Total Complexity | 76 |
Total Lines | 461 |
Duplicated Lines | 0 % |
Changes | 1 | ||
Bugs | 0 | Features | 0 |
Complex classes like TBitHelper often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use TBitHelper, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
65 | class TBitHelper |
||
66 | { |
||
67 | public const Level1 = (PHP_INT_SIZE >= 8) ? 0x5555555555555555 : 0x55555555; |
||
68 | public const NLevel1 = ~self::Level1; |
||
69 | public const Mask1 = (PHP_INT_SIZE >= 8) ? 0x7FFFFFFFFFFFFFFF : 0x7FFFFFFF; |
||
70 | public const Level2 = (PHP_INT_SIZE >= 8) ? 0x3333333333333333 : 0x33333333; |
||
71 | public const NLevel2 = ~self::Level2; |
||
72 | public const Mask2 = self::Mask1 >> 1; |
||
73 | public const Level3 = (PHP_INT_SIZE >= 8) ? 0x0F0F0F0F0F0F0F0F : 0x0F0F0F0F; |
||
74 | public const NLevel3 = ~self::Level3; |
||
75 | public const Mask3 = self::Mask1 >> 3; |
||
76 | public const Level4 = (PHP_INT_SIZE >= 8) ? 0x00FF00FF00FF00FF : 0x00FF00FF; |
||
77 | public const NLevel4 = ~self::Level4; |
||
78 | public const Mask4 = self::Mask1 >> 7; |
||
79 | public const Level5 = (PHP_INT_SIZE >= 8) ? 0x0000FFFF0000FFFF : 0x0000FFFF; |
||
80 | public const NLevel5 = ~self::Level5; |
||
81 | public const Mask5 = self::Mask1 >> 15; |
||
82 | public const Level6 = (PHP_INT_SIZE >= 8) ? 0x00000000FFFFFFFF : -1; |
||
83 | public const NLevel6 = ~self::Level6; |
||
84 | public const Mask6 = self::Mask1 >> 31; |
||
85 | |||
86 | /** |
||
87 | * Motorola is Big Endian with the Most Significant Byte first whereas Intel uses |
||
88 | * Little Endian with the Least Significant Byte first. This mainly only affects |
||
89 | * the binary reading and writing of data types that are 2 bytes or larger. |
||
90 | * @return bool Is the PHP environment in Big Endian Motorola Byte format. |
||
91 | */ |
||
92 | public static function isSystemBigEndian(): bool |
||
93 | { |
||
94 | static $bigEndian = null; |
||
95 | if ($bigEndian === null) { |
||
96 | $bigEndian = unpack('S', "\x00\x01")[1] === 1; |
||
97 | } |
||
98 | return $bigEndian; |
||
99 | } |
||
100 | |||
101 | /** |
||
102 | * @return bool Is the PHP environment 64 bit and supports the 64 bit LongLong type. |
||
103 | */ |
||
104 | public static function hasLongLong(): bool |
||
105 | { |
||
106 | return PHP_INT_SIZE >= 8; |
||
107 | } |
||
108 | |||
109 | /** |
||
110 | * This returns true with all negative floats, including -0.0. Normally "$float < 0" |
||
111 | * will not include -0.0, where this function does include -0.0. |
||
112 | * @param float $value The float to check for being negative. |
||
113 | * @return bool Is a negative float. |
||
114 | */ |
||
115 | public static function isNegativeFloat(float $value): bool |
||
116 | { |
||
117 | return $value < 0 || $value === -0.0 && (ord(pack('G', $value)) & 0x80) !== 0; |
||
118 | } |
||
119 | |||
120 | /** |
||
121 | * This returns true with negative zero (-0.0). Checking for negative zero floats |
||
122 | * requires this special function because PHP cannot be directly check for negative |
||
123 | * zero due to '-0.0 === 0.0'. |
||
124 | * @param float $value The float to check for being negative. |
||
125 | * @return bool Is a negative zero float. |
||
126 | */ |
||
127 | public static function isNegativeZero(float $value): bool |
||
128 | { |
||
129 | return $value === -0.0 && (ord(pack('G', $value)) & 0x80) !== 0; |
||
130 | } |
||
131 | |||
132 | /** |
||
133 | * Encodes a PHP float into an N-bit floating point number (in an integer) representation. |
||
134 | * This function can be configured with arbitrary number of Exponent Bits, Mantissa Bits, |
||
135 | * Exponent Bias, and IEEE Conformance (for subnormal numbers, INF, -INF, and NAN). |
||
136 | * The total number of floating point bits to be parsed is "$exponentBits + $mantissaBits + 1". |
