
57
|
|
|
#with open(file, 'rt') as f:
|
|
58
|
|
|
# print(file + ' Opened')
|
|
59
|
|
|
for line in lines:
|
|
60
|
|
|
record = 0
|
|
61
|
|
|
if not (h and l):
|
|
62
|
|
|
if line.startswith('SCANRATE'):
|
|
63
|
|
|
scan_rate = float(line.split()[2])
|
|
64
|
|
|
h = 1
|
|
65
|
|
|
if line.startswith('STEPSIZE'):
|
|
66
|
|
|
step_size = float(line.split()[2])
|
|
67
|
|
|
l = 1
|
|
68
|
|
|
if line.startswith('CURVE'):
|
|
69
|
|
|
n_cycle += 1
|
|
70
|
|
|
if n_cycle > 1:
|
|
71
|
|
|
number = n_cycle - 1
|
|
72
|
|
|
df = read_cycle(a)
|
|
73
|
|
|
key_name = 'cycle_' + str(number)
|
|
74
|
|
|
#key_name = number
|
|
75
|
|
|
dict_of_df[key_name] = copy.deepcopy(df)
|
|
76
|
|
|
a = []
|
|
77
|
|
|
if n_cycle:
|
|
78
|
|
|
a.append(line)
|
|
79
|
|
|
return dict_of_df, number
|
|
80
|
|
|
|
|
81
|
|
|
|
|
82
|
|
|
def read_file(file):
|
|
83
|
|
|
"""This function reads the raw data file, gets the scanrate and stepsize
|
|
84
|
|
|
and then reads the lines according to cycle number. Once it reads the data
|
|
85
|
|
|
for one cycle, it calls read_cycle function to generate a dataframe. It
|
|
86
|
|
|
does the same thing for all the cycles and finally returns a dictionary,
|
|
87
|
|
|
the keys of which are the cycle numbers and the values are the
|
|
88
|
|
|
corresponding dataframes.
|
|
89
|
|
|
|
|
90
|
|
|
Parameters
|
|
91
|
|
|
__________
|
|
92
|
|
|
file: raw data file
|
|
93
|
|
|
|
|
94
|
|
|
Returns:
|
|
95
|
|
|
________
|
|
96
|
|
|
dict_of_df: dictionary of dataframes with keys = cycle numbers and
|
|
97
|
|
|
values = dataframes for each cycle
|
|
98
|
|
|
n_cycle: number of cycles in the raw file
|
|
99
|
|
|
"""
|
|
100
|
|
|
dict_of_df = {}
|
|
101
|
|
|
h = 0
|
|
102
|
|
|
l = 0
|
|
103
|
|
|
n_cycle = 0
|
|
104
|
|
|
#a = []
|
|
105
|
|
|
with open(file, 'rt') as f:
|
|
106
|
|
|
print(file + ' Opened')
|
|
107
|
|
|
for line in f:
|
|
108
|
|
|
record = 0
|
|
109
|
|
|
if not (h and l):
|
|
110
|
|
|
if line.startswith('SCANRATE'):
|
|
111
|
|
|
scan_rate = float(line.split()[2])
|
|
112
|
|
|
h = 1
|
|
113
|
|
|
if line.startswith('STEPSIZE'):
|
|
114
|
|
|
step_size = float(line.split()[2])
|
|
115
|
|
|
l = 1
|
|
116
|
|
|
if line.startswith('CURVE'):
|
|
117
|
|
|
n_cycle += 1
|
|
118
|
|
|
if n_cycle > 1:
|
|
119
|
|
|
number = n_cycle - 1
|
|
120
|
|
|
df = read_cycle(a)
|
|
121
|
|
|
key_name = 'cycle_' + str(number)
|
|
122
|
|
|
#key_name = number
|
|
123
|
|
|
dict_of_df[key_name] = copy.deepcopy(df)
|
|
124
|
|
|
a = []
|
|
125
|
|
|
if n_cycle:
|
|
126
|
|
|
a.append(line)
|
|
