Total Complexity | 72 |
Total Lines | 773 |
Duplicated Lines | 15.39 % |
Changes | 2 | ||
Bugs | 0 | Features | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like it.cnr.istc.pst.platinum.ai.deliberative.strategy.SearchStrategy often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | package it.cnr.istc.pst.platinum.ai.deliberative.strategy; |
||
42 | public abstract class SearchStrategy extends FrameworkObject implements Comparator<SearchSpaceNode> { |
||
43 | |||
44 | @PlanDataBasePlaceholder |
||
45 | protected PlanDataBase pdb; // reference to plan data-base |
||
46 | |||
47 | protected Queue<SearchSpaceNode> fringe; // the fringe of the search space |
||
48 | |||
49 | protected String label; // strategy label |
||
50 | |||
51 | protected Map<ComponentValue, List<List<ComponentValue>>> pgraph; // planning graph |
||
52 | protected Map<DomainComponent, Set<DomainComponent>> dgraph; // dependency graph |
||
53 | protected List<DomainComponent>[] dhierarchy; // domain hierarchy |
||
54 | |||
55 | protected double schedulingCost; // set scheduling cost |
||
56 | protected double completionCost; // set completion cost |
||
57 | protected double planningCost; // general planning cost |
||
58 | protected double expansionCost; // detailed planning cost |
||
59 | protected double unificationCost; // detailed unification cost |
||
60 | |||
61 | |||
62 | // set client connection |
||
63 | protected static MongoClient client; |
||
64 | // prepare collection |
||
65 | protected MongoCollection<Document> collection; |
||
66 | |||
67 | /** |
||
68 | * |
||
69 | * @param label |
||
70 | */ |
||
71 | protected SearchStrategy(String label) { |
||
72 | super(); |
||
73 | |||
74 | // initialize the fringe |
||
75 | this.fringe = new PriorityQueue<SearchSpaceNode>(this); |
||
76 | |||
77 | // set label |
||
78 | this.label = label; |
||
79 | |||
80 | // get deliberative property file |
||
81 | FilePropertyReader properties = new FilePropertyReader( |
||
82 | FRAMEWORK_HOME + FilePropertyReader.DEFAULT_DELIBERATIVE_PROPERTY); |
||
83 | // set operation costs from parameters |
||
84 | this.planningCost = Double.parseDouble(properties.getProperty("expansion-cost")); |
||
85 | this.expansionCost = Double.parseDouble(properties.getProperty("expansion-cost")); |
||
86 | this.unificationCost = Double.parseDouble(properties.getProperty("unification-cost")); |
||
87 | this.schedulingCost = Double.parseDouble(properties.getProperty("scheduling-cost")); |
||
88 | this.completionCost = Double.parseDouble(properties.getProperty("completion-cost")); |
||
89 | } |
||
90 | |||
91 | /** |
||
92 | * |
||
93 | */ |
||
94 | @PostConstruct |
||
95 | protected void init() { |
||
96 | |||
97 | // get domain knowledge |
||
98 | DomainKnowledge dk = this.pdb.getDomainKnowledge(); |
||
99 | // get the decomposition tree from the domain theory |
||
100 | this.pgraph = dk.getDecompositionGraph(); |
||
101 | // export decomposition graph |
||
102 | this.exportDecompositionGraph(this.pgraph); |
||
103 | |||
104 | // get dependency graph |
||
105 | this.dgraph = dk.getDependencyGraph(); |
||
106 | // export dependency graph |
||
107 | this.exportDependencyGraph(this.dgraph); |
||
108 | |||
109 | // get domain hierarchy |
||
110 | this.dhierarchy = dk.getDomainHierarchy(); |
||
111 | // export hierarchy |
||
112 | this.exportHierarchyGraph(this.dhierarchy); |
||
113 | |||
114 | |||
115 | // get deliberative property file |
