1
|
|
|
package it.cnr.istc.pst.platinum.ai.deliberative.strategy; |
2
|
|
|
|
3
|
|
|
import java.io.BufferedWriter; |
4
|
|
|
import java.io.File; |
5
|
|
|
import java.io.FileOutputStream; |
6
|
|
|
import java.io.OutputStreamWriter; |
7
|
|
|
import java.util.Comparator; |
8
|
|
|
import java.util.HashMap; |
9
|
|
|
import java.util.List; |
10
|
|
|
import java.util.Map; |
11
|
|
|
import java.util.NoSuchElementException; |
12
|
|
|
import java.util.PriorityQueue; |
13
|
|
|
import java.util.Queue; |
14
|
|
|
import java.util.Set; |
15
|
|
|
|
16
|
|
|
import org.bson.Document; |
17
|
|
|
|
18
|
|
|
import com.mongodb.client.MongoClient; |
19
|
|
|
import com.mongodb.client.MongoClients; |
20
|
|
|
import com.mongodb.client.MongoCollection; |
21
|
|
|
import com.mongodb.client.MongoDatabase; |
22
|
|
|
|
23
|
|
|
import it.cnr.istc.pst.platinum.ai.deliberative.solver.SearchSpaceNode; |
24
|
|
|
import it.cnr.istc.pst.platinum.ai.deliberative.strategy.ex.EmptyFringeException; |
25
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.domain.component.ComponentValue; |
26
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.domain.component.DomainComponent; |
27
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.domain.component.PlanDataBase; |
28
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.domain.knowledge.DomainKnowledge; |
29
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.microkernel.FrameworkObject; |
30
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.microkernel.annotation.inject.framework.PlanDataBasePlaceholder; |
31
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.microkernel.annotation.lifecycle.PostConstruct; |
32
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.microkernel.lang.flaw.Flaw; |
33
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.microkernel.lang.flaw.FlawType; |
34
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.microkernel.resolver.plan.Goal; |
35
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.utils.properties.FilePropertyReader; |
36
|
|
|
|
37
|
|
|
/** |
38
|
|
|
* |
39
|
|
|
* @author alessandro |
40
|
|
|
* |
41
|
|
|
*/ |
42
|
|
|
public abstract class SearchStrategy extends FrameworkObject implements Comparator<SearchSpaceNode> { |
43
|
|
|
|
44
|
|
|
@PlanDataBasePlaceholder |
45
|
|
|
protected PlanDataBase pdb; // reference to plan data-base |
46
|
|
|
|
47
|
|
|
protected Queue<SearchSpaceNode> fringe; // the fringe of the search space |
48
|
|
|
|
49
|
|
|
protected String label; // strategy label |
50
|
|
|
|
51
|
|
|
protected Map<ComponentValue, List<List<ComponentValue>>> pgraph; // planning graph |
52
|
|
|
protected Map<DomainComponent, Set<DomainComponent>> dgraph; // dependency graph |
53
|
|
|
protected List<DomainComponent>[] dhierarchy; // domain hierarchy |
54
|
|
|
|
55
|
|
|
protected double schedulingCost; // set scheduling cost |
56
|
|
|
protected double completionCost; // set completion cost |
57
|
|
|
protected double planningCost; // general planning cost |
58
|
|
|
protected double expansionCost; // detailed planning cost |
59
|
|
|
protected double unificationCost; // detailed unification cost |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
// set client connection |
63
|
|
|
protected static MongoClient client; |
64
|
|
|
// prepare collection |
65
|
|
|
protected MongoCollection<Document> collection; |
66
|
|
|
|
67
|
|
|
/** |
68
|
|
|
* |
69
|
|
|
* @param label |
70
|
|
|
*/ |
71
|
|
|
protected SearchStrategy(String label) { |
72
|
|
|
super(); |
73
|
|
|
|
74
|
|
|
// initialize the fringe |
75
|
|
|
this.fringe = new PriorityQueue<SearchSpaceNode>(this); |
76
|
|
|
|
77
|
|
|
// set label |
78
|
|
|
this.label = label; |
79
|
|
|
|
80
|
|
|
// get deliberative property file |
81
|
|
|