127
|
|
|
return dict_of_df, number
|
|
128
|
|
|
|
|
129
|
|
|
|
|
130
|
|
|
#df = pd.DataFrame(list(dict1['df_1'].items()))
|
|
131
|
|
|
#list1, list2 = list(dict1['df_1'].items())
|
|
132
|
|
|
#list1, list2 = list(dict1.get('df_'+str(1)))
|
|
133
|
|
|
|
|
134
|
|
|
def data_frame(dict_cycle, n):
|
|
135
|
|
|
"""Reads the dictionary of dataframes and returns dataframes for each cycle
|
|
136
|
|
|
|
|
137
|
|
|
Parameters
|
|
138
|
|
|
__________
|
|
139
|
|
|
dict_cycle: Dictionary of dataframes
|
|
140
|
|
|
n: cycle number
|
|
141
|
|
|
|
|
142
|
|
|
Returns:
|
|
143
|
|
|
_______
|
|
144
|
|
|
Dataframe correcponding to the cycle number
|
|
145
|
|
|
"""
|
|
146
|
|
|
list1, list2 = (list(dict_cycle.get('cycle_'+str(n)).items()))
|
|
147
|
|
|
zippedList = list(zip(list1[1], list2[1]))
|
|
148
|
|
|
data = pd.DataFrame(zippedList, columns = ['Potential' , 'Current'])
|
|
149
|
|
|
return data
|
|
150
|
|
|
|
|
151
|
|
|
|
|
152
|
|
|
def plot_fig(dict_cycle, n):
|
|
153
|
|
|
"""For basic plotting of the cycle data
|
|
154
|
|
|
|
|
155
|
|
|
Parameters
|
|
156
|
|
|
__________
|
|
157
|
|
|
dict: dictionary of dataframes for all the cycles
|
|
158
|
|
|
n: number of cycles
|
|
159
|
|
|
|
|
160
|
|
|
Saves the plot in a file called cycle.png
|
|
161
|
|
|
"""
|
|
162
|
|
|
|
|
163
|
|
|
for i in range(n):
|
|
164
|
|
|
print(i+1)
|
|
165
|
|
|
df = data_frame(dict_cycle, i+1)
|
|
166
|
|
|
plt.plot(df.Potential, df.Current, label = "Cycle{}".format(i+1))
|
|
167
|
|
|
|
|
168
|
|
|
#print(df.head())
|
|
169
|
|
|
plt.xlabel('Voltage')
|
|
170
|
|
|
plt.ylabel('Current')
|
|
171
|
|
|
plt.legend()
|
|
172
|
|
|
plt.savefig('cycle.png')
|
|
173
|
|
|
print('executed')
|
|
174
|
|
|
|
|
175
|
|
|
|
|
176
|
|
|
#split forward and backward sweping data, to make it easier for processing.
|
|
177
|
|
|
def split(vector):
|
|
178
|
|
|
"""
|
|
179
|
|
|
This function takes an array and splits it into two half.
|
|
180
|
|
|
"""
|
|
181
|
|
|
split = int(len(vector)/2)
|
|
182
|
|
|
end = int(len(vector))
|
|
183
|
|
|
vector1 = np.array(vector)[0:split]
|
|
184
|
|
|
vector2 = np.array(vector)[split:end]
|
|
185
|
|
|
return vector1, vector2
|
|
186
|
|
|
|
|
187
|
|
|
|
|
188
|
|
|
def critical_idx(x, y): ## Finds index where data set is no longer linear
|
|
189
|
|
|
"""
|
|
190
|
|
|
This function takes x and y values callculate the derrivative of x and y, and calculate moving average of 5 and 15 points.
|
|
191
|
|
|
Finds intercepts of different moving average curves and return the indexs of the first intercepts.