||
116 | FilePropertyReader properties = new FilePropertyReader( |
||
117 | FRAMEWORK_HOME + FilePropertyReader.DEFAULT_DELIBERATIVE_PROPERTY); |
||
118 | |||
119 | // get mongo |
||
120 | String mongodb = properties.getProperty("mongodb"); |
||
121 | // check if exists |
||
122 | if (mongodb != null && !mongodb.equals("")) { |
||
123 | |||
124 | // create a collection to the DB |
||
125 | if (client == null) { |
||
126 | // check DB host |
||
127 | String dbHost = properties.getProperty("mongodb_host"); |
||
128 | // create client |
||
129 | client = MongoClients.create(dbHost); |
||
|
|||
130 | } |
||
131 | |||
132 | // get DB |
||
133 | MongoDatabase db = client.getDatabase(mongodb.trim()); |
||
134 | // get collection |
||
135 | this.collection = db.getCollection("planner_search"); |
||
136 | // remove all data from the collection |
||
137 | this.collection.drop(); |
||
138 | } |
||
139 | } |
||
140 | |||
141 | |||
142 | /** |
||
143 | * Compute the (pessimistic) planning cost of a domain value by analyzing the extracted decomposition graph |
||
144 | * |
||
145 | * @param value |
||
146 | * @return |
||
147 | */ |
||
148 | private Map<DomainComponent, Double[]> computeCostProjections(ComponentValue value) { |
||
149 | |||
150 | // set cost |
||
151 | Map<DomainComponent, Double[]> cost = new HashMap<>(); |
||
152 | // check if leaf |
||
153 | if (!this.pgraph.containsKey(value) || |
||
154 | this.pgraph.get(value).isEmpty()) { |
||
155 | |||
156 | // set cost |
||
157 | cost.put(value.getComponent(), new Double[] { |
||
158 | this.unificationCost, |
||
159 | this.unificationCost |
||
160 | }); |
||
161 | |||
162 | } else { |
||
163 | |||
164 | // get possible decompositions |
||
165 | View Code Duplication | for (List<ComponentValue> decomposition : this.pgraph.get(value)) { |
|
166 | |||
167 | // decomposition costs |
||
168 | Map<DomainComponent, Double[]> dCosts = new HashMap<>(); |
||
169 | for (ComponentValue subgoal : decomposition) { |
||
170 | |||
171 | // compute planning cost of the subgoal |
||
172 | Map<DomainComponent, Double[]> update = this.computeCostProjections(subgoal); |
||
173 | for (DomainComponent c : update.keySet()) { |
||
174 | |||
175 | if (!dCosts.containsKey(c)) { |
||
176 | // set cost |
||
177 | dCosts.put(c, new Double[] { |
||
178 | update.get(c)[0], |
||
179 | update.get(c)[1] |
||
180 | }); |
||
181 | |||
182 | } else { |
||
183 | |||
184 | // update cost |
||
185 | dCosts.put(c, new Double[] { |
||
186 | dCosts.get(c)[0] + update.get(c)[0], |
||
187 | dCosts.get(c)[1] + update.get(c)[1] |
||
188 | }); |
||
189 | } |
||
190 | } |
||
191 | } |
||
192 | |||
193 | // update pessimistic and optimistic projections |
||
194 | for (DomainComponent c : dCosts.keySet()) { |
||
195 | if (!cost.containsKey(c)) { |
||
196 | |||
197 | // set cost |
||
198 | cost.put(c, new Double[] { |
||
199 | dCosts.get(c)[0], |
||
200 | dCosts.get(c)[1] |
||
201 | }); |
||
202 | |||
203 | } else { |
||
204 | |||
205 | // get min and max |
||
206 | cost.put(c, new Double[] { |
||
207 | Math.min(cost.get(c)[0], dCosts.get(c)[0]), |
||
208 | Math.max(cost.get(c)[1], dCosts.get(c)[1]) |
||
209 | }); |
||
210 | } |
||
211 | } |
||
212 | } |
||
213 | |||
214 | // set cost associated to the value |
||
215 | if (!cost.containsKey(value.getComponent())) { |
||
216 | |||
217 | // set cost |
||
218 | cost.put(value.getComponent(), new Double[] { |
||