||
137 | * |
||
138 | * With default parameter values, this functions as floatToFp16. |
||
139 | * @param float $value The PHP float to encode. |
||
140 | * @param int $exponentBits The number of bits used for the exponent, default: null for 5. |
||
141 | * @param int $mantissaBits The number of bits used for the mantissa, default: null for 10. |
||
142 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
143 | * half the maximum exponent value. Default: null. |
||
144 | * @param bool $IEEEConformance Whether to follow the IEEE 754 standard for special values |
||
145 | * (NaN, INF, -INF, and subnormal). Default true |
||
146 | * @throws TInvalidDataValueException on bad floating point configuration values. |
||
147 | * @return int The a short form float representation of the float $value. |
||
148 | */ |
||
149 | public static function floatToFpXX(float $value, ?int $exponentBits = null, ?int $mantissaBits = null, ?int $exponentBias = null, bool $IEEEConformance = true): int |
||
150 | { |
||
151 | $exponentBits = ($exponentBits === null) ? 5 : $exponentBits; |
||
152 | $mantissaBits = ($mantissaBits === null) ? 10 : $mantissaBits; |
||
153 | $exponentMaxValue = (1 << $exponentBits) - 1; |
||
154 | $exponentBias = ($exponentBias === null) ? $exponentMaxValue >> 1 : $exponentBias; |
||
155 | if ($exponentBits <= 0 || $mantissaBits <= 0 || ($exponentBits + $mantissaBits + 1) > PHP_INT_SIZE * 8 || $exponentBias < 0 || $exponentBias > $exponentMaxValue) { |
||
156 | throw new TInvalidDataValueException('bithelper_bad_fp_format', $exponentBits, $mantissaBits, $exponentBias, PHP_INT_SIZE * 8); |
||
157 | } |
||
158 | $sign = self::isNegativeFloat($value) ? 1 : 0; |
||
159 | $value = abs($value); |
||
160 | $exponent = 0; |
||
161 | $mantissa = 0; |
||
162 | |||
163 | if ($IEEEConformance && is_nan($value)) { |
||
164 | $exponent = $exponentMaxValue; |
||
165 | $mantissa = (1 << $mantissaBits) - 1; |
||
166 | } elseif ($IEEEConformance && (is_infinite($value) || $value >= pow(2, ($exponentMaxValue - 1) - $exponentBias) * (1 << $mantissaBits))) { |
||
167 | $exponent = $exponentMaxValue; |
||
168 | } elseif ($value == 0) { |
||
169 | $mantissa = 0; |
||
170 | } else { |
||
171 | $exponent = floor(log($value, 2)) + $exponentBias; |
||
172 | if ($exponent <= 0) { |
||
173 | $mantissa = round($value / pow(2, 1 - $exponentBias - $mantissaBits)); |
||
174 | $exponent = 0; |
||
175 | } elseif ($exponent >= $exponentMaxValue) { |
||
176 | $exponent = $exponentMaxValue; |
||
177 | $mantissa = 0; |
||
178 | } else { |
||
179 | $totalMantissaValues = (1 << $mantissaBits); |
||
180 | $mantissa = round(($value / pow(2, $exponent - $exponentBias) - 1.0) * $totalMantissaValues); |
||
181 | if ($mantissa === $totalMantissaValues) { |
||
182 | $exponent++; |
||
183 | $mantissa = 0; |
||
184 | } |
||
185 | } |
||
186 | } |
||
187 | $fpXX = ($sign << ($exponentBits + $mantissaBits)) | ($exponent << $mantissaBits) | $mantissa; |
||
188 | return $fpXX; |
||
189 | } |
||
190 | |||
191 | /** |
||
192 | * This encodes a PHP float into a Fp16 (1 bit sign, 5 bits exponent, 10 bits mantissa) float. |
||
193 | * @param float $value The float to encode. |
||
194 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
195 | * half the maximum exponent value. Default: null. |
||
196 | * @return int The encoded 2 byte Fp16 float. |
||
197 | */ |
||
198 | public static function floatToFp16(float $value, ?int $exponentBias = null): int |
||
199 | { |
||
200 | return self::floatToFpXX($value, 5, 10, $exponentBias); |
||
201 | } |
||
202 | |||
203 | /** |
||
204 | * This encodes a PHP float into a Bf16 (1 bit sign, 8 bits exponent, 7 bits mantissa) |
||
205 | * float. This preserves the range of typical 4 byte floats but drops 2 bytes of |
||