|
|
192
|
|
|
"""
|
|
193
|
|
|
k = np.diff(y)/(np.diff(x)) #calculated slops of x and y
|
|
194
|
|
|
## Calculate moving average for 5 and 15 points.
|
|
195
|
|
|
## This two arbitrary number can be tuned to get better fitting.
|
|
196
|
|
|
ave5 = []
|
|
197
|
|
|
ave15 = []
|
|
198
|
|
|
for i in range(len(k)-10): # The reason to minus 5 is to prevent j from running out of index.
|
|
199
|
|
|
a = 0
|
|
200
|
|
|
for j in range(0,10):
|
|
201
|
|
|
a = a + k[i+j]
|
|
202
|
|
|
ave5.append(round(a/10, 5)) # keeping 9 desimal points for more accuracy
|
|
203
|
|
|
|
|
204
|
|
|
for i in range(len(k)-15):
|
|
205
|
|
|
b = 0
|
|
206
|
|
|
for j in range(0,15):
|
|
207
|
|
|
b = b + k[i+j]
|
|
208
|
|
|
ave15.append(round(b/15, 5))
|
|
209
|
|
|
ave5i = np.asarray(ave5)
|
|
210
|
|
|
#print(ave10i)
|
|
211
|
|
|
ave15i = np.asarray(ave15)
|
|
212
|
|
|
#print(ave15i)
|
|
213
|
|
|
## Find intercepts of different moving average curves
|
|
214
|
|
|
idx = np.argwhere(np.diff(np.sign(ave15i - ave5i[:len(ave15i)])!= 0)).reshape(-1)+0 #reshape into one row.
|
|
215
|
|
|
return idx[5]
|
|
216
|
|
|
|
|
217
|
|
|
# This is based on the method 1 where user can't choose the baseline.
|
|
218
|
|
|
# If wanted to add that, choose method2.
|
|
219
|
|
|
def sum_mean(vector):
|
|
220
|
|
|
"""
|
|
221
|
|
|
This function returns the mean values.
|
|
222
|
|
|
"""
|
|
223
|
|
|
a = 0
|
|
224
|
|
|
for i in vector:
|
|
225
|
|
|
a = a + i
|
|
226
|
|
|
return [a,a/len(vector)]
|
|
227
|
|
|
|
|
228
|
|
|
|
|
229
|
|
|
def multiplica(vetor_x, vetor_y):
|
|
230
|
|
|
a = 0
|
|
231
|
|
|
for x,y in zip(vetor_x, vetor_y):
|
|
232
|
|
|
a = a + (x * y)
|
|
233
|
|
|
return a
|
|
234
|
|
|
|
|
235
|
|
|
|
|
236
|
|
|
def linear_coeff(x, y):
|
|
237
|
|
|
"""
|
|
238
|
|
|
This function returns the inclination coeffecient and y axis interception coeffecient m and b.
|
|
239
|
|
|
"""
|
|
240
|
|
|
m = (multiplica(x,y) - sum_mean(x)[0] * sum_mean(y)[1]) / (multiplica(x,x) - sum_mean(x)[0] * sum_mean(x)[1])
|
|
241
|
|
|
b = sum_mean(y)[1] - m * sum_mean(x)[1]
|
|
242
|
|
|
return m, b
|
|
243
|
|
|
|
|
244
|
|
|
|
|
245
|
|
|
def y_fitted_line(m, b, x):
|
|
246
|
|
|
y_base = []
|
|
247
|
|
|
for i in x:
|
|
248
|
|
|
y = m * i + b
|
|
249
|
|
|
y_base.append(y)
|
|
250
|
|
|
return y_base
|
|
251
|
|
|
|
|
252
|
|
|
|
|
253
|
|
|
def linear_background(x, y):
|
|
254
|
|
|
idx = critical_idx(x, y) + 5 #this is also arbitrary number we can play with.