219 | this.unificationCost, |
||
220 | this.unificationCost |
||
221 | }); |
||
222 | |||
223 | } else { |
||
224 | |||
225 | // weight cost according to the hierarchical value |
||
226 | cost.put(value.getComponent(), new Double[] { |
||
227 | this.unificationCost + cost.get(value.getComponent())[0], |
||
228 | this.unificationCost + cost.get(value.getComponent())[1] |
||
229 | }); |
||
230 | } |
||
231 | } |
||
232 | |||
233 | // get cost |
||
234 | return cost; |
||
235 | } |
||
236 | |||
237 | /** |
||
238 | * Compute the (pessimistic) makespan projection by analyzing the extracted decomposition graph starting |
||
239 | * from a given value of the domain |
||
240 | * |
||
241 | * @param value |
||
242 | * @return |
||
243 | */ |
||
244 | private Map<DomainComponent, Double[]> computeMakespanProjections(ComponentValue value) |
||
245 | { |
||
246 | // set data structure |
||
247 | Map<DomainComponent, Double[]> makespan = new HashMap<>(); |
||
248 | // check if leaf |
||
249 | if (!this.pgraph.containsKey(value) || |
||
250 | this.pgraph.get(value).isEmpty()) { |
||
251 | |||
252 | // set value expected minimum duration |
||
253 | makespan.put(value.getComponent(), new Double[] { |
||
254 | (double) value.getDurationLowerBound(), |
||
255 | (double) value.getDurationUpperBound() |
||
256 | }); |
||
257 | |||
258 | } else { |
||
259 | |||
260 | // check possible decompositions |
||
261 | View Code Duplication | for (List<ComponentValue> decomposition : this.pgraph.get(value)) { |
|
262 | |||
263 | // set decomposition makespan |
||
264 | Map<DomainComponent, Double[]> dMakespan = new HashMap<>(); |
||
265 | // check subgoals |
||
266 | for (ComponentValue subgoal : decomposition) { |
||
267 | |||
268 | // recursive call to compute (pessimistic) makespan estimation |
||
269 | Map<DomainComponent, Double[]> update = this.computeMakespanProjections(subgoal); |
||
270 | // increment decomposition makespan |
||
271 | for (DomainComponent c : update.keySet()) { |
||
272 | |||
273 | // check decomposition makespan |
||
274 | if (!dMakespan.containsKey(c)) { |
||
275 | // add entry |
||
276 | dMakespan.put(c, new Double[] { |
||
277 | update.get(c)[0], |
||
278 | update.get(c)[1] |
||
279 | }); |
||
280 | |||
281 | } else { |
||
282 | |||
283 | // increment component's makespan |
||
284 | dMakespan.put(c, new Double[] { |
||
285 | dMakespan.get(c)[0] + update.get(c)[0], |
||
286 | dMakespan.get(c)[1] + update.get(c)[1] |
||
287 | }); |
||
288 | } |
||
289 | } |
||
290 | } |
||
291 | |||
292 | // update resulting makespan by taking into account the maximum value |
||
293 | for (DomainComponent c : dMakespan.keySet()) { |
||
294 | |||
295 | // check makespan |
||
296 | if (!makespan.containsKey(c)) { |
||
297 | |||
298 | // add entry |
||
299 | makespan.put(c, new Double[] { |
||
300 | dMakespan.get(c)[0], |
||
301 | dMakespan.get(c)[1] |
||
302 | }); |
||
303 | |||
304 | } else { |
||
305 | |||
306 | // set the pessimistic and optimistic projections |
||
307 | makespan.put(c, new Double[] { |
||
308 | Math.min(makespan.get(c)[0], dMakespan.get(c)[0]), |
||
309 | Math.max(makespan.get(c)[1], dMakespan.get(c)[1]) |
||
310 | }); |
||
311 | } |
||
312 | } |
||
313 | } |
||
314 | |||
315 | // set cost associated to the value |
||
316 | if (!makespan.containsKey(value.getComponent())) { |
||
317 | |||
318 | // set cost |
||
319 | makespan.put(value.getComponent(), new Double[] { |
||