FilePropertyReader properties = new FilePropertyReader( |
82
|
|
|
FRAMEWORK_HOME + FilePropertyReader.DEFAULT_DELIBERATIVE_PROPERTY); |
83
|
|
|
// set operation costs from parameters |
84
|
|
|
this.planningCost = Double.parseDouble(properties.getProperty("expansion-cost")); |
85
|
|
|
this.expansionCost = Double.parseDouble(properties.getProperty("expansion-cost")); |
86
|
|
|
this.unificationCost = Double.parseDouble(properties.getProperty("unification-cost")); |
87
|
|
|
this.schedulingCost = Double.parseDouble(properties.getProperty("scheduling-cost")); |
88
|
|
|
this.completionCost = Double.parseDouble(properties.getProperty("completion-cost")); |
89
|
|
|
} |
90
|
|
|
|
91
|
|
|
/** |
92
|
|
|
* |
93
|
|
|
*/ |
94
|
|
|
@PostConstruct |
95
|
|
|
protected void init() { |
96
|
|
|
|
97
|
|
|
// get domain knowledge |
98
|
|
|
DomainKnowledge dk = this.pdb.getDomainKnowledge(); |
99
|
|
|
// get the decomposition tree from the domain theory |
100
|
|
|
this.pgraph = dk.getDecompositionGraph(); |
101
|
|
|
// export decomposition graph |
102
|
|
|
this.exportDecompositionGraph(this.pgraph); |
103
|
|
|
|
104
|
|
|
// get dependency graph |
105
|
|
|
this.dgraph = dk.getDependencyGraph(); |
106
|
|
|
// export dependency graph |
107
|
|
|
this.exportDependencyGraph(this.dgraph); |
108
|
|
|
|
109
|
|
|
// get domain hierarchy |
110
|
|
|
this.dhierarchy = dk.getDomainHierarchy(); |
111
|
|
|
// export hierarchy |
112
|
|
|
this.exportHierarchyGraph(this.dhierarchy); |
113
|
|
|
|
114
|
|
|
|
115
|
|
|
// get deliberative property file |
116
|
|
|
FilePropertyReader properties = new FilePropertyReader( |
117
|
|
|
FRAMEWORK_HOME + FilePropertyReader.DEFAULT_DELIBERATIVE_PROPERTY); |
118
|
|
|
|
119
|
|
|
// get mongo |
120
|
|
|
String mongodb = properties.getProperty("mongodb"); |
121
|
|
|
// check if exists |
122
|
|
|
if (mongodb != null && !mongodb.equals("")) { |
123
|
|
|
|
124
|
|
|
// create a collection to the DB |
125
|
|
|
if (client == null) { |
126
|
|
|
// check DB host |
127
|
|
|
String dbHost = properties.getProperty("mongodb_host"); |
128
|
|
|
// create client |
129
|
|
|
client = MongoClients.create(dbHost); |
|
|
|
|
130
|
|
|
} |
131
|
|
|
|
132
|
|
|
// get DB |
133
|
|
|
MongoDatabase db = client.getDatabase(mongodb.trim()); |
134
|
|
|
// get collection |
135
|
|
|
this.collection = db.getCollection("planner_search"); |
136
|
|
|
// remove all data from the collection |
137
|
|
|
this.collection.drop(); |
138
|
|
|
} |
139
|
|
|
} |
140
|
|
|
|
141
|
|
|
|
142
|
|
|
/** |
143
|
|
|
* Compute the (pessimistic) planning cost of a domain value by analyzing the extracted decomposition graph |
144
|
|
|
* |
145
|
|
|
* @param value |
146
|
|
|
* @return |
147
|
|
|
*/ |
148
|
|
|
private Map<DomainComponent, Double[]> computeCostProjections(ComponentValue value) { |
149
|
|
|
|
150
|
|
|
// set cost |
151
|
|
|
Map<DomainComponent, Double[]> cost = new HashMap<>(); |
152
|
|
|
// check if leaf |
153
|
|
|
if (!this.pgraph.containsKey(value) || |
154
|
|
|
this.pgraph.get(value).isEmpty()) { |
155
|
|
|
|
156
|
|
|
// set cost |
157
|
|
|
cost.put(value.getComponent(), new Double[] { |
158
|
|
|
this.unificationCost, |
159
|
|
|
this.unificationCost |
160
|
|
|
}); |
161
|
|
|
|
162
|
|
|
} else { |
163
|
|
|
|
164
|
|
|
// get possible decompositions |
165
|
|
View Code Duplication |
for (List<ComponentValue> decomposition : this.pgraph.get(value)) { |
|
|
|
|
166
|
|
|
|
167
|
|
|
// decomposition costs |
168
|
|
|
Map<DomainComponent, Double[]> dCosts = new HashMap<>(); |
169
|
|
|
for (ComponentValue subgoal : decomposition) { |
170
|
|
|
|
171
|
|
|
// compute planning cost of the subgoal |
172
|
|
|
Map<DomainComponent, Double[]> update = this.computeCostProjections(subgoal); |
173
|
|
|
for (DomainComponent c : update.keySet()) { |
