Conditions | 5 |
Total Lines | 101 |
Code Lines | 46 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | """Create a basic scenario from the internal data structure. |
||
15 | def scenario_mobility(year, table): |
||
16 | """ |
||
17 | |||
18 | Parameters |
||
19 | ---------- |
||
20 | year |
||
21 | table |
||
22 | |||
23 | Returns |
||
24 | ------- |
||
25 | |||
26 | Examples |
||
27 | -------- |
||
28 | >>> my_table = scenario_mobility(2015, {}) |
||
29 | >>> my_table["mobility_mileage"]["DE"].sum() |
||
30 | diesel 3.769021e+11 |
||
31 | petrol 3.272263e+11 |
||
32 | other 1.334462e+10 |
||
33 | dtype: float64 |
||
34 | >>> my_table["mobility_spec_demand"]["DE"].loc["passenger car"] |
||
35 | diesel 0.067 |
||
36 | petrol 0.079 |
||
37 | other 0.000 |
||
38 | Name: passenger car, dtype: float64 |
||
39 | >>> my_table["mobility_energy_content"]["DE"]["diesel"] |
||
40 | energy_per_liter [MJ/l] 34.7 |
||
41 | Name: diesel, dtype: float64 |
||
42 | """ |
||
43 | if calendar.isleap(year): |
||
44 | hours_of_the_year = 8784 |
||
45 | else: |
||
46 | hours_of_the_year = 8760 |
||
47 | |||
48 | try: |
||
49 | other = cfg.get("creator", "mobility_other") |
||
50 | except configparser.NoSectionError: |
||
51 | other = cfg.get("general", "mobility_other") |
||
52 | |||
53 | mobility_mileage = mobility.get_mileage_by_type_and_fuel(year) |
||
54 | |||
55 | # fetch table of specific demand by fuel and vehicle type (from 2011) |
||
56 | mobility_spec_demand = ( |
||
57 | pd.DataFrame( |
||
58 | cfg.get_dict_list("fuel consumption"), |
||
59 | index=["diesel", "petrol", "other"], |
||
60 | ) |
||
61 | .astype(float) |
||
62 | .transpose() |
||
63 | ) |
||
64 | |||
65 | mobility_spec_demand["other"] = mobility_spec_demand[other] |
||
66 | fuel_usage = mobility_spec_demand.mul(mobility_mileage).sum() |
||
67 | |||
68 | # fetch the energy content of the different fuel types |
||
69 | mobility_energy_content = pd.DataFrame( |
||
70 | cfg.get_dict("energy_per_liter"), index=["energy_per_liter [MJ/l]"] |
||
71 | )[["diesel", "petrol", "other"]] |
||
72 | |||
73 | mobility_energy_content["other"] = mobility_energy_content[other] |
||
74 | |||
75 | # Convert to MW????? BITTE GENAU!!! |
||
76 | energy_usage = fuel_usage.mul(mobility_energy_content).div(3600) |
||
77 | |||
78 | s = energy_usage.div(hours_of_the_year).transpose()[ |
||
79 | "energy_per_liter [MJ/l]" |
||
80 | ] |
||
81 | table["mobility demand series"] = pd.DataFrame( |
||
82 | index=range(hours_of_the_year), columns=energy_usage.columns |
||
83 | ).fillna(1) |
||
84 | |||
85 | table["mobility demand series"] = table["mobility demand series"].mul( |
||
86 | s, axis=1 |
||
87 | ) |
||
88 | |||
89 | table["mobility demand series"][other] += table["mobility demand series"][ |
||
90 | "other" |
||
91 | ] |
||
92 | table["mobility demand series"].drop("other", axis=1, inplace=True) |
||
93 | |||
94 | table["mobility demand series"] = ( |
||
95 | table["mobility demand series"].astype(float).round().astype(int) |
||
96 | ) |
||
97 | |||
98 | table["mobility"] = pd.DataFrame( |
||
99 | index=["diesel", "petrol", "electricity"], |
||
100 | columns=["efficiency", "source", "source region"], |
||
101 | ) |
||
102 | |||
103 | for col in table["mobility"].columns: |
||
104 | for idx in table["mobility"].index: |
||
105 | section = "mobility: " + idx |
||
106 | table["mobility"].loc[idx, col] = cfg.get(section, col) |
||
107 | |||
108 | # Add "DE" as region level to be consistent to other tables |
||
109 | table["mobility"].index = pd.MultiIndex.from_product( |
||
110 | [["DE"], table["mobility"].index] |
||
111 | ) |
||
112 | table["mobility demand series"].columns = pd.MultiIndex.from_product( |
||
113 | [["DE"], table["mobility demand series"].columns] |
||
114 | ) |
||
115 | return table |
||
116 |