320 | (double) value.getDurationLowerBound(), |
||
321 | (double) value.getDurationLowerBound() |
||
322 | }); |
||
323 | |||
324 | } else { |
||
325 | |||
326 | // increment makespan |
||
327 | makespan.put(value.getComponent(), new Double[] { |
||
328 | makespan.get(value.getComponent())[0] + ((double) value.getDurationLowerBound()), |
||
329 | makespan.get(value.getComponent())[1] + ((double) value.getDurationLowerBound()) |
||
330 | }); |
||
331 | } |
||
332 | } |
||
333 | |||
334 | // get the makespan |
||
335 | return makespan; |
||
336 | } |
||
337 | |||
338 | |||
339 | /** |
||
340 | * |
||
341 | * @return |
||
342 | */ |
||
343 | public String getLabel() { |
||
344 | return this.label; |
||
345 | } |
||
346 | |||
347 | /** |
||
348 | * |
||
349 | * @return |
||
350 | */ |
||
351 | public int getFringeSize() { |
||
352 | return this.fringe.size(); |
||
353 | } |
||
354 | |||
355 | /** |
||
356 | * |
||
357 | * @param node |
||
358 | */ |
||
359 | public abstract void enqueue(SearchSpaceNode node); |
||
360 | |||
361 | /** |
||
362 | * |
||
363 | */ |
||
364 | @Override |
||
365 | public abstract int compare(SearchSpaceNode n1, SearchSpaceNode n2); |
||
366 | |||
367 | /** |
||
368 | * |
||
369 | * @return |
||
370 | * @throws EmptyFringeException |
||
371 | */ |
||
372 | public SearchSpaceNode dequeue() |
||
373 | throws EmptyFringeException |
||
374 | { |
||
375 | // set next node of the fringe |
||
376 | SearchSpaceNode next = null; |
||
377 | try |
||
378 | { |
||
379 | // extract the "best" node from the fringe |
||
380 | next = this.fringe.remove(); |
||
381 | // store search data record |
||
382 | this.registerSearchChoice(next); |
||
383 | } |
||
384 | catch (NoSuchElementException ex) { |
||
385 | // empty fringe |
||
386 | throw new EmptyFringeException("No more nodes in the fringe"); |
||
387 | } |
||
388 | |||
389 | // get extracted node |
||
390 | return next; |
||
391 | } |
||
392 | |||
393 | /** |
||
394 | * Clear the internal data structures of a search strategy |
||
395 | */ |
||
396 | public void clear() { |
||
397 | // clear queue |
||
398 | this.fringe.clear(); |
||
399 | // close DB connection if necessary |
||
400 | if (client != null) { |
||
401 | client.close(); |
||
402 | client = null; |
||
403 | this.collection = null; |
||
404 | } |
||
405 | } |
||
406 | |||
407 | /** |
||
408 | * |
||
409 | */ |
||
410 | public String toString() { |
||
411 | // JSON like object description |
||
412 | return "{ \"label\": \"" + this.label + "\" }"; |
||
413 | } |
||
414 | |||
415 | /** |
||
416 | * |
||
417 | * @param node |
||
418 | */ |
||
419 | protected void registerSearchChoice(SearchSpaceNode node) |
||
420 | { |
||
421 | // check db collection |
||
422 | if (this.collection != null) { |
||
423 | // create solving statistic record |
||
424 | Document doc = new Document("step", node.getId()); |
||
425 | doc.append("fringe-size", this.fringe.size()); |
||
426 | doc.append("node-number-of-flaws", node.getNumberOfFlaws()); |
||
427 | doc.append("node-depth", node.getDepth()); |
||
428 | |||
429 | // consolidated values of metrics |
||
430 | doc.append("node-plan-cost", node.getPlanCost()); |
||
431 | doc.append("node-plan-makespan-min", node.getPlanMakespan()[0]); |
||
432 | doc.append("node-plan-makespan-max", node.getPlanMakespan()[1]); |
||
433 | |||
434 | // heuristic estimation of metrics |
||
435 | doc.append("node-heuristic-plan-cost-min", node.getPlanHeuristicCost()[0]); |