|
|
|
|
174
|
|
|
|
175
|
|
|
if (!dCosts.containsKey(c)) { |
176
|
|
|
// set cost |
177
|
|
|
dCosts.put(c, new Double[] { |
178
|
|
|
update.get(c)[0], |
179
|
|
|
update.get(c)[1] |
180
|
|
|
}); |
181
|
|
|
|
182
|
|
|
} else { |
183
|
|
|
|
184
|
|
|
// update cost |
185
|
|
|
dCosts.put(c, new Double[] { |
186
|
|
|
dCosts.get(c)[0] + update.get(c)[0], |
187
|
|
|
dCosts.get(c)[1] + update.get(c)[1] |
188
|
|
|
}); |
189
|
|
|
} |
190
|
|
|
} |
191
|
|
|
} |
192
|
|
|
|
193
|
|
|
// update pessimistic and optimistic projections |
194
|
|
|
for (DomainComponent c : dCosts.keySet()) { |
|
|
|
|
195
|
|
|
if (!cost.containsKey(c)) { |
196
|
|
|
|
197
|
|
|
// set cost |
198
|
|
|
cost.put(c, new Double[] { |
199
|
|
|
dCosts.get(c)[0], |
200
|
|
|
dCosts.get(c)[1] |
201
|
|
|
}); |
202
|
|
|
|
203
|
|
|
} else { |
204
|
|
|
|
205
|
|
|
// get min and max |
206
|
|
|
cost.put(c, new Double[] { |
207
|
|
|
Math.min(cost.get(c)[0], dCosts.get(c)[0]), |
208
|
|
|
Math.max(cost.get(c)[1], dCosts.get(c)[1]) |
209
|
|
|
}); |
210
|
|
|
} |
211
|
|
|
} |
212
|
|
|
} |
213
|
|
|
|
214
|
|
|
// set cost associated to the value |
215
|
|
|
if (!cost.containsKey(value.getComponent())) { |
216
|
|
|
|
217
|
|
|
// set cost |
218
|
|
|
cost.put(value.getComponent(), new Double[] { |
219
|
|
|
this.unificationCost, |
220
|
|
|
this.unificationCost |
221
|
|
|
}); |
222
|
|
|
|
223
|
|
|
} else { |
224
|
|
|
|
225
|
|
|
// weight cost according to the hierarchical value |
226
|
|
|
cost.put(value.getComponent(), new Double[] { |
227
|
|
|
this.unificationCost + cost.get(value.getComponent())[0], |
228
|
|
|
this.unificationCost + cost.get(value.getComponent())[1] |
229
|
|
|
}); |
230
|
|
|
} |
231
|
|
|
} |
232
|
|
|
|
233
|
|
|
// get cost |
234
|
|
|
return cost; |
235
|
|
|
} |
236
|
|
|
|
237
|
|
|
/** |
238
|
|
|
* Compute the (pessimistic) makespan projection by analyzing the extracted decomposition graph starting |
239
|
|
|
* from a given value of the domain |
240
|
|
|
* |
241
|
|
|
* @param value |
242
|
|
|
* @return |
243
|
|
|
*/ |
244
|
|
|
private Map<DomainComponent, Double[]> computeMakespanProjections(ComponentValue value) |
245
|
|
|
{ |
246
|
|
|
// set data structure |
247
|
|
|
Map<DomainComponent, Double[]> makespan = new HashMap<>(); |
248
|
|
|
// check if leaf |
249
|
|
|
if (!this.pgraph.containsKey(value) || |
250
|
|
|
this.pgraph.get(value).isEmpty()) { |
251
|
|
|
|
252
|
|
|
// set value expected minimum duration |
253
|
|
|
makespan.put(value.getComponent(), new Double[] { |
254
|
|
|
(double) value.getDurationLowerBound(), |
255
|
|
|
(double) value.getDurationUpperBound() |
256
|
|
|
}); |
257
|
|
|
|
258
|
|
|
} else { |
259
|
|
|
|
260
|
|
|
// check possible decompositions |
261
|
|
View Code Duplication |
for (List<ComponentValue> decomposition : this.pgraph.get(value)) { |
|
|
|
|
262
|
|
|
|
263
|
|
|
// set decomposition makespan |
264
|
|
|
Map<DomainComponent, Double[]> dMakespan = new HashMap<>(); |
265
|
|
|
// check subgoals |
266
|
|
|
for (ComponentValue subgoal : decomposition) { |
267
|
|
|
|
268
|
|
|
// recursive call to compute (pessimistic) makespan estimation |
269
|
|
|
Map<DomainComponent, Double[]> update = this.computeMakespanProjections(subgoal); |
270
|
|
|
// increment decomposition makespan |
271
|
|
|
for (DomainComponent c : update.keySet()) { |
|
|
|
|
272
|
|
|
|
273
|
|
|
// check decomposition makespan |
274
|
|
|
if (!dMakespan.containsKey(c)) { |
275
|
|
|
// add entry |
276
|
|
|
dMakespan.put(c, new Double[] { |
277
|
|
|
update.get(c)[0], |
278
|
|
|
update.get(c)[1] |
279
|
|
|
}); |
280
|
|
|
|
281
|
|
|
} else { |
282
|
|
|
|
283
|
|
|
// increment component's makespan |
284
|
|
|
dMakespan.put(c, new Double[] { |
285
|
|
|
dMakespan.get(c)[0] + update.get(c)[0], |
