@@ -75,7 +75,7 @@ |
||
| 75 | 75 | * |
| 76 | 76 | * Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive) <br> |
| 77 | 77 | * Maximum number of iterations can be an integer value greater than 0 |
| 78 | - * @param int $learningRate |
|
| 78 | + * @param double $learningRate |
|
| 79 | 79 | * @param int $maxIterations |
| 80 | 80 | */ |
| 81 | 81 | public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, |
@@ -97,7 +97,7 @@ |
||
| 97 | 97 | return $this->trainByLabel($samples, $targets, $labels); |
| 98 | 98 | } |
| 99 | 99 | |
| 100 | - /** |
|
| 100 | + /** |
|
| 101 | 101 | * @param array $samples |
| 102 | 102 | * @param array $targets |
| 103 | 103 | * @param array $labels |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -167,7 +167,7 @@ discard block |
||
| 167 | 167 | protected function runTraining(array $samples, array $targets) |
| 168 | 168 | { |
| 169 | 169 | // The cost function is the sum of squares |
| 170 | - $callback = function ($weights, $sample, $target) { |
|
| 170 | + $callback = function($weights, $sample, $target) { |
|
| 171 | 171 | $this->weights = $weights; |
| 172 | 172 | |
| 173 | 173 | $prediction = $this->outputClass($sample); |
@@ -189,7 +189,7 @@ discard block |
||
| 189 | 189 | */ |
| 190 | 190 | protected function runGradientDescent(array $samples, array $targets, \Closure $gradientFunc, bool $isBatch = false) |
| 191 | 191 | { |
| 192 | - $class = $isBatch ? GD::class : StochasticGD::class; |
|
| 192 | + $class = $isBatch ? GD::class : StochasticGD::class; |
|
| 193 | 193 | |
| 194 | 194 | if (empty($this->optimizer)) { |
| 195 | 195 | $this->optimizer = (new $class($this->featureCount)) |
@@ -284,6 +284,6 @@ discard block |
||
| 284 | 284 | |
| 285 | 285 | $predictedClass = $this->outputClass($sample); |
| 286 | 286 | |
| 287 | - return $this->labels[ $predictedClass ]; |
|
| 287 | + return $this->labels[$predictedClass]; |
|
| 288 | 288 | } |
| 289 | 289 | } |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Helper\Optimizer; |
| 6 | 6 | |
@@ -57,7 +57,7 @@ discard block |
||
| 57 | 57 | protected function gradient(array $samples, array $targets, \Closure $gradientCb, array $theta) |
| 58 | 58 | { |
| 59 | 59 | $costs = []; |
| 60 | - $gradient= []; |
|
| 60 | + $gradient = []; |
|
| 61 | 61 | $totalPenalty = 0; |
| 62 | 62 | |
| 63 | 63 | foreach ($samples as $index => $sample) { |
@@ -67,7 +67,7 @@ discard block |
||
| 67 | 67 | list($cost, $grad, $penalty) = array_pad($result, 3, 0); |
| 68 | 68 | |
| 69 | 69 | $costs[] = $cost; |
| 70 | - $gradient[]= $grad; |
|
| 70 | + $gradient[] = $grad; |
|
| 71 | 71 | $totalPenalty += $penalty; |
| 72 | 72 | } |
| 73 | 73 | |
@@ -84,7 +84,7 @@ discard block |
||
| 84 | 84 | protected function updateWeightsWithUpdates(array $samples, array $updates, float $penalty) |
| 85 | 85 | { |
| 86 | 86 | // Updates all weights at once |
| 87 | - for ($i=0; $i <= $this->dimensions; $i++) { |
|
| 87 | + for ($i = 0; $i <= $this->dimensions; $i++) { |
|
| 88 | 88 | if ($i == 0) { |
| 89 | 89 | $this->theta[0] -= $this->learningRate * array_sum($updates); |
| 90 | 90 | } else { |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Helper\Optimizer; |
| 6 | 6 | |
@@ -30,7 +30,7 @@ discard block |
||
| 30 | 30 | |
| 31 | 31 | $d = mp::muls($this->gradient($samples, $targets, $gradientCb, $this->theta), -1); |
| 32 | 32 | |
| 33 | - for ($i=0; $i < $this->maxIterations; $i++) { |
|
| 33 | + for ($i = 0; $i < $this->maxIterations; $i++) { |
|
| 34 | 34 | // Obtain α that minimizes f(θ + α.d) |
| 35 | 35 | $alpha = $this->getAlpha($samples, $targets, $gradientCb, array_sum($d)); |
| 36 | 36 | |
@@ -167,7 +167,7 @@ discard block |
||
| 167 | 167 | { |
| 168 | 168 | $theta = $this->theta; |
| 169 | 169 | |
| 170 | - for ($i=0; $i < $this->dimensions + 1; $i++) { |
|
| 170 | + for ($i = 0; $i < $this->dimensions + 1; $i++) { |
|
| 171 | 171 | if ($i == 0) { |
| 172 | 172 | $theta[$i] += $alpha * array_sum($d); |
| 173 | 173 | } else { |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -190,8 +190,8 @@ discard block |
||
| 190 | 190 | } |
| 191 | 191 | |
| 192 | 192 | // Try other possible points one by one |
