|
1
|
|
|
<?php declare(strict_types=1); |
|
2
|
|
|
/** |
|
3
|
|
|
* @package JAMA |
|
4
|
|
|
* |
|
5
|
|
|
* For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n |
|
6
|
|
|
* unit lower triangular matrix L, an n-by-n upper triangular matrix U, |
|
7
|
|
|
* and a permutation vector piv of length m so that A(piv,:) = L*U. |
|
8
|
|
|
* If m < n, then L is m-by-m and U is m-by-n. |
|
9
|
|
|
* |
|
10
|
|
|
* The LU decompostion with pivoting always exists, even if the matrix is |
|
11
|
|
|
* singular, so the constructor will never fail. The primary use of the |
|
12
|
|
|
* LU decomposition is in the solution of square systems of simultaneous |
|
13
|
|
|
* linear equations. This will fail if isNonsingular() returns false. |
|
14
|
|
|
* |
|
15
|
|
|
* @author Paul Meagher |
|
16
|
|
|
* @author Bartosz Matosiuk |
|
17
|
|
|
* @author Michael Bommarito |
|
18
|
|
|
* @version 1.1 |
|
19
|
|
|
* @license PHP v3.0 |
|
20
|
|
|
* |
|
21
|
|
|
* Slightly changed to adapt the original code to PHP-ML library |
|
22
|
|
|
* @date 2017/04/24 |
|
23
|
|
|
* @author Mustafa Karabulut |
|
24
|
|
|
*/ |
|
25
|
|
|
|
|
26
|
|
|
namespace Phpml\Math\LinearAlgebra; |
|
27
|
|
|
|
|
28
|
|
|
use Phpml\Math\Matrix; |
|
29
|
|
|
use Phpml\Exception\MatrixException; |
|
30
|
|
|
|
|
31
|
|
|
class LUDecomposition |
|
32
|
|
|
{ |
|
33
|
|
|
/** |
|
34
|
|
|
* Decomposition storage |
|
35
|
|
|
* @var array |
|
36
|
|
|
*/ |
|
37
|
|
|
private $LU = []; |
|
38
|
|
|
|
|
39
|
|
|
/** |
|
40
|
|
|
* Row dimension. |
|
41
|
|
|
* @var int |
|
42
|
|
|
*/ |
|
43
|
|
|
private $m; |
|
44
|
|
|
|
|
45
|
|
|
/** |
|
46
|
|
|
* Column dimension. |
|
47
|
|
|
* @var int |
|
48
|
|
|
*/ |
|
49
|
|
|
private $n; |
|
50
|
|
|
|
|
51
|
|
|
/** |
|
52
|
|
|
* Pivot sign. |
|
53
|
|
|
* @var int |
|
54
|
|
|
*/ |
|
55
|
|
|
private $pivsign; |
|
56
|
|
|
|
|
57
|
|
|
/** |
|
58
|
|
|
* Internal storage of pivot vector. |
|
59
|
|
|
* @var array |
|
60
|
|
|
*/ |
|
61
|
|
|
private $piv = []; |
|
62
|
|
|
|
|
63
|
|
|
|
|
64
|
|
|
/** |
|
65
|
|
|
* LU Decomposition constructor. |
|
66
|
|
|
* |
|
67
|
|
|
* @param $A Rectangular matrix |
|
68
|
|
|
* @return Structure to access L, U and piv. |
|
|
|
|
|
|
69
|
|
|
*/ |
|
70
|
|
|
public function __construct(Matrix $A) |
|
71
|
|
|
{ |
|
72
|
|
|
if ($A->getRows() != $A->getColumns()) { |
|
73
|
|
|
throw MatrixException::notSquareMatrix(); |
|
74
|
|
|
} |
|
75
|
|
|
|
|
76
|
|
|
// Use a "left-looking", dot-product, Crout/Doolittle algorithm. |
|
77
|
|
|