286
|
|
|
dMakespan.get(c)[1] + update.get(c)[1] |
287
|
|
|
}); |
288
|
|
|
} |
289
|
|
|
} |
290
|
|
|
} |
291
|
|
|
|
292
|
|
|
// update resulting makespan by taking into account the maximum value |
293
|
|
|
for (DomainComponent c : dMakespan.keySet()) { |
|
|
|
|
294
|
|
|
|
295
|
|
|
// check makespan |
296
|
|
|
if (!makespan.containsKey(c)) { |
297
|
|
|
|
298
|
|
|
// add entry |
299
|
|
|
makespan.put(c, new Double[] { |
300
|
|
|
dMakespan.get(c)[0], |
301
|
|
|
dMakespan.get(c)[1] |
302
|
|
|
}); |
303
|
|
|
|
304
|
|
|
} else { |
305
|
|
|
|
306
|
|
|
// set the pessimistic and optimistic projections |
307
|
|
|
makespan.put(c, new Double[] { |
308
|
|
|
Math.min(makespan.get(c)[0], dMakespan.get(c)[0]), |
309
|
|
|
Math.max(makespan.get(c)[1], dMakespan.get(c)[1]) |
310
|
|
|
}); |
311
|
|
|
} |
312
|
|
|
} |
313
|
|
|
} |
314
|
|
|
|
315
|
|
|
// set cost associated to the value |
316
|
|
|
if (!makespan.containsKey(value.getComponent())) { |
317
|
|
|
|
318
|
|
|
// set cost |
319
|
|
|
makespan.put(value.getComponent(), new Double[] { |
320
|
|
|
(double) value.getDurationLowerBound(), |
321
|
|
|
(double) value.getDurationLowerBound() |
322
|
|
|
}); |
323
|
|
|
|
324
|
|
|
} else { |
325
|
|
|
|
326
|
|
|
// increment makespan |
327
|
|
|
makespan.put(value.getComponent(), new Double[] { |
328
|
|
|
makespan.get(value.getComponent())[0] + ((double) value.getDurationLowerBound()), |
329
|
|
|
makespan.get(value.getComponent())[1] + ((double) value.getDurationLowerBound()) |
330
|
|
|
}); |
331
|
|
|
} |
332
|
|
|
} |
333
|
|
|
|
334
|
|
|
// get the makespan |
335
|
|
|
return makespan; |
336
|
|
|
} |
337
|
|
|
|
338
|
|
|
|
339
|
|
|
/** |
340
|
|
|
* |
341
|
|
|
* @return |
342
|
|
|
*/ |
343
|
|
|
public String getLabel() { |
344
|
|
|
return this.label; |
345
|
|
|
} |
346
|
|
|
|
347
|
|
|
/** |
348
|
|
|
* |
349
|
|
|
* @return |
350
|
|
|
*/ |
351
|
|
|
public int getFringeSize() { |
352
|
|
|
return this.fringe.size(); |
353
|
|
|
} |
354
|
|
|
|
355
|
|
|
/** |
356
|
|
|
* |
357
|
|
|
* @param node |
358
|
|
|
*/ |
359
|
|
|
public abstract void enqueue(SearchSpaceNode node); |
360
|
|
|
|
361
|
|
|
/** |
362
|
|
|
* |
363
|
|
|
*/ |
364
|
|
|
@Override |
365
|
|
|
public abstract int compare(SearchSpaceNode n1, SearchSpaceNode n2); |
366
|
|
|
|
367
|
|
|
/** |
368
|
|
|
* |
369
|
|
|
* @return |
370
|
|
|
* @throws EmptyFringeException |
371
|
|
|
*/ |
372
|
|
|
public SearchSpaceNode dequeue() |
373
|
|
|
throws EmptyFringeException |
374
|
|
|
{ |
375
|
|
|
// set next node of the fringe |
376
|
|
|
SearchSpaceNode next = null; |
377
|
|
|
try |
378
|
|
|
{ |
379
|
|
|
// extract the "best" node from the fringe |
380
|
|
|
next = this.fringe.remove(); |
381
|
|
|
// store search data record |
382
|
|
|
this.registerSearchChoice(next); |
383
|
|
|
} |
384
|
|
|
catch (NoSuchElementException ex) { |
385
|
|
|
// empty fringe |
386
|
|
|
throw new EmptyFringeException("No more nodes in the fringe"); |
387
|
|
|
} |
388
|
|
|
|
389
|
|
|
// get extracted node |
390
|
|
|
return next; |
391
|
|
|
} |
392
|
|
|
|
393
|
|
|
/** |
394
|
|
|
* Clear the internal data structures of a search strategy |
395
|
|
|
*/ |
396
|
|
|
public void clear() { |
397
|
|
|
// clear queue |
398
|
|
|
this.fringe.clear(); |
399
|
|
|
// close DB connection if necessary |
400
|
|
|
if (client != null) { |
401
|
|
|
client.close(); |
402
|
|
|
client = null; |
|
|
|
|
403
|
|
|
this.collection = null; |
404
|
|
|
} |
405
|
|
|
} |
406
|
|
|
|
407
|
|
|
/** |
408
|
|
|
* |
409
|
|
|
*/ |
410
|
|
|
public String toString() { |
411
|
|
|
// JSON like object description |
412
|
|
|
return "{ \"label\": \"" + this.label + "\" }"; |
413
|
|
|
} |
414
|
|
|
|
415
|
|
|
/** |
416
|
|
|
* |
417
|
|
|
* @param node |