206 | * precision from 23 bits to 7 bits. |
||
207 | * @param float $value The float to encode. |
||
208 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
209 | * half the maximum exponent value. Default: null. |
||
210 | * @return int The encoded 2 byte Bf16 float. |
||
211 | */ |
||
212 | public static function floatToBf16(float $value, ?int $exponentBias = null): int |
||
213 | { |
||
214 | return self::floatToFpXX($value, 8, 7, $exponentBias); |
||
215 | } |
||
216 | |||
217 | /** |
||
218 | * This encodes a PHP float into an FP8 (1 bit sign, 5 bits exponent, 2 bits mantissa) float. |
||
219 | * The FP8 E5M2 format is for lower precision and higher range. |
||
220 | * @param float $value The float to encode. |
||
221 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
222 | * half the maximum exponent value. Default: null. |
||
223 | * @return int The encoded 1 byte FP8-E5M2 float. |
||
224 | */ |
||
225 | public static function floatToFp8Range(float $value, ?int $exponentBias = null): int |
||
226 | { |
||
227 | return self::floatToFpXX($value, 5, 2, $exponentBias); |
||
228 | } |
||
229 | |||
230 | /** |
||
231 | * This encodes a PHP float into an FP8 (1 bit sign, 4 bits exponent, 3 bits mantissa) float. |
||
232 | * The FP8 E4M3 format is for higher precision and lower range. |
||
233 | * @param float $value The float to encode. |
||
234 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
235 | * half the maximum exponent value. Default: null. |
||
236 | * @return int The encoded 1 byte FP8-E4M3 float. |
||
237 | */ |
||
238 | public static function floatToFp8Precision(float $value, ?int $exponentBias = null): int |
||
239 | { |
||
240 | return self::floatToFpXX($value, 4, 3, $exponentBias); |
||
241 | } |
||
242 | |||
243 | /** |
||
244 | * Decodes an N-bit floating point encoded as an integer to a PHP floating-point number. |
||
245 | * This function can be configured with arbitrary number of Exponent Bits, Mantissa Bits, |
||
246 | * Exponent Bias, and IEEE Conformance (for subnormal numbers, INF, -INF, and NAN). |
||
247 | * The total number of floating point bits to be parsed is "$exponentBits + $mantissaBits + 1". |
||
248 | * |
||
249 | * With default parameter values, this functions as fp16ToFloat. |
||
250 | * @param int $fpXX The encoded N-bit floating point number. |
||
251 | * @param int $exponentBits The number of bits used for the exponent, default: null for 5. |
||
252 | * @param int $mantissaBits The number of bits used for the mantissa, default: null for 10. |
||
253 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
254 | * half the maximum exponent value. Default: null. |
||
255 | * @param bool $IEEEConformance Whether to follow the IEEE 754 standard for special values |
||
256 | * (NaN, INF, -INF, and subnormal). Default true |
||
257 | * @throws TInvalidDataValueException on bad floating point configuration values. |
||
258 | * @return float The PHP float of the encoded $fpXX float. |
||
259 | */ |
||
260 | public static function fpXXToFloat(int $fpXX, ?int $exponentBits = null, ?int $mantissaBits = null, ?int $exponentBias = null, bool $IEEEConformance = true): float |
||
261 | { |
||
262 | $exponentBits = ($exponentBits === null) ? 5 : $exponentBits; |
||
263 | $mantissaBits = ($mantissaBits === null) ? 10 : $mantissaBits; |
||
264 | $exponentMaxValue = (1 << $exponentBits) - 1; |
||
265 | if ($exponentBits <= 0 || $mantissaBits <= 0 || ($exponentBits + $mantissaBits + 1) > PHP_INT_SIZE * 8 || |
||
266 | ($exponentBias !== null && ($exponentBias < 0 || $exponentBias > $exponentMaxValue))) { |
||
267 | throw new TInvalidDataValueException('bithelper_bad_fp_format', $exponentBits, $mantissaBits, $exponentBias, PHP_INT_SIZE * 8); |
||
268 | } |
||
269 | $exponentBias = ($exponentBias === null) ? $exponentMaxValue >> 1 : $exponentBias; |