|
|
255
|
|
|
m, b = linear_coeff(x[(idx - int(0.5 * idx)) : (idx + int(0.5 * idx))], y[(idx - int(0.5 * idx)) : (idx + int(0.5 * idx))])
|
|
256
|
|
|
y_base = y_fitted_line(m, b, x)
|
|
257
|
|
|
return y_base
|
|
258
|
|
|
|
|
259
|
|
View Code Duplication |
def peak_detection_fxn(data_y):
|
|
|
|
|
|
|
260
|
|
|
"""The function takes an input of the column containing the y variables in the dataframe,
|
|
261
|
|
|
associated with the current. The function calls the split function, which splits the
|
|
262
|
|
|
column into two arrays, one of the positive and one of the negative values.
|
|
263
|
|
|
This is because cyclic voltammetry delivers negative peaks, but the peakutils function works
|
|
264
|
|
|
better with positive peaks. The function also runs on the middle 80% of data to eliminate
|
|
265
|
|
|
unnecessary noise and messy values associated with pseudo-peaks.The vectors are then imported
|
|
266
|
|
|
into the peakutils.indexes function to determine the significant peak for each array.
|
|
267
|
|
|
The values are stored in a list, with the first index corresponding to the top peak and the
|
|
268
|
|
|
second corresponding to the bottom peak.
|
|
269
|
|
|
Parameters
|
|
270
|
|
|
______________
|
|
271
|
|
|
y column: must be a column from a pandas dataframe
|
|
272
|
|
|
|
|
273
|
|
|
Returns
|
|
274
|
|
|
_____________
|
|
275
|
|
|
A list with the index of the peaks from the top curve and bottom curve.
|
|
276
|
|
|
"""
|
|
277
|
|
|
|
|
278
|
|
|
# initialize storage list
|
|
279
|
|
|
index_list = []
|
|
280
|
|
|
|
|
281
|
|
|
# split data into above and below the baseline
|
|
282
|
|
|
col_y1, col_y2 = split(data_y) # removed main. head.
|
|
283
|
|
|
|
|
284
|
|
|
# detemine length of data and what 10% of the data is
|
|
285
|
|
|
len_y = len(col_y1)
|
|
286
|
|
|
ten_percent = int(np.around(0.1*len_y))
|
|
287
|
|
|
|
|
288
|
|
|
# adjust both input columns to be the middle 80% of data
|
|
289
|
|
|
# (take of the first and last 10% of data)
|
|
290
|
|
|
# this avoid detecting peaks from electrolysis
|
|
291
|
|
|
# (from water splitting and not the molecule itself,
|
|
292
|
|
|
# which can form random "peaks")
|
|
293
|
|
|
mod_col_y2 = col_y2[ten_percent:len_y-ten_percent]
|
|
294
|
|
|
mod_col_y1 = col_y1[ten_percent:len_y-ten_percent]
|
|
295
|
|
|
|
|
296
|
|
|
# run peakutils package to detect the peaks for both top and bottom
|
|
297
|
|
|
peak_top = peakutils.indexes(mod_col_y2, thres=0.99, min_dist=20)
|
|
298
|
|
|
peak_bottom = peakutils.indexes(abs(mod_col_y1), thres=0.99, min_dist=20)
|
|
299
|
|
|
|
|
300
|
|
|
# detemine length of both halves of data
|
|
301
|
|
|
len_top = len(peak_top)
|
|
302
|
|
|
len_bot = len(peak_bottom)
|
|
303
|
|
|
|
|
304
|
|
|
# append the values to the storage list
|
|
305
|
|
|
# manipulate values by adding the ten_percent value back
|
|
306
|
|
|
# (as the indecies have moved)
|
|
307
|
|
|
# to detect the actual peaks and not the modified values
|
|
308
|
|
|
index_list.append(peak_top[int(len_top/2)]+ten_percent)
|
|
309
|
|
|
index_list.append(peak_bottom[int(len_bot/2)]+ten_percent)
|
|
310
|
|
|
|
|
311
|
|
|
# return storage list
|
|
312
|
|
|
# first value is the top, second value is the bottom
|
|
313
|
|
|
return index_list
|
|
314
|
|
|
|
|
315
|
|
|
|
|
316
|
|
|
def peak_values(DataFrame_x, DataFrame_y):
|
|
317
|
|
|
"""Outputs x (potentials) and y (currents) values from data indices
|
|
318
|
|
|
given by peak_detection function.