418
|
|
|
*/ |
419
|
|
|
protected void registerSearchChoice(SearchSpaceNode node) |
420
|
|
|
{ |
421
|
|
|
// check db collection |
422
|
|
|
if (this.collection != null) { |
423
|
|
|
// create solving statistic record |
424
|
|
|
Document doc = new Document("step", node.getId()); |
425
|
|
|
doc.append("fringe-size", this.fringe.size()); |
426
|
|
|
doc.append("node-number-of-flaws", node.getNumberOfFlaws()); |
427
|
|
|
doc.append("node-depth", node.getDepth()); |
428
|
|
|
|
429
|
|
|
// consolidated values of metrics |
430
|
|
|
doc.append("node-plan-cost", node.getPlanCost()); |
431
|
|
|
doc.append("node-plan-makespan-min", node.getPlanMakespan()[0]); |
432
|
|
|
doc.append("node-plan-makespan-max", node.getPlanMakespan()[1]); |
433
|
|
|
|
434
|
|
|
// heuristic estimation of metrics |
435
|
|
|
doc.append("node-heuristic-plan-cost-min", node.getPlanHeuristicCost()[0]); |
436
|
|
|
doc.append("node-heuristic-plan-cost-max", node.getPlanHeuristicCost()[1]); |
437
|
|
|
doc.append("node-heuristic-plan-makespan-min", node.getPlanHeuristicMakespan()[0]); |
438
|
|
|
doc.append("node-heuristic-plan-makespan-max", node.getPlanHeuristicMakespan()[1]); |
439
|
|
|
|
440
|
|
|
// insert data into the collection |
441
|
|
|
this.collection.insertOne(doc); |
442
|
|
|
} |
443
|
|
|
} |
444
|
|
|
|
445
|
|
|
/** |
446
|
|
|
* This method computes an evaluation concerning the (planning) distance of |
447
|
|
|
* a given node from a solution plan. |
448
|
|
|
* |
449
|
|
|
* Namely the method computes the expected cost the planner should "pay" to refine |
450
|
|
|
* the given node and obtain a valid solution. The cost takes into account both planning |
451
|
|
|
* and scheduling decisions. Also, the cost considers possible "gaps" on timelines and |
452
|
|
|
* tries to estimates the planning effort needed to complete the behaviors of |
453
|
|
|
* related timelines. |
454
|
|
|
* |
455
|
|
|
* The heuristics computes a cost for each component of the domain and |
456
|
|
|
* takes into account timeline projections and therefore computes a pessimistic |
457
|
|
|
* and optimistic evaluation. |
458
|
|
|
* |
459
|
|
|
* @param node |
460
|
|
|
* @return |
461
|
|
|
*/ |
462
|
|
|
protected Map<DomainComponent, Double[]> computeHeuristicCost(SearchSpaceNode node) |
463
|
|
|
{ |
464
|
|
|
// compute an optimistic and pessimistic estimation of planning operations |
465
|
|
|
Map<DomainComponent, Double[]> cost = new HashMap<>(); |
466
|
|
|
// check node flaws and compute heuristic estimation |
467
|
|
|
for (Flaw flaw : node.getFlaws()) |
468
|
|
|
{ |
469
|
|
|
// check planning goal |
470
|
|
|
if (flaw.getType().equals(FlawType.PLAN_REFINEMENT)) |
471
|
|
|
{ |
472
|
|
|
// get flaw data |
473
|
|
|
Goal goal = (Goal) flaw; |
474
|
|
|
// compute cost projections |
475
|
|
|
Map<DomainComponent, Double[]> update = this.computeCostProjections(goal.getDecision().getValue()); |
476
|
|
|
// update cost |
477
|
|
|
for (DomainComponent c : update.keySet()) { |
|
|
|
|
478
|
|
|
if (!cost.containsKey(c)) { |
479
|
|
|
// set cost |
480
|
|
|
cost.put(c, new Double[] { |
481
|
|
|
this.planningCost * update.get(c)[0], |
482
|
|
|
this.planningCost * update.get(c)[1] |
483
|
|
|
}); |
484
|
|
|
} |
485
|
|
|
else { |
486
|
|
|
// update cost |
487
|
|
|
cost.put(c, new Double[] { |
488
|
|
|
cost.get(c)[0] + (this.planningCost * update.get(c)[0]), |
489
|
|
|
cost.get(c)[1] + (this.planningCost * update.get(c)[1]) |
490
|
|
|
}); |
491
|
|
|
} |
492
|
|
|
} |
493
|
|
|
} |
494
|
|
|
|
495
|
|
|
// check scheduling goal |
496
|
|
View Code Duplication |
if (flaw.getType().equals(FlawType.TIMELINE_OVERFLOW)) |
|
|
|
|
497
|
|
|
{ |
498
|
|
|
// get component |
499
|
|
|
DomainComponent comp = flaw.getComponent(); |
500
|
|
|
// update cost |