$this->LU = $A->toArray(); |
|
78
|
|
|
$this->m = $A->getRows(); |
|
79
|
|
|
$this->n = $A->getColumns(); |
|
80
|
|
|
for ($i = 0; $i < $this->m; ++$i) { |
|
81
|
|
|
$this->piv[$i] = $i; |
|
82
|
|
|
} |
|
83
|
|
|
$this->pivsign = 1; |
|
84
|
|
|
$LUrowi = $LUcolj = []; |
|
|
|
|
|
|
85
|
|
|
|
|
86
|
|
|
// Outer loop. |
|
87
|
|
|
for ($j = 0; $j < $this->n; ++$j) { |
|
88
|
|
|
// Make a copy of the j-th column to localize references. |
|
89
|
|
View Code Duplication |
for ($i = 0; $i < $this->m; ++$i) { |
|
|
|
|
|
|
90
|
|
|
$LUcolj[$i] = &$this->LU[$i][$j]; |
|
91
|
|
|
} |
|
92
|
|
|
// Apply previous transformations. |
|
93
|
|
|
for ($i = 0; $i < $this->m; ++$i) { |
|
94
|
|
|
$LUrowi = $this->LU[$i]; |
|
95
|
|
|
// Most of the time is spent in the following dot product. |
|
96
|
|
|
$kmax = min($i, $j); |
|
97
|
|
|
$s = 0.0; |
|
98
|
|
|
for ($k = 0; $k < $kmax; ++$k) { |
|
99
|
|
|
$s += $LUrowi[$k] * $LUcolj[$k]; |
|
100
|
|
|
} |
|
101
|
|
|
$LUrowi[$j] = $LUcolj[$i] -= $s; |
|
102
|
|
|
} |
|
103
|
|
|
// Find pivot and exchange if necessary. |
|
104
|
|
|
$p = $j; |
|
105
|
|
|
for ($i = $j+1; $i < $this->m; ++$i) { |
|
106
|
|
|
if (abs($LUcolj[$i]) > abs($LUcolj[$p])) { |
|
107
|
|
|
$p = $i; |
|
108
|
|
|
} |
|
109
|
|
|
} |
|
110
|
|
|
if ($p != $j) { |
|
111
|
|
View Code Duplication |
for ($k = 0; $k < $this->n; ++$k) { |
|
|
|
|
|
|
112
|
|
|
$t = $this->LU[$p][$k]; |
|
113
|
|
|
$this->LU[$p][$k] = $this->LU[$j][$k]; |
|
114
|
|
|
$this->LU[$j][$k] = $t; |
|
115
|
|
|
} |
|
116
|
|
|
$k = $this->piv[$p]; |
|
117
|
|
|
$this->piv[$p] = $this->piv[$j]; |
|
118
|
|
|
$this->piv[$j] = $k; |
|
119
|
|
|
$this->pivsign = $this->pivsign * -1; |
|
120
|
|
|
} |
|
121
|
|
|
// Compute multipliers. |
|
122
|
|
|
if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) { |
|
123
|
|
View Code Duplication |
for ($i = $j+1; $i < $this->m; ++$i) { |
|
|
|
|
|
|
124
|
|
|
$this->LU[$i][$j] /= $this->LU[$j][$j]; |
|
125
|
|
|
} |
|
126
|
|
|
} |
|
127
|
|
|
} |
|
128
|
|
|
} // function __construct() |
|
|
|
|
|
|
129
|
|
|
|
|
130
|
|
|
|
|
131
|
|
|
/** |
|
132
|
|
|
* Get lower triangular factor. |
|
133
|
|
|
* |
|
134
|
|
|
* @return array Lower triangular factor |
|
135
|
|
|
*/ |
|
136
|
|
|
public function getL() |
|
137
|
|
|
{ |
|
138
|
|
|
$L = []; |
|
139
|
|
|
for ($i = 0; $i < $this->m; ++$i) { |
|
140
|
|
|
for ($j = 0; $j < $this->n; ++$j) { |
|
141
|
|
|
if ($i > $j) { |
|
142
|
|
|
$L[$i][$j] = $this->LU[$i][$j]; |
|
143
|
|
|
} elseif ($i == $j) { |
|
144
|
|
|
$L[$i][$j] = 1.0; |