||
436 | doc.append("node-heuristic-plan-cost-max", node.getPlanHeuristicCost()[1]); |
||
437 | doc.append("node-heuristic-plan-makespan-min", node.getPlanHeuristicMakespan()[0]); |
||
438 | doc.append("node-heuristic-plan-makespan-max", node.getPlanHeuristicMakespan()[1]); |
||
439 | |||
440 | // insert data into the collection |
||
441 | this.collection.insertOne(doc); |
||
442 | } |
||
443 | } |
||
444 | |||
445 | /** |
||
446 | * This method computes an evaluation concerning the (planning) distance of |
||
447 | * a given node from a solution plan. |
||
448 | * |
||
449 | * Namely the method computes the expected cost the planner should "pay" to refine |
||
450 | * the given node and obtain a valid solution. The cost takes into account both planning |
||
451 | * and scheduling decisions. Also, the cost considers possible "gaps" on timelines and |
||
452 | * tries to estimates the planning effort needed to complete the behaviors of |
||
453 | * related timelines. |
||
454 | * |
||
455 | * The heuristics computes a cost for each component of the domain and |
||
456 | * takes into account timeline projections and therefore computes a pessimistic |
||
457 | * and optimistic evaluation. |
||
458 | * |
||
459 | * @param node |
||
460 | * @return |
||
461 | */ |
||
462 | protected Map<DomainComponent, Double[]> computeHeuristicCost(SearchSpaceNode node) |
||
463 | { |
||
464 | // compute an optimistic and pessimistic estimation of planning operations |
||
465 | Map<DomainComponent, Double[]> cost = new HashMap<>(); |
||
466 | // check node flaws and compute heuristic estimation |
||
467 | for (Flaw flaw : node.getFlaws()) |
||
468 | { |
||
469 | // check planning goal |
||
470 | if (flaw.getType().equals(FlawType.PLAN_REFINEMENT)) |
||
471 | { |
||
472 | // get flaw data |
||
473 | Goal goal = (Goal) flaw; |
||
474 | // compute cost projections |
||
475 | Map<DomainComponent, Double[]> update = this.computeCostProjections(goal.getDecision().getValue()); |
||
476 | // update cost |
||
477 | for (DomainComponent c : update.keySet()) { |
||
478 | if (!cost.containsKey(c)) { |
||
479 | // set cost |
||
480 | cost.put(c, new Double[] { |
||
481 | this.planningCost * update.get(c)[0], |
||
482 | this.planningCost * update.get(c)[1] |
||
483 | }); |
||
484 | } |
||
485 | else { |
||
486 | // update cost |
||
487 | cost.put(c, new Double[] { |
||
488 | cost.get(c)[0] + (this.planningCost * update.get(c)[0]), |
||
489 | cost.get(c)[1] + (this.planningCost * update.get(c)[1]) |
||
490 | }); |
||
491 | } |
||
492 | } |
||
493 | } |
||
494 | |||
495 | // check scheduling goal |
||
496 | View Code Duplication | if (flaw.getType().equals(FlawType.TIMELINE_OVERFLOW)) |
|
497 | { |
||
498 | // get component |
||
499 | DomainComponent comp = flaw.getComponent(); |
||
500 | // update cost |
||
501 | if (!cost.containsKey(comp)) { |
||
502 | // set cost |
||
503 | cost.put(comp, new Double[] { |
||
504 | this.schedulingCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1), |
||
505 | this.schedulingCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1) |
||
506 | }); |
||
507 | } |
||
508 | else { |
||
509 | // update cost |
||
510 | cost.put(comp, new Double[] { |
||
511 | cost.get(comp)[0] + (this.schedulingCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1)), |
||
512 | cost.get(comp)[1] + (this.schedulingCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1)) |