501
|
|
|
if (!cost.containsKey(comp)) { |
502
|
|
|
// set cost |
503
|
|
|
cost.put(comp, new Double[] { |
504
|
|
|
this.schedulingCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1), |
505
|
|
|
this.schedulingCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1) |
506
|
|
|
}); |
507
|
|
|
} |
508
|
|
|
else { |
509
|
|
|
// update cost |
510
|
|
|
cost.put(comp, new Double[] { |
511
|
|
|
cost.get(comp)[0] + (this.schedulingCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1)), |
512
|
|
|
cost.get(comp)[1] + (this.schedulingCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1)) |
513
|
|
|
}); |
514
|
|
|
} |
515
|
|
|
} |
516
|
|
|
|
517
|
|
|
// check scheduling goal |
518
|
|
View Code Duplication |
if (flaw.getType().equals(FlawType.TIMELINE_BEHAVIOR_PLANNING)) |
|
|
|
|
519
|
|
|
{ |
520
|
|
|
// get component |
521
|
|
|
DomainComponent comp = flaw.getComponent(); |
522
|
|
|
// update cost |
523
|
|
|
if (!cost.containsKey(comp)) { |
524
|
|
|
// set cost |
525
|
|
|
cost.put(comp, new Double[] { |
526
|
|
|
this.completionCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1), |
527
|
|
|
this.completionCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1) |
528
|
|
|
}); |
529
|
|
|
} |
530
|
|
|
else { |
531
|
|
|
// update cost |
532
|
|
|
cost.put(comp, new Double[] { |
533
|
|
|
cost.get(comp)[0] + (this.completionCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1)), |
534
|
|
|
cost.get(comp)[1] + (this.completionCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1)) |
535
|
|
|
}); |
536
|
|
|
} |
537
|
|
|
} |
538
|
|
|
} |
539
|
|
|
|
540
|
|
|
|
541
|
|
|
// finalize data structure |
542
|
|
|
for (DomainComponent c : this.pdb.getComponents()) { |
543
|
|
|
if (!cost.containsKey(c)) { |
544
|
|
|
cost.put(c, new Double[] { |
545
|
|
|
(double) 0, |
546
|
|
|
(double) 0 |
547
|
|
|
}); |
548
|
|
|
} |
549
|
|
|
} |
550
|
|
|
|
551
|
|
|
// get cost |
552
|
|
|
return cost; |
553
|
|
|
} |
554
|
|
|
|
555
|
|
|
/** |
556
|
|
|
* |
557
|
|
|
* This method provides an heuristic evaluation of the makespan of domain components. |
558
|
|
|
* |
559
|
|
|
* Namely, the method considesrs planning subgoals of a given partial plan and computes |
560
|
|
|
* a projection of the makespan. The evalution takes into account optmistic and pessimistic |
561
|
|
|
* projections of timelines |
562
|
|
|
* |
563
|
|
|
* @param node |
564
|
|
|
* @return |
565
|
|
|
*/ |
566
|
|
|
protected Map<DomainComponent, Double[]> computeHeuristicMakespan(SearchSpaceNode node) |
567
|
|
|
{ |
568
|
|
|
// initialize makespan projects |
569
|
|
|
Map<DomainComponent, Double[]> projections = new HashMap<>(); |
570
|
|
|
// check node flaws and compute heuristic estimation |
571
|
|
|
for (Flaw flaw : node.getFlaws()) |
572
|
|
|
{ |
573
|
|
|
// check planning goals |
574
|
|
|
if (flaw.getType().equals(FlawType.PLAN_REFINEMENT)) |
575
|
|
|
{ |
576
|
|
|
// get planning goal |
577
|
|
|
Goal goal = (Goal) flaw; |
578
|
|
|
// compute optimistic and pessimistic projections of makespan from goals |
579
|
|
|
Map<DomainComponent, Double[]> update = this.computeMakespanProjections( |
580
|
|
|
goal.getDecision().getValue()); |
581
|
|
|
|
582
|
|
|
// update plan projections |
583
|
|
|
for (DomainComponent c : update.keySet()) |
|
|
|
|
584
|
|
|
{ |
585
|
|
|
// check projection |
586
|
|
|
if (!projections.containsKey(c)) { |
587
|
|
|
// set projection |
588
|
|
|
projections.put(c, |
589
|
|
|
new Double[] { |
590
|
|
|
update.get(c)[0], |
591
|
|
|
update.get(c)[1] |
592
|
|
|
}); |
593
|
|
|
} |
594
|
|
|
else { |
595
|
|
|
// update projection |
596
|
|
|
projections.put(c, |
597
|
|
|
new Double[] { |
598
|
|
|
projections.get(c)[0] + update.get(c)[0], |
599
|
|
|
projections.get(c)[1] + update.get(c)[1] |