|
|
319
|
|
|
|
|
320
|
|
|
----------
|
|
321
|
|
|
Parameters
|
|
322
|
|
|
----------
|
|
323
|
|
|
DataFrame_x : should be in the form of a pandas DataFrame column.
|
|
324
|
|
|
For example, df['potentials'] could be input as the column of x
|
|
325
|
|
|
data.
|
|
326
|
|
|
|
|
327
|
|
|
DataFrame_y : should be in the form of a pandas DataFrame column.
|
|
328
|
|
|
For example, df['currents'] could be input as the column of y
|
|
329
|
|
|
data.
|
|
330
|
|
|
|
|
331
|
|
|
Returns
|
|
332
|
|
|
-------
|
|
333
|
|
|
Result : numpy array of coordinates at peaks in the following order:
|
|
334
|
|
|
potential of peak on top curve, current of peak on top curve,
|
|
335
|
|
|
potential of peak on bottom curve, current of peak on bottom curve"""
|
|
336
|
|
|
index = peak_detection_fxn(DataFrame_y)
|
|
337
|
|
|
potential1, potential2 = split(DataFrame_x)
|
|
338
|
|
|
current1, current2 = split(DataFrame_y)
|
|
339
|
|
|
Peak_values = []
|
|
340
|
|
|
Peak_values.append(potential2[(index[0])]) # TOPX (bottom part of curve is
|
|
341
|
|
|
# the first part of DataFrame)
|
|
342
|
|
|
Peak_values.append(current2[(index[0])]) # TOPY
|
|
343
|
|
|
Peak_values.append(potential1[(index[1])]) # BOTTOMX
|
|
344
|
|
|
Peak_values.append(current1[(index[1])]) # BOTTOMY
|
|
345
|
|
|
Peak_array = np.array(Peak_values)
|
|
346
|
|
|
return Peak_array
|
|
347
|
|
|
|
|
348
|
|
|
|
|
349
|
|
|
def del_potential(DataFrame_x, DataFrame_y):
|
|
350
|
|
|
"""Outputs the difference in potentials between anoidc and
|
|
351
|
|
|
cathodic peaks in cyclic voltammetry data.
|
|
352
|
|
|
|
|
353
|
|
|
Parameters
|
|
354
|
|
|
----------
|
|
355
|
|
|
DataFrame_x : should be in the form of a pandas DataFrame column.
|
|
356
|
|
|
For example, df['potentials'] could be input as the column of x
|
|
357
|
|
|
data.
|
|
358
|
|
|
|
|
359
|
|
|
DataFrame_y : should be in the form of a pandas DataFrame column.
|
|
360
|
|
|
For example, df['currents'] could be input as the column of y
|
|
361
|
|
|
data.
|
|
362
|
|
|
|
|
363
|
|
|
Returns
|
|
364
|
|
|
-------
|
|
365
|
|
|
Results: difference in peak potentials in the form of a numpy array."""
|
|
366
|
|
|
del_potentials = (peak_values(DataFrame_x, DataFrame_y)[0] -
|
|
367
|
|
|
peak_values(DataFrame_x, DataFrame_y)[2])
|
|
368
|
|
|
return del_potentials
|
|
369
|
|
|
|
|
370
|
|
|
|
|
371
|
|
|
def half_wave_potential(DataFrame_x, DataFrame_y):
|
|
372
|
|
|
"""Outputs the half wave potential(redox potential) from cyclic
|
|
373
|
|
|
voltammetry data.
|
|
374
|
|
|
|
|
375
|
|
|
Parameters
|
|
376
|
|
|
----------
|
|
377
|
|
|
DataFrame_x : should be in the form of a pandas DataFrame column.