||
513 | }); |
||
514 | } |
||
515 | } |
||
516 | |||
517 | // check scheduling goal |
||
518 | View Code Duplication | if (flaw.getType().equals(FlawType.TIMELINE_BEHAVIOR_PLANNING)) |
|
519 | { |
||
520 | // get component |
||
521 | DomainComponent comp = flaw.getComponent(); |
||
522 | // update cost |
||
523 | if (!cost.containsKey(comp)) { |
||
524 | // set cost |
||
525 | cost.put(comp, new Double[] { |
||
526 | this.completionCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1), |
||
527 | this.completionCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1) |
||
528 | }); |
||
529 | } |
||
530 | else { |
||
531 | // update cost |
||
532 | cost.put(comp, new Double[] { |
||
533 | cost.get(comp)[0] + (this.completionCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1)), |
||
534 | cost.get(comp)[1] + (this.completionCost * (this.pdb.getDomainKnowledge().getHierarchicalLevelValue(comp) + 1)) |
||
535 | }); |
||
536 | } |
||
537 | } |
||
538 | } |
||
539 | |||
540 | |||
541 | // finalize data structure |
||
542 | for (DomainComponent c : this.pdb.getComponents()) { |
||
543 | if (!cost.containsKey(c)) { |
||
544 | cost.put(c, new Double[] { |
||
545 | (double) 0, |
||
546 | (double) 0 |
||
547 | }); |
||
548 | } |
||
549 | } |
||
550 | |||
551 | // get cost |
||
552 | return cost; |
||
553 | } |
||
554 | |||
555 | /** |
||
556 | * |
||
557 | * This method provides an heuristic evaluation of the makespan of domain components. |
||
558 | * |
||
559 | * Namely, the method considesrs planning subgoals of a given partial plan and computes |
||
560 | * a projection of the makespan. The evalution takes into account optmistic and pessimistic |
||
561 | * projections of timelines |
||
562 | * |
||
563 | * @param node |
||
564 | * @return |
||
565 | */ |
||
566 | protected Map<DomainComponent, Double[]> computeHeuristicMakespan(SearchSpaceNode node) |
||
567 | { |
||
568 | // initialize makespan projects |
||
569 | Map<DomainComponent, Double[]> projections = new HashMap<>(); |
||
570 | // check node flaws and compute heuristic estimation |
||
571 | for (Flaw flaw : node.getFlaws()) |
||
572 | { |
||
573 | // check planning goals |
||
574 | if (flaw.getType().equals(FlawType.PLAN_REFINEMENT)) |
||
575 | { |
||
576 | // get planning goal |
||
577 | Goal goal = (Goal) flaw; |
||
578 | // compute optimistic and pessimistic projections of makespan from goals |
||
579 | Map<DomainComponent, Double[]> update = this.computeMakespanProjections( |
||
580 | goal.getDecision().getValue()); |
||
581 | |||
582 | // update plan projections |
||
583 | for (DomainComponent c : update.keySet()) |
||
584 | { |
||
585 | // check projection |
||
586 | if (!projections.containsKey(c)) { |
||
587 | // set projection |
||
588 | projections.put(c, |
||
589 | new Double[] { |
||
590 | update.get(c)[0], |
||
591 | update.get(c)[1] |
||
592 | }); |
||
593 | } |
||
594 | else { |
||
595 | // update projection |
||
596 | projections.put(c, |
||
597 | new Double[] { |
||
598 | projections.get(c)[0] + update.get(c)[0], |
||
599 | projections.get(c)[1] + update.get(c)[1] |
||
600 | }); |
||
601 | } |
||
602 | } |
||
603 | } |
||
604 | } |
||
605 | |||
606 | // finalize data structure |
||
607 | for (DomainComponent c : this.pdb.getComponents()) { |
||
608 | if (!projections.containsKey(c)) { |
||
609 | projections.put(c, new Double[] { |
||
610 | (double) 0, |
||
611 | (double) 0 |
||