600
|
|
|
}); |
601
|
|
|
} |
602
|
|
|
} |
603
|
|
|
} |
604
|
|
|
} |
605
|
|
|
|
606
|
|
|
// finalize data structure |
607
|
|
|
for (DomainComponent c : this.pdb.getComponents()) { |
608
|
|
|
if (!projections.containsKey(c)) { |
609
|
|
|
projections.put(c, new Double[] { |
610
|
|
|
(double) 0, |
611
|
|
|
(double) 0 |
612
|
|
|
}); |
613
|
|
|
} |
614
|
|
|
} |
615
|
|
|
|
616
|
|
|
// get projections |
617
|
|
|
return projections; |
618
|
|
|
} |
619
|
|
|
|
620
|
|
|
/** |
621
|
|
|
* |
622
|
|
|
* @param graph |
623
|
|
|
*/ |
624
|
|
|
private void exportHierarchyGraph(List<DomainComponent>[] graph) |
625
|
|
|
{ |
626
|
|
|
// export graph |
627
|
|
|
String str = "digraph hierarhcy_graph {\n"; |
628
|
|
|
str += "\trankdir=TB;\n"; |
629
|
|
|
str += "\tnode [fontsize=11, style=filled, fillcolor=azure, shape = box]\n"; |
630
|
|
|
|
631
|
|
|
|
632
|
|
|
// check dependencies |
633
|
|
|
for (int index = 0; index < graph.length - 1; index++) { |
634
|
|
|
// get components at current level |
635
|
|
|
List<DomainComponent> currlist = graph[index]; |
636
|
|
|
// get components at next level |
637
|
|
|
List<DomainComponent> nextlist = graph[index + 1]; |
638
|
|
|
|
639
|
|
|
for (DomainComponent curr : currlist) { |
640
|
|
|
for (DomainComponent next : nextlist) { |
641
|
|
|
// add an edge to the graph |
642
|
|
|
str += "\t" + curr.getName() + " -> " + next.getName(); |
|
|
|
|
643
|
|
|
|
644
|
|
|
} |
645
|
|
|
} |
646
|
|
|
|
647
|
|
|
} |
648
|
|
|
|
649
|
|
|
// close |
650
|
|
|
str += "\n}\n\n"; |
651
|
|
|
|
652
|
|
|
try |
653
|
|
|
{ |
654
|
|
|
File pdlFile = new File(FRAMEWORK_HOME + "hierarchy_graph.dot"); |
655
|
|
|
try (BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(pdlFile), "UTF-8"))) { |
656
|
|
|
// write file |
657
|
|
|
writer.write(str); |
658
|
|
|
} |
659
|
|
|
} |
660
|
|
|
catch (Exception ex) { |
661
|
|
|
throw new RuntimeException(ex.getMessage()); |
|
|
|
|
662
|
|
|
} |
663
|
|
|
} |
664
|
|
|
|
665
|
|
|
|
666
|
|
|
/** |
667
|
|
|
* |
668
|
|
|
* @param graph |
669
|
|
|
*/ |
670
|
|
|
private void exportDependencyGraph(Map<DomainComponent, Set<DomainComponent>> graph) |
671
|
|
|
{ |
672
|
|
|
// export graph |
673
|
|
|
String str = "digraph dependency_graph {\n"; |
674
|
|
|
str += "\trankdir=TB;\n"; |
675
|
|
|
str += "\tnode [fontsize=11, style=filled, fillcolor=azure, shape = box]\n"; |
676
|
|
|
|
677
|
|
|
// check dependencies |
678
|
|
|
for (DomainComponent comp : graph.keySet()) { |
|
|
|
|
679
|
|
|
// check dependencies |
680
|
|
|
for (DomainComponent dep : graph.get(comp)) { |
681
|
|
|
// add an edge to the graph |
682
|
|
|
str += "\t" + dep.getName() + " -> " + comp.getName(); |
|
|
|
|
683
|
|
|
} |
684
|
|
|
} |
685
|
|
|
|
686
|
|
|
// close |
687
|
|
|
str += "\n}\n\n"; |
688
|
|
|
|
689
|
|
|
try |
690
|
|
|
{ |
691
|
|
|
File pdlFile = new File(FRAMEWORK_HOME + "dependency_graph.dot"); |
692
|
|
|
try (BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(pdlFile), "UTF-8"))) { |
693
|
|
|
// write file |
694
|
|
|
writer.write(str); |
695
|
|
|
} |
696
|
|
|
} |
697
|
|
|
catch (Exception ex) { |
698
|
|
|
throw new RuntimeException(ex.getMessage()); |
|
|
|
|
699
|
|
|
} |
700
|
|
|
} |
701
|
|
|
|
702
|
|
|
/** |
703
|
|
|
* |
704
|
|
|
* @param graph |
705
|
|
|
*/ |
706
|
|
|
private void exportDecompositionGraph(Map<ComponentValue, List<List<ComponentValue>>> graph) |
707
|
|
|
{ |
708
|
|
|
// export graph |
709
|
|
|
String str = "digraph decomposition_graph {\n"; |
710
|
|
|
str += "\trankdir=TB;\n"; |
711
|
|
|
str += "\tnode [fontsize=11, style=filled, fillcolor=azure, shape = box]\n"; |
712
|
|
|
|
713
|
|
|
// node id |
714
|
|
|
int counter = 0; |
715
|
|
|
// create AND nodes |
716
|
|
|
int andCounter = 0; |
717
|
|
|
// check the graph |