|
145
|
|
|
} else { |
|
146
|
|
|
$L[$i][$j] = 0.0; |
|
147
|
|
|
} |
|
148
|
|
|
} |
|
149
|
|
|
} |
|
150
|
|
|
return new Matrix($L); |
|
151
|
|
|
} // function getL() |
|
|
|
|
|
|
152
|
|
|
|
|
153
|
|
|
|
|
154
|
|
|
/** |
|
155
|
|
|
* Get upper triangular factor. |
|
156
|
|
|
* |
|
157
|
|
|
* @return array Upper triangular factor |
|
158
|
|
|
*/ |
|
159
|
|
|
public function getU() |
|
160
|
|
|
{ |
|
161
|
|
|
$U = []; |
|
162
|
|
|
for ($i = 0; $i < $this->n; ++$i) { |
|
163
|
|
|
for ($j = 0; $j < $this->n; ++$j) { |
|
164
|
|
|
if ($i <= $j) { |
|
165
|
|
|
$U[$i][$j] = $this->LU[$i][$j]; |
|
166
|
|
|
} else { |
|
167
|
|
|
$U[$i][$j] = 0.0; |
|
168
|
|
|
} |
|
169
|
|
|
} |
|
170
|
|
|
} |
|
171
|
|
|
return new Matrix($U); |
|
172
|
|
|
} // function getU() |
|
|
|
|
|
|
173
|
|
|
|
|
174
|
|
|
|
|
175
|
|
|
/** |
|
176
|
|
|
* Return pivot permutation vector. |
|
177
|
|
|
* |
|
178
|
|
|
* @return array Pivot vector |
|
179
|
|
|
*/ |
|
180
|
|
|
public function getPivot() |
|
181
|
|
|
{ |
|
182
|
|
|
return $this->piv; |
|
183
|
|
|
} // function getPivot() |
|
|
|
|
|
|
184
|
|
|
|
|
185
|
|
|
|
|
186
|
|
|
/** |
|
187
|
|
|
* Alias for getPivot |
|
188
|
|
|
* |
|
189
|
|
|
* @see getPivot |
|
190
|
|
|
*/ |
|
191
|
|
|
public function getDoublePivot() |
|
192
|
|
|
{ |
|
193
|
|
|
return $this->getPivot(); |
|
194
|
|
|
} // function getDoublePivot() |
|
|
|
|
|
|
195
|
|
|
|
|
196
|
|
|
|
|
197
|
|
|
/** |
|
198
|
|
|
* Is the matrix nonsingular? |
|
199
|
|
|
* |
|
200
|
|
|
* @return true if U, and hence A, is nonsingular. |
|
201
|
|
|
*/ |
|
202
|
|
|
public function isNonsingular() |
|
203
|
|
|
{ |
|
204
|
|
View Code Duplication |
for ($j = 0; $j < $this->n; ++$j) { |
|
|
|
|
|
|
205
|
|
|
if ($this->LU[$j][$j] == 0) { |
|
206
|
|
|
return false; |
|
207
|
|
|
} |
|
208
|
|
|
} |
|
209
|
|
|
return true; |
|
210
|
|
|
} // function isNonsingular() |
|
|
|
|
|
|
211
|
|
|
|
|
212
|
|
|
|
|
213
|
|
|
/** |
|
214
|
|
|
* Count determinants |
|
215
|
|
|
* |
|
216
|
|
|
* @return array d matrix deterninat |
|
217
|
|
|
*/ |
|
218
|
|
|
public function det() |
|
219
|
|
|
{ |
|
220
|
|
|
if ($this->m == $this->n) { |
|
221
|
|
|
$d = $this->pivsign; |
|
222
|
|
View Code Duplication |
for ($j = 0; $j < $this->n; ++$j) { |
|
|
|
|
|
|
223
|
|
|
$d *= $this->LU[$j][$j]; |
|
224
|
|
|
} |
|
225
|
|
|
return $d; |
|
226
|
|
|
} else { |
|
227
|
|
|
throw MatrixException::notSquareMatrix(); |
|
228
|
|
|
} |
|
229
|
|
|
} // function det() |
|
|
|
|
|
|
230
|
|
|
|
|