||
270 | $sign = ($fpXX >> ($exponentBits + $mantissaBits)) & 0x1; |
||
271 | $exponent = ($fpXX >> $mantissaBits) & $exponentMaxValue; |
||
272 | $mantissa = $fpXX & ((1 << $mantissaBits) - 1); |
||
273 | if ($IEEEConformance && $exponent == 0) { // subnormal numbers. |
||
274 | $value = $mantissa * pow(2, 1 - $exponentBias - $mantissaBits); |
||
275 | } elseif ($IEEEConformance && $exponent == $exponentMaxValue) { |
||
276 | $value = ($mantissa == 0) ? INF : NAN; |
||
277 | } else { |
||
278 | $value = pow(2, $exponent - $exponentBias) * (1.0 + ($mantissa / (1 << $mantissaBits))); |
||
279 | } |
||
280 | if ($sign) { |
||
281 | $value = -$value; |
||
282 | } |
||
283 | return $value; |
||
284 | } |
||
285 | |||
286 | /** |
||
287 | * This decodes a Fp16 (5 bits exponent, 10 bits mantissa) encoded float into a PHP Float. |
||
288 | * @param int $fp16 the Fp16 encoded float. |
||
289 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
290 | * half the maximum exponent value. Default: null. |
||
291 | * @return float The Fp16 float decoded as a PHP float. |
||
292 | */ |
||
293 | public static function fp16ToFloat(int $fp16, ?int $exponentBias = null): float |
||
294 | { |
||
295 | return self::fpXXToFloat($fp16, 5, 10, $exponentBias); |
||
296 | } |
||
297 | |||
298 | /** |
||
299 | * This decodes a Bf16 (8 bits exponent, 7 bits mantissa) encoded float into a PHP |
||
300 | * Float. |
||
301 | * @param int $bf16 the BF16 encoded float. |
||
302 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
303 | * half the maximum exponent value. Default: null. |
||
304 | * @return float The Bf16 float decoded as a PHP float. |
||
305 | */ |
||
306 | public static function bf16ToFloat(int $bf16, ?int $exponentBias = null): float |
||
307 | { |
||
308 | return self::fpXXToFloat($bf16, 8, 7, $exponentBias); |
||
309 | } |
||
310 | |||
311 | /** |
||
312 | * This decodes a FP8 (5 bits exponent, 2 bits mantissa) encoded float into a PHP Float. |
||
313 | * @param int $fp8 the FP8-E5M2 encoded float. |
||
314 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
315 | * half the maximum exponent value. Default: null. |
||
316 | * @return float The FP8-E5M2 float decoded as a PHP float. |
||
317 | */ |
||
318 | public static function fp8RangeToFloat(int $fp8, ?int $exponentBias = null): float |
||
319 | { |
||
320 | return self::fpXXToFloat($fp8, 5, 2, $exponentBias); |
||
321 | } |
||
322 | |||
323 | /** |
||
324 | * This decodes a FP8 (4 bits exponent, 3 bits mantissa) encoded float into a PHP Float. |
||
325 | * @param int $fp8 the FP8-E4M3 encoded float. |
||
326 | * @param null|int $exponentBias The bias to apply to the exponent. If null, it defaults to |
||
327 | * half the maximum exponent value. Default: null. |
||
328 | * @return float The FP8-E4M3 float decoded as a PHP float. |
||
329 | */ |
||
330 | public static function fp8PrecisionToFloat(int $fp8, ?int $exponentBias = null): float |
||
331 | { |
||
332 | return self::fpXXToFloat($fp8, 4, 3, $exponentBias); |
||
333 | } |
||
334 | |||
335 | /** |
||
336 | * This calculates the number of bits required to represent a given number. |
||
337 | * eg. If there are 256 colors, then the maximum representable number in 8 bits |
||
338 | * is 255. A $value of 255 returns 8 bits, and 256 returns 9 bits, to represent |
||
339 | * the number. |
||
340 | * @param int $value The number to calculate the bits required to represent it. |
||
341 | * @return int The number of bits required to represent $n |
||
342 | */ |
||
343 | public static function bitCount(int $value): int |
||
354 | } |
||
355 | |||
356 | /** |
||
357 | * This method shifts color bits. When removing bits, they are simply dropped. |
||
358 | * When adding bits, it replicates the existing bits for new bits to create the |