|
|
378
|
|
|
For example, df['potentials'] could be input as the column of x
|
|
379
|
|
|
data.
|
|
380
|
|
|
|
|
381
|
|
|
DataFrame_y : should be in the form of a pandas DataFrame column.
|
|
382
|
|
|
For example, df['currents'] could be input as the column of y
|
|
383
|
|
|
data.
|
|
384
|
|
|
|
|
385
|
|
|
Returns
|
|
386
|
|
|
-------
|
|
387
|
|
|
Results : the half wave potential in the form of a
|
|
388
|
|
|
floating point number."""
|
|
389
|
|
|
half_wave_potential = (del_potential(DataFrame_x, DataFrame_y))/2
|
|
390
|
|
|
return half_wave_potential
|
|
391
|
|
|
|
|
392
|
|
|
|
|
393
|
|
|
def peak_heights(DataFrame_x, DataFrame_y):
|
|
394
|
|
|
"""Outputs heights of minimum peak and maximum
|
|
395
|
|
|
peak from cyclic voltammetry data.
|
|
396
|
|
|
|
|
397
|
|
|
Parameters
|
|
398
|
|
|
----------
|
|
399
|
|
|
DataFrame_x : should be in the form of a pandas DataFrame column.
|
|
400
|
|
|
For example, df['potentials'] could be input as the column of x
|
|
401
|
|
|
data.
|
|
402
|
|
|
|
|
403
|
|
|
DataFrame_y : should be in the form of a pandas DataFrame column.
|
|
404
|
|
|
For example, df['currents'] could be input as the column of y
|
|
405
|
|
|
data.
|
|
406
|
|
|
|
|
407
|
|
|
Returns
|
|
408
|
|
|
-------
|
|
409
|
|
|
Results: height of maximum peak, height of minimum peak
|
|
410
|
|
|
in that order in the form of a list."""
|
|
411
|
|
|
current_max = peak_values(DataFrame_x, DataFrame_y)[1]
|
|
412
|
|
|
current_min = peak_values(DataFrame_x, DataFrame_y)[3]
|
|
413
|
|
|
x1, x2 = split(DataFrame_x)
|
|
414
|
|
|
y1, y2 = split(DataFrame_y)
|
|
415
|
|
|
line_at_min = linear_background(x1, y1)[peak_detection_fxn(DataFrame_y)[1]]
|
|
416
|
|
|
line_at_max = linear_background(x2, y2)[peak_detection_fxn(DataFrame_y)[0]]
|
|
417
|
|
|
height_of_max = current_max - line_at_max
|
|
418
|
|
|
height_of_min = abs(current_min - line_at_min)
|
|
419
|
|
|
return [height_of_max, height_of_min]
|
|
420
|
|
|
|
|
421
|
|
|
|
|
422
|
|
|
def peak_ratio(DataFrame_x, DataFrame_y):
|
|
423
|
|
|
"""Outputs the peak ratios from cyclic voltammetry data.
|
|
424
|
|
|
|
|
425
|
|
|
Parameters
|
|
426
|
|
|
----------
|
|
427
|
|
|
DataFrame_x : should be in the form of a pandas DataFrame column.
|
|
428
|
|
|
For example, df['potentials'] could be input as the column of x
|
|
429
|
|
|
data.
|
|
430
|
|
|
|
|
431
|
|
|
DataFrame_y : should be in the form of a pandas DataFrame column.
|
|
432
|
|
|
For example, df['currents'] could be input as the column of y
|
|
433
|
|
|
data.
|
|
434
|
|
|
|
|
435
|
|
|
Returns
|
|
436
|
|
|
-------
|
|
437
|
|
|
Result : returns a floating point number, the peak ratio."""
|
|
438
|
|
|
ratio = (peak_heights(DataFrame_x, DataFrame_y)[0] /
|
|
439
|
|
|
peak_heights(DataFrame_x, DataFrame_y)[1])
|
|
440
|
|
|
return ratio
|
|
441
|
|
|
|