718
|
|
|
for (ComponentValue value : graph.keySet()) |
|
|
|
|
719
|
|
|
{ |
720
|
|
|
// check number of disjunctions |
721
|
|
|
List<List<ComponentValue>> disjunctions = graph.get(value); |
722
|
|
|
if (disjunctions.size() == 1) |
723
|
|
|
{ |
724
|
|
|
String andNode = "AND_" + andCounter; |
725
|
|
|
str += "\t" + andNode + " [fontsize=6, shape= oval, style=filled, fillcolor= palegreen];\n"; |
|
|
|
|
726
|
|
|
|
727
|
|
|
str += "\t" + value.getComponent().getName() + "_" + value.getLabel().replace("-", "_") + |
|
|
|
|
728
|
|
|
" -> " + andNode + ";\n"; |
729
|
|
|
|
730
|
|
|
|
731
|
|
|
|
732
|
|
|
// set weight of the edge |
733
|
|
|
Map<ComponentValue, Integer> wc = new HashMap<>(); |
734
|
|
|
for (ComponentValue child : disjunctions.get(0)) { |
735
|
|
|
if (!wc.containsKey(child)) { |
736
|
|
|
wc.put(child, 1); |
737
|
|
|
} |
738
|
|
|
else { |
739
|
|
|
// increment |
740
|
|
|
int v = wc.get(child); |
741
|
|
|
wc.put(child, ++v); |
742
|
|
|
} |
743
|
|
|
} |
744
|
|
|
|
745
|
|
|
// no disjunctions |
746
|
|
|
for (ComponentValue child : wc.keySet()) { |
|
|
|
|
747
|
|
|
// add edge |
748
|
|
|
str += "\t" + andNode + " -> " + child.getComponent().getName() + "_" + child.getLabel().replace("-", "_") + " [label= \"" + wc.get(child) + "\"];\n"; |
|
|
|
|
749
|
|
|
} |
750
|
|
|
|
751
|
|
|
// increment and node counter |
752
|
|
|
andCounter++; |
753
|
|
|
} |
754
|
|
|
else |
755
|
|
|
{ |
756
|
|
|
// add OR node label |
757
|
|
|
String orLabel = "OR_" + counter; |
758
|
|
|
// add an edge to the OR node |
759
|
|
|
str += "\t" + orLabel + " [fontsize=6, shape= diamond, style=filled, fillcolor= thistle];\n"; |
|
|
|
|
760
|
|
|
str += "\t" + value.getComponent().getName() + "_" + value.getLabel().replace("-", "_") + |
|
|
|
|
761
|
|
|
" -> " + orLabel + ";\n"; |
762
|
|
|
|
763
|
|
|
// add disjunctions |
764
|
|
|
for (List<ComponentValue> conjunctions : disjunctions) |
765
|
|
|
{ |
766
|
|
|
// set AND node label |
767
|
|
|
String andLabel = "AND_" + andCounter; |
768
|
|
|
str += "\t" + andLabel + " [fontsize=6, shape= oval, style=filled, fillcolor= palegreen];\n"; |
|
|
|
|
769
|
|
|
|
770
|
|
|
// set weight of the edge |
771
|
|
|
Map<ComponentValue, Integer> wc = new HashMap<>(); |
772
|
|
|
for (ComponentValue child : conjunctions) { |
773
|
|
|
if (!wc.containsKey(child)) { |
774
|
|
|
wc.put(child, 1); |
775
|
|
|
} |
776
|
|
|
else { |
777
|
|
|
// increment |
778
|
|
|
int v = wc.get(child); |
779
|
|
|
wc.put(child, ++v); |
780
|
|
|
} |
781
|
|
|
} |
782
|
|
|
|
783
|
|
|
// add and edge to the AND node |
784
|
|
|
str += "\t" + orLabel + " -> " + andLabel + ";\n"; |
|
|
|
|
785
|
|
|
for (ComponentValue child : wc.keySet()) { |
|
|
|
|
786
|
|
|
// add edge from AND node to the value |
787
|
|
|
str += "\t" + andLabel + |
|
|
|
|
788
|
|
|
" -> " + child.getComponent().getName() + "_" +child.getLabel().replace("-", "_") + " [label= \"" + wc.get(child) + "\"];\n"; |
789
|
|
|
} |
790
|
|
|
|
791
|
|
|
|
792
|
|
|
// increment and node counter |
793
|
|
|
andCounter++; |
794
|
|
|
} |
795
|
|
|
|
796
|
|
|
counter++; |
797
|
|
|
} |
798
|
|
|
|
799
|
|
|
|
800
|
|
|
} |
801
|
|
|
|
802
|
|
|
// close |
803
|
|
|
str += "\n}\n\n"; |
804
|
|
|
|
805
|
|
|
try |
806
|
|
|
{ |
807
|
|
|
File pdlFile = new File(FRAMEWORK_HOME + "decomposition_graph.dot"); |
808
|
|
|
try (BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(pdlFile), "UTF-8"))) { |
809
|
|
|
// write file |
810
|
|
|
writer.write(str); |
811
|
|
|
} |
812
|
|
|
} |
813
|
|
|
catch (Exception ex) { |
814
|
|
|
throw new RuntimeException(ex.getMessage()); |
|
|
|
|
815
|
|
|
} |
816
|
|
|
} |
817
|
|
|
} |
818
|
|
|
|
If you really need to set this static field, consider writing a thread-safe setter and atomic getter.