||
359 | * most accurate higher bit representation of the color. |
||
360 | * @param int $value The color value to expand or contract bits. |
||
361 | * @param int $inBits The number of bits of the input value. |
||
362 | * @param int $outBits The number of bits of the output value. |
||
363 | * @return int The $value shifted to $outBits in size. |
||
364 | * @throw TInvalidDataValueException when the $inBits or $outBits are less than |
||
365 | * 1 or greater than the Max Int Size for this PHP implementation. |
||
366 | */ |
||
367 | public static function colorBitShift(int $value, int $inBits, int $outBits): int |
||
368 | { |
||
369 | if ($inBits < 1 || $inBits > PHP_INT_SIZE * 8) { |
||
370 | throw new TInvalidDataValueException("bithelper_invalid_color_in", $inBits); |
||
371 | } |
||
372 | if ($outBits < 1 || $outBits > PHP_INT_SIZE * 8) { |
||
373 | throw new TInvalidDataValueException("bithelper_invalid_color_out", $outBits); |
||
374 | } |
||
375 | $dif = $outBits - $inBits; |
||
376 | if ($dif > 0) { |
||
377 | $return = $value; |
||
378 | do { |
||
379 | $dd = min($inBits, $dif); |
||
380 | $return = ($return << $dd) | ($value >> ($inBits - $dd)); |
||
381 | $dif -= $dd; |
||
382 | } while ($dif > 0); |
||
383 | return $return; |
||
384 | } elseif ($dif < 0) { |
||
385 | $dif = -$dif; |
||
386 | return ($value >> $dif) & (PHP_INT_MAX >> ($dif - 1)); |
||
387 | } |
||
388 | return $value; |
||
389 | } |
||
390 | |||
391 | /** |
||
392 | * This does a right bit shift but the signed bit is not replicated in the high |
||
393 | * bit (with a bit-and). |
||
394 | * In normal PHP right bit shift, the signed bit is what make up any new bit in |
||
395 | * the shift. |
||
396 | * @param int $value The integer to bit shift. |
||
397 | * @param int $bits How much to shift the bits right. Positive is right shift, |
||
398 | * Negative is left shift. |
||
399 | * @return int The shifted integer without the high bit repeating. |
||
400 | */ |
||
401 | public static function unsignedShift(int $value, int $bits): int |
||
402 | { |
||
403 | if ($bits > 0) { |
||
404 | return ($value >> $bits) & (PHP_INT_MAX >> ($bits - 1)); |
||
405 | } elseif ($bits < 0) { |
||
406 | return $value << -$bits; |
||
407 | } else { |
||
408 | return $value; |
||
409 | } |
||
410 | } |
||
411 | |||
412 | /** |
||
413 | * This mirrors $nbit bits from $value. For example, 0b100 becomes 0b001 @ $nbit = 3 |
||
414 | * and 0x0100 become 0x0010 @ $nbit = 4. |
||
415 | * @param int $value The bits to reverse. |
||
416 | * @param int $nbit The number of bits to reverse. |
||
417 | * @throws TInvalidDataValueException when $nbits is over the maximum size of a PHP int. |
||
418 | * @return int reversed bits of $value. |
||
419 | */ |
||
420 | public static function mirrorBits(int $value, int $nbit): int |
||
421 | { |
||
422 | if ($nbit > PHP_INT_SIZE * 8) { |
||
423 | throw new TInvalidDataValueException('bithelper_bad_mirror_bits', $nbit, PHP_INT_SIZE * 8); |
||
424 | } |
||
425 | for ($i = 0, $result = 0; $i < $nbit; $i++) { |
||
426 | $result <<= 1; |
||
427 | $result |= $value & 1; |
||
428 | $value >>= 1; |
||
429 | } |
||
430 | return $result; |
||
431 | } |
||
432 | |||
433 | /** |
||
434 | * This quickly mirrors the 8 bits in each byte of $n. |
||
435 | * @param int $n The integer to mirror the bits of each byte. |
||
436 | * @return int reversed 8 bits of $n. |
||
437 | */ |
||
438 | public static function mirrorByte(int $n): int |
||
443 | } |
||
444 | |||
445 | /** |
||
446 | * This quickly mirrors the 16 bits in each [2 byte] short of $n. |
||
447 | * @param int $n The integer to mirror the bits of each short. |
||
448 | * @return int reversed 16 bits of $n. |
||
449 | */ |
||
450 | public static function mirrorShort(int $n): int |