| 193 | - for ($step = $minValue; $step <= $maxValue; $step+= $stepSize) { |
|
| 194 | - $threshold = (float)$step; |
|
| 193 | + for ($step = $minValue; $step <= $maxValue; $step += $stepSize) { |
|
| 194 | + $threshold = (float) $step; |
|
| 195 | 195 | list($errorRate, $prob) = $this->calculateErrorRate($targets, $threshold, $operator, $values); |
| 196 | 196 | if ($errorRate < $split['trainingErrorRate']) { |
| 197 | 197 | $split = ['value' => $threshold, 'operator' => $operator, |
@@ -215,7 +215,7 @@ discard block |
||
| 215 | 215 | { |
| 216 | 216 | $values = array_column($samples, $col); |
| 217 | 217 | $valueCounts = array_count_values($values); |
| 218 | - $distinctVals= array_keys($valueCounts); |
|
| 218 | + $distinctVals = array_keys($valueCounts); |
|
| 219 | 219 | |
| 220 | 220 | $split = null; |
| 221 | 221 | |
@@ -274,7 +274,7 @@ discard block |
||
| 274 | 274 | $wrong = 0.0; |
| 275 | 275 | $prob = []; |
| 276 | 276 | $leftLabel = $this->binaryLabels[0]; |
| 277 | - $rightLabel= $this->binaryLabels[1]; |
|
| 277 | + $rightLabel = $this->binaryLabels[1]; |
|
| 278 | 278 | |
| 279 | 279 | foreach ($values as $index => $value) { |
| 280 | 280 | if ($this->evaluate($value, $operator, $threshold)) { |
@@ -288,7 +288,7 @@ discard block |
||
| 288 | 288 | $wrong += $this->weights[$index]; |
| 289 | 289 | } |
| 290 | 290 | |
| 291 | - if (! isset($prob[$predicted][$target])) { |
|
| 291 | + if (!isset($prob[$predicted][$target])) { |
|
| 292 | 292 | $prob[$predicted][$target] = 0; |
| 293 | 293 | } |
| 294 | 294 | $prob[$predicted][$target]++; |
@@ -297,7 +297,7 @@ discard block |
||
| 297 | 297 | // Calculate probabilities: Proportion of labels in each leaf |
| 298 | 298 | $dist = array_combine($this->binaryLabels, array_fill(0, 2, 0.0)); |
| 299 | 299 | foreach ($prob as $leaf => $counts) { |
| 300 | - $leafTotal = (float)array_sum($prob[$leaf]); |
|
| 300 | + $leafTotal = (float) array_sum($prob[$leaf]); |
|
| 301 | 301 | foreach ($counts as $label => $count) { |
| 302 | 302 | if (strval($leaf) == strval($label)) { |
| 303 | 303 | $dist[$leaf] = $count / $leafTotal; |
@@ -348,8 +348,8 @@ discard block |
||
| 348 | 348 | */ |
| 349 | 349 | public function __toString() |
| 350 | 350 | { |
| 351 | - return "IF $this->column $this->operator $this->value " . |
|
| 352 | - "THEN " . $this->binaryLabels[0] . " ". |
|
| 353 | - "ELSE " . $this->binaryLabels[1]; |
|
| 351 | + return "IF $this->column $this->operator $this->value ". |
|
| 352 | + "THEN ".$this->binaryLabels[0]." ". |
|
| 353 | + "ELSE ".$this->binaryLabels[1]; |
|
| 354 | 354 | } |
| 355 | 355 | } |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -12,12 +12,12 @@ discard block |
||
| 12 | 12 | /** |
| 13 | 13 | * Batch training is the default Adaline training algorithm |
| 14 | 14 | */ |
| 15 | - const BATCH_TRAINING = 1; |
|
| 15 | + const BATCH_TRAINING = 1; |
|
| 16 | 16 | |
| 17 | 17 | /** |
| 18 | 18 | * Online training: Stochastic gradient descent learning |
| 19 | 19 | */ |
| 20 | - const ONLINE_TRAINING = 2; |
|
| 20 | + const ONLINE_TRAINING = 2; |
|
| 21 | 21 | |
| 22 | 22 | /** |
| 23 | 23 | * Training type may be either 'Batch' or 'Online' learning |
@@ -41,7 +41,7 @@ discard block |
||
| 41 | 41 | public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, |
| 42 | 42 | bool $normalizeInputs = true, int $trainingType = self::BATCH_TRAINING) |
| 43 | 43 | { |
| 44 | - if (! in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) { |
|
| 44 | + if (!in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) { |
|
| 45 | 45 | throw new \Exception("Adaline can only be trained with batch and online/stochastic gradient descent algorithm"); |
| 46 | 46 | } |
| 47 | 47 | |
@@ -60,7 +60,7 @@ discard block |
||
| 60 | 60 | protected function runTraining(array $samples, array $targets) |
| 61 | 61 | { |
| 62 | 62 | // The cost function is the sum of squares |
| 63 | - $callback = function ($weights, $sample, $target) { |
|
| 63 | + $callback = function($weights, $sample, $target) { |
|
| 64 | 64 | $this->weights = $weights; |
| 65 | 65 | |
| 66 | 66 | $output = $this->output($sample); |