612 | }); |
||
613 | } |
||
614 | } |
||
615 | |||
616 | // get projections |
||
617 | return projections; |
||
618 | } |
||
619 | |||
620 | /** |
||
621 | * |
||
622 | * @param graph |
||
623 | */ |
||
624 | private void exportHierarchyGraph(List<DomainComponent>[] graph) |
||
625 | { |
||
626 | // export graph |
||
627 | String str = "digraph hierarhcy_graph {\n"; |
||
628 | str += "\trankdir=TB;\n"; |
||
629 | str += "\tnode [fontsize=11, style=filled, fillcolor=azure, shape = box]\n"; |
||
630 | |||
631 | |||
632 | // check dependencies |
||
633 | for (int index = 0; index < graph.length - 1; index++) { |
||
634 | // get components at current level |
||
635 | List<DomainComponent> currlist = graph[index]; |
||
636 | // get components at next level |
||
637 | List<DomainComponent> nextlist = graph[index + 1]; |
||
638 | |||
639 | for (DomainComponent curr : currlist) { |
||
640 | for (DomainComponent next : nextlist) { |
||
641 | // add an edge to the graph |
||
642 | str += "\t" + curr.getName() + " -> " + next.getName(); |
||
643 | |||
644 | } |
||
645 | } |
||
646 | |||
647 | } |
||
648 | |||
649 | // close |
||
650 | str += "\n}\n\n"; |
||
651 | |||
652 | try |
||
653 | { |
||
654 | File pdlFile = new File(FRAMEWORK_HOME + "hierarchy_graph.dot"); |
||
655 | try (BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(pdlFile), "UTF-8"))) { |
||
656 | // write file |
||
657 | writer.write(str); |
||
658 | } |
||
659 | } |
||
660 | catch (Exception ex) { |
||
661 | throw new RuntimeException(ex.getMessage()); |
||
662 | } |
||
663 | } |
||
664 | |||
665 | |||
666 | /** |
||
667 | * |
||
668 | * @param graph |
||
669 | */ |
||
670 | private void exportDependencyGraph(Map<DomainComponent, Set<DomainComponent>> graph) |
||
671 | { |
||
672 | // export graph |
||
673 | String str = "digraph dependency_graph {\n"; |
||
674 | str += "\trankdir=TB;\n"; |
||
675 | str += "\tnode [fontsize=11, style=filled, fillcolor=azure, shape = box]\n"; |
||
676 | |||
677 | // check dependencies |
||
678 | for (DomainComponent comp : graph.keySet()) { |
||
679 | // check dependencies |
||
680 | for (DomainComponent dep : graph.get(comp)) { |
||
681 | // add an edge to the graph |
||
682 | str += "\t" + dep.getName() + " -> " + comp.getName(); |
||
683 | } |
||
684 | } |
||
685 | |||
686 | // close |
||
687 | str += "\n}\n\n"; |
||
688 | |||
689 | try |
||
690 | { |
||
691 | File pdlFile = new File(FRAMEWORK_HOME + "dependency_graph.dot"); |
||
692 | try (BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(pdlFile), "UTF-8"))) { |
||
693 | // write file |
||
694 | writer.write(str); |
||
695 | } |
||
696 | } |
||
697 | catch (Exception ex) { |
||
698 | throw new RuntimeException(ex.getMessage()); |
||
699 | } |
||
700 | } |
||
701 | |||
702 | /** |
||
703 | * |
||
704 | * @param graph |
||
705 | */ |
||
706 | private void exportDecompositionGraph(Map<ComponentValue, List<List<ComponentValue>>> graph) |
||
707 | { |
||
708 | // export graph |
||
709 | String str = "digraph decomposition_graph {\n"; |
||
710 | str += "\trankdir=TB;\n"; |
||
711 | str += "\tnode [fontsize=11, style=filled, fillcolor=azure, shape = box]\n"; |
||
712 | |||
713 | // node id |
||
714 | int counter = 0; |
||
715 | // create AND nodes |
||
716 | int andCounter = 0; |
||
717 | // check the graph |
||
718 | for (ComponentValue value : graph.keySet()) |
||
719 | { |
||
720 | // check number of disjunctions |
||