||
451 | { |
||
452 | $n = ((($n & self::NLevel1) >> 1) & self::Mask1) | (($n & self::Level1) << 1); |
||
453 | $n = ((($n & self::NLevel2) >> 2) & self::Mask2) | (($n & self::Level2) << 2); |
||
454 | $n = ((($n & self::NLevel3) >> 4) & self::Mask3) | (($n & self::Level3) << 4); |
||
455 | return ((($n & self::NLevel4) >> 8) & self::Mask4) | (($n & self::Level4) << 8); |
||
456 | |||
457 | } |
||
458 | |||
459 | /** |
||
460 | * This quickly mirrors the 32 bits in each [4 byte] long of $n. |
||
461 | * @param int $n The integer to mirror the bits of each long. |
||
462 | * @return int reversed 32 bits of $n. |
||
463 | */ |
||
464 | public static function mirrorLong(int $n): int |
||
465 | { |
||
466 | $n = ((($n & self::NLevel1) >> 1) & self::Mask1) | (($n & self::Level1) << 1); |
||
467 | $n = ((($n & self::NLevel2) >> 2) & self::Mask2) | (($n & self::Level2) << 2); |
||
468 | $n = ((($n & self::NLevel3) >> 4) & self::Mask3) | (($n & self::Level3) << 4); |
||
469 | $n = ((($n & self::NLevel4) >> 8) & self::Mask4) | (($n & self::Level4) << 8); |
||
470 | return ((($n & self::NLevel5) >> 16) & self::Mask5) | (($n & self::Level5) << 16); |
||
471 | } |
||
472 | |||
473 | /** |
||
474 | * This quickly mirrors the 64 bits of $n. This only works with 64 bit PHP systems. |
||
475 | * For speed, there is no check to validate that the system is 64 bit PHP. You |
||
476 | * must do the validation if/when needed with method {@link hasLongLong}. |
||
477 | * @param int $n The 8 byte integer to mirror the bits of. |
||
478 | * @return int reversed 64 bits of $n. |
||
479 | */ |
||
480 | public static function mirrorLongLong(int $n): int |
||
481 | { |
||
482 | $n = ((($n & self::NLevel1) >> 1) & self::Mask1) | (($n & self::Level1) << 1); |
||
483 | $n = ((($n & self::NLevel2) >> 2) & self::Mask2) | (($n & self::Level2) << 2); |
||
484 | $n = ((($n & self::NLevel3) >> 4) & self::Mask3) | (($n & self::Level3) << 4); |
||
485 | $n = ((($n & self::NLevel4) >> 8) & self::Mask4) | (($n & self::Level4) << 8); |
||
486 | $n = ((($n & self::NLevel5) >> 16) & self::Mask5) | (($n & self::Level5) << 16); |
||
487 | return ((($n & self::NLevel6) >> 32) & self::Mask6) | (($n & self::Level6) << 32); |
||
488 | } |
||
489 | |||
490 | /** |
||
491 | * This quickly flips the endian in each [2 byte] short of $n. |
||
492 | * @param int $n The 2 byte short to reverse the endian. |
||
493 | * @return int reversed endian of $n. |
||
494 | */ |
||
495 | public static function flipEndianShort(int $n): int |
||
496 | { |
||
497 | return ((($n & self::NLevel4) >> 8) & self::Mask4) | (($n & self::Level4) << 8); |
||
498 | } |
||
499 | |||
500 | /** |
||
501 | * This quickly flips the endian in each [4 byte] long of $n. |
||
502 | * @param int $n The 4 byte long to reverse the endian. |
||
503 | * @return int The reversed endian of $n. |
||
504 | */ |
||
505 | public static function flipEndianLong(int $n): int |
||
506 | { |
||
507 | $n = ((($n & self::NLevel4) >> 8) & self::Mask4) | (($n & self::Level4) << 8); |
||
508 | return ((($n & self::NLevel5) >> 16) & self::Mask5) | (($n & self::Level5) << 16); |
||
509 | } |
||
510 | |||
511 | /** |
||
512 | * This quickly fligs the endian of an 8 byte integer. This only works with 64 |
||
513 | * bit PHP systems. 32 bit systems will treat the bit field as floats and invariably |
||
514 | * fail. |
||
515 | * |
||
516 | * For speed, there is no check to validate that the system is 64 bit PHP. You |
||
517 | * must do the validation if/when needed with method {@link hasLongLong}. |
||
518 | * @param int $n The 8 byte long long to reverse the endian. |
||
519 | * @return int reversed 8 bytes endian of $n. |
||
520 | */ |
||
521 | public static function flipEndianLongLong(int $n): int |
||
526 | } |
||
527 | } |
||
528 |