1
|
|
|
"""Create a basic scenario from the internal data structure. |
2
|
|
|
|
3
|
|
|
SPDX-FileCopyrightText: 2016-2021 Uwe Krien <[email protected]> |
4
|
|
|
|
5
|
|
|
SPDX-License-Identifier: MIT |
6
|
|
|
""" |
7
|
|
|
import calendar |
8
|
|
|
import configparser |
9
|
|
|
|
10
|
|
|
import pandas as pd |
11
|
|
|
from reegis import config as cfg |
12
|
|
|
from reegis import mobility |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def scenario_mobility(year, table): |
16
|
|
|
""" |
17
|
|
|
|
18
|
|
|
Parameters |
19
|
|
|
---------- |
20
|
|
|
year |
21
|
|
|
table |
22
|
|
|
|
23
|
|
|
Returns |
24
|
|
|
------- |
25
|
|
|
|
26
|
|
|
Examples |
27
|
|
|
-------- |
28
|
|
|
>>> my_table = scenario_mobility(2015, {}) |
29
|
|
|
>>> my_table["mobility_mileage"]["DE"].sum() |
30
|
|
|
diesel 3.769021e+11 |
31
|
|
|
petrol 3.272263e+11 |
32
|
|
|
other 1.334462e+10 |
33
|
|
|
dtype: float64 |
34
|
|
|
>>> my_table["mobility_spec_demand"]["DE"].loc["passenger car"] |
35
|
|
|
diesel 0.067 |
36
|
|
|
petrol 0.079 |
37
|
|
|
other 0.000 |
38
|
|
|
Name: passenger car, dtype: float64 |
39
|
|
|
>>> my_table["mobility_energy_content"]["DE"]["diesel"] |
40
|
|
|
energy_per_liter [MJ/l] 34.7 |
41
|
|
|
Name: diesel, dtype: float64 |
42
|
|
|
""" |
43
|
|
|
if calendar.isleap(year): |
44
|
|
|
hours_of_the_year = 8784 |
45
|
|
|
else: |
46
|
|
|
hours_of_the_year = 8760 |
47
|
|
|
|
48
|
|
|
try: |
49
|
|
|
other = cfg.get("creator", "mobility_other") |
50
|
|
|
except configparser.NoSectionError: |
51
|
|
|
other = cfg.get("general", "mobility_other") |
52
|
|
|
|
53
|
|
|
mobility_mileage = mobility.get_mileage_by_type_and_fuel(year) |
54
|
|
|
|
55
|
|
|
# fetch table of specific demand by fuel and vehicle type (from 2011) |
56
|
|
|
mobility_spec_demand = ( |
57
|
|
|
pd.DataFrame( |
58
|
|
|
cfg.get_dict_list("fuel consumption"), |
59
|
|
|
index=["diesel", "petrol", "other"], |
60
|
|
|
) |
61
|
|
|
.astype(float) |
62
|
|
|
.transpose() |
63
|
|
|
) |
64
|
|
|
|
65
|
|
|
mobility_spec_demand["other"] = mobility_spec_demand[other] |
66
|
|
|
fuel_usage = mobility_spec_demand.mul(mobility_mileage).sum() |
67
|
|
|
|
68
|
|
|
# fetch the energy content of the different fuel types |
69
|
|
|
mobility_energy_content = pd.DataFrame( |
70
|
|
|
cfg.get_dict("energy_per_liter"), index=["energy_per_liter [MJ/l]"] |
71
|
|
|
)[["diesel", "petrol", "other"]] |
72
|
|
|
|
73
|
|
|
mobility_energy_content["other"] = mobility_energy_content[other] |
74
|
|
|
|
75
|
|
|
# Convert to MW????? BITTE GENAU!!! |
76
|
|
|
energy_usage = fuel_usage.mul(mobility_energy_content).div(3600) |
77
|
|
|
|
78
|
|
|
s = energy_usage.div(hours_of_the_year).transpose()[ |
79
|
|
|
"energy_per_liter [MJ/l]" |
80
|
|
|
] |
81
|
|
|
table["mobility demand series"] = pd.DataFrame( |
82
|
|
|
index=range(hours_of_the_year), columns=energy_usage.columns |
83
|
|
|
).fillna(1) |
84
|
|
|
|
85
|
|
|
table["mobility demand series"] = table["mobility demand series"].mul( |
86
|
|
|
s, axis=1 |
87
|
|
|
) |
88
|
|
|
|
89
|
|
|
table["mobility demand series"][other] += table["mobility demand series"][ |
90
|
|
|
"other" |
91
|
|
|
] |
92
|
|
|
table["mobility demand series"].drop("other", axis=1, inplace=True) |
93
|
|
|
|
94
|
|
|
table["mobility demand series"] = ( |
95
|
|
|
table["mobility demand series"].astype(float).round().astype(int) |
96
|
|
|
) |
97
|
|
|
|
98
|
|
|
table["mobility"] = pd.DataFrame( |
99
|
|
|
index=["diesel", "petrol", "electricity"], |
100
|
|
|
columns=["efficiency", "source", "source region"], |
101
|
|
|
) |
102
|
|
|
|
103
|
|
|
for col in table["mobility"].columns: |
104
|
|
|
for idx in table["mobility"].index: |
105
|
|
|
section = "mobility: " + idx |
106
|
|
|
table["mobility"].loc[idx, col] = cfg.get(section, col) |
107
|
|
|
|
108
|
|
|
# Add "DE" as region level to be consistent to other tables |
109
|
|
|
table["mobility"].index = pd.MultiIndex.from_product( |
110
|
|
|
[["DE"], table["mobility"].index] |
111
|
|
|
) |
112
|
|
|
table["mobility demand series"].columns = pd.MultiIndex.from_product( |
113
|
|
|
[["DE"], table["mobility demand series"].columns] |
114
|
|
|
) |
115
|
|
|
return table |
116
|
|
|
|