721 | List<List<ComponentValue>> disjunctions = graph.get(value); |
||
722 | if (disjunctions.size() == 1) |
||
723 | { |
||
724 | String andNode = "AND_" + andCounter; |
||
725 | str += "\t" + andNode + " [fontsize=6, shape= oval, style=filled, fillcolor= palegreen];\n"; |
||
726 | |||
727 | str += "\t" + value.getComponent().getName() + "_" + value.getLabel().replace("-", "_") + |
||
728 | " -> " + andNode + ";\n"; |
||
729 | |||
730 | |||
731 | |||
732 | // set weight of the edge |
||
733 | Map<ComponentValue, Integer> wc = new HashMap<>(); |
||
734 | for (ComponentValue child : disjunctions.get(0)) { |
||
735 | if (!wc.containsKey(child)) { |
||
736 | wc.put(child, 1); |
||
737 | } |
||
738 | else { |
||
739 | // increment |
||
740 | int v = wc.get(child); |
||
741 | wc.put(child, ++v); |
||
742 | } |
||
743 | } |
||
744 | |||
745 | // no disjunctions |
||
746 | for (ComponentValue child : wc.keySet()) { |
||
747 | // add edge |
||
748 | str += "\t" + andNode + " -> " + child.getComponent().getName() + "_" + child.getLabel().replace("-", "_") + " [label= \"" + wc.get(child) + "\"];\n"; |
||
749 | } |
||
750 | |||
751 | // increment and node counter |
||
752 | andCounter++; |
||
753 | } |
||
754 | else |
||
755 | { |
||
756 | // add OR node label |
||
757 | String orLabel = "OR_" + counter; |
||
758 | // add an edge to the OR node |
||
759 | str += "\t" + orLabel + " [fontsize=6, shape= diamond, style=filled, fillcolor= thistle];\n"; |
||
760 | str += "\t" + value.getComponent().getName() + "_" + value.getLabel().replace("-", "_") + |
||
761 | " -> " + orLabel + ";\n"; |
||
762 | |||
763 | // add disjunctions |
||
764 | for (List<ComponentValue> conjunctions : disjunctions) |
||
765 | { |
||
766 | // set AND node label |
||
767 | String andLabel = "AND_" + andCounter; |
||
768 | str += "\t" + andLabel + " [fontsize=6, shape= oval, style=filled, fillcolor= palegreen];\n"; |
||
769 | |||
770 | // set weight of the edge |
||
771 | Map<ComponentValue, Integer> wc = new HashMap<>(); |
||
772 | for (ComponentValue child : conjunctions) { |
||
773 | if (!wc.containsKey(child)) { |
||
774 | wc.put(child, 1); |
||
775 | } |
||
776 | else { |
||
777 | // increment |
||
778 | int v = wc.get(child); |
||
779 | wc.put(child, ++v); |
||
780 | } |
||
781 | } |
||
782 | |||
783 | // add and edge to the AND node |
||
784 | str += "\t" + orLabel + " -> " + andLabel + ";\n"; |
||
785 | for (ComponentValue child : wc.keySet()) { |
||
786 | // add edge from AND node to the value |
||
787 | str += "\t" + andLabel + |
||
788 | " -> " + child.getComponent().getName() + "_" +child.getLabel().replace("-", "_") + " [label= \"" + wc.get(child) + "\"];\n"; |
||
789 | } |
||
790 | |||
791 | |||
792 | // increment and node counter |
||
793 | andCounter++; |
||
794 | } |
||
795 | |||
796 | counter++; |
||
797 | } |
||
798 | |||
799 | |||
800 | } |
||
801 | |||
802 | // close |
||
803 | str += "\n}\n\n"; |
||
804 | |||
805 | try |
||
806 | { |
||
807 | File pdlFile = new File(FRAMEWORK_HOME + "decomposition_graph.dot"); |
||
808 | try (BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(pdlFile), "UTF-8"))) { |
||
809 | // write file |
||
810 | writer.write(str); |
||
811 | } |
||
812 | } |
||
813 | catch (Exception ex) { |
||
814 | throw new RuntimeException(ex.getMessage()); |
||
815 | } |
||
818 |
If you really need to set this static field, consider writing a thread-safe setter and atomic getter.