231
|
|
|
|
|
232
|
|
|
/** |
|
233
|
|
|
* Solve A*X = B |
|
234
|
|
|
* |
|
235
|
|
|
* @param Matrix $B A Matrix with as many rows as A and any number of columns. |
|
236
|
|
|
* |
|
237
|
|
|
* @return array X so that L*U*X = B(piv,:) |
|
238
|
|
|
* |
|
239
|
|
|
* @throws MatrixException |
|
240
|
|
|
*/ |
|
241
|
|
|
public function solve(Matrix $B) |
|
242
|
|
|
{ |
|
243
|
|
|
if ($B->getRows() != $this->m) { |
|
244
|
|
|
throw MatrixException::notSquareMatrix(); |
|
245
|
|
|
} |
|
246
|
|
|
|
|
247
|
|
|
if (! $this->isNonsingular()) { |
|
248
|
|
|
throw MatrixException::singularMatrix(); |
|
249
|
|
|
} |
|
250
|
|
|
|
|
251
|
|
|
// Copy right hand side with pivoting |
|
252
|
|
|
$nx = $B->getColumns(); |
|
253
|
|
|
$X = $this->getSubMatrix($B->toArray(), $this->piv, 0, $nx-1); |
|
254
|
|
|
// Solve L*Y = B(piv,:) |
|
255
|
|
|
for ($k = 0; $k < $this->n; ++$k) { |
|
256
|
|
View Code Duplication |
for ($i = $k+1; $i < $this->n; ++$i) { |
|
|
|
|
|
|
257
|
|
|
for ($j = 0; $j < $nx; ++$j) { |
|
258
|
|
|
$X[$i][$j] -= $X[$k][$j] * $this->LU[$i][$k]; |
|
259
|
|
|
} |
|
260
|
|
|
} |
|
261
|
|
|
} |
|
262
|
|
|
// Solve U*X = Y; |
|
263
|
|
|
for ($k = $this->n-1; $k >= 0; --$k) { |
|
264
|
|
|
for ($j = 0; $j < $nx; ++$j) { |
|
265
|
|
|
$X[$k][$j] /= $this->LU[$k][$k]; |
|
266
|
|
|
} |
|
267
|
|
View Code Duplication |
for ($i = 0; $i < $k; ++$i) { |
|
|
|
|
|
|
268
|
|
|
for ($j = 0; $j < $nx; ++$j) { |
|
269
|
|
|
$X[$i][$j] -= $X[$k][$j] * $this->LU[$i][$k]; |
|
270
|
|
|
} |
|
271
|
|
|
} |
|
272
|
|
|
} |
|
273
|
|
|
return $X; |
|
274
|
|
|
} // function solve() |
|
|
|
|
|
|
275
|
|
|
|
|
276
|
|
|
/** |
|
277
|
|
|
* @param Matrix $matrix |
|
278
|
|
|
* @param int $j0 |
|
279
|
|
|
* @param int $jF |
|
280
|
|
|
* |
|
281
|
|
|
* @return array |
|
282
|
|
|
*/ |
|
283
|
|
|
protected function getSubMatrix(array $matrix, array $RL, int $j0, int $jF) |
|
284
|
|
|
{ |
|
285
|
|
|
$m = count($RL); |
|
286
|
|
|
$n = $jF - $j0; |
|
287
|
|
|
$R = array_fill(0, $m, array_fill(0, $n+1, 0.0)); |
|
288
|
|
|
|
|
289
|
|
|
for ($i = 0; $i < $m; ++$i) { |
|
290
|
|
|
for ($j = $j0; $j <= $jF; ++$j) { |
|
291
|
|
|
$R[$i][$j - $j0]= $matrix[ $RL[$i] ][$j]; |
|
292
|
|
|
} |
|
293
|
|
|
} |
|
294
|
|
|
|
|
295
|
|
|
return $R; |
|
296
|
|
|
} |
|
297
|
|
|
} // class LUDecomposition |
|
298
|
|
|
|
Adding a
@returnannotation to a constructor is not recommended, since a constructor does not have a meaningful return value.Please refer to the PHP core documentation on constructors.