Passed
Push — master ( c0463a...e1854d )
by Arkadiusz
02:54
created
src/Phpml/Classification/Linear/Perceptron.php 4 patches
Doc Comments   +1 added lines, -1 removed lines patch added patch discarded remove patch
@@ -75,7 +75,7 @@
 block discarded – undo
75 75
      *
76 76
      * Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive) <br>
77 77
      * Maximum number of iterations can be an integer value greater than 0
78
-     * @param int $learningRate
78
+     * @param double $learningRate
79 79
      * @param int $maxIterations
80 80
      */
81 81
     public function __construct(float $learningRate = 0.001, int $maxIterations = 1000,
Please login to merge, or discard this patch.
Indentation   +1 added lines, -1 removed lines patch added patch discarded remove patch
@@ -97,7 +97,7 @@
 block discarded – undo
97 97
         return $this->trainByLabel($samples, $targets, $labels);
98 98
     }
99 99
 
100
-   /**
100
+    /**
101 101
      * @param array $samples
102 102
      * @param array $targets
103 103
      * @param array $labels
Please login to merge, or discard this patch.
Spacing   +4 added lines, -4 removed lines patch added patch discarded remove patch
@@ -1,6 +1,6 @@  discard block
 block discarded – undo
1 1
 <?php
2 2
 
3
-declare(strict_types=1);
3
+declare(strict_types = 1);
4 4
 
5 5
 namespace Phpml\Classification\Linear;
6 6
 
@@ -167,7 +167,7 @@  discard block
 block discarded – undo
167 167
     protected function runTraining(array $samples, array $targets)
168 168
     {
169 169
         // The cost function is the sum of squares
170
-        $callback = function ($weights, $sample, $target) {
170
+        $callback = function($weights, $sample, $target) {
171 171
             $this->weights = $weights;
172 172
 
173 173
             $prediction = $this->outputClass($sample);
@@ -189,7 +189,7 @@  discard block
 block discarded – undo
189 189
      */
190 190
     protected function runGradientDescent(array $samples, array $targets, \Closure $gradientFunc, bool $isBatch = false)
191 191
     {
192
-        $class = $isBatch ? GD::class :  StochasticGD::class;
192
+        $class = $isBatch ? GD::class : StochasticGD::class;
193 193
 
194 194
         if (empty($this->optimizer)) {
195 195
             $this->optimizer = (new $class($this->featureCount))
@@ -284,6 +284,6 @@  discard block
 block discarded – undo
284 284
 
285 285
         $predictedClass = $this->outputClass($sample);
286 286
 
287
-        return $this->labels[ $predictedClass ];
287
+        return $this->labels[$predictedClass];
288 288
     }
289 289
 }
Please login to merge, or discard this patch.
Unused Use Statements   -1 removed lines patch added patch discarded remove patch
@@ -11,7 +11,6 @@
 block discarded – undo
11 11
 use Phpml\Classification\Classifier;
12 12
 use Phpml\Preprocessing\Normalizer;
13 13
 use Phpml\IncrementalEstimator;
14
-use Phpml\Helper\PartiallyTrainable;
15 14
 
16 15
 class Perceptron implements Classifier, IncrementalEstimator
17 16
 {
Please login to merge, or discard this patch.
src/Phpml/Classification/Linear/DecisionStump.php 1 patch
Spacing   +10 added lines, -10 removed lines patch added patch discarded remove patch
@@ -1,6 +1,6 @@  discard block
 block discarded – undo
1 1
 <?php
2 2
 
3
-declare(strict_types=1);
3
+declare(strict_types = 1);
4 4
 
5 5
 namespace Phpml\Classification\Linear;
6 6
 
@@ -190,8 +190,8 @@  discard block
 block discarded – undo
190 190
             }
191 191
 
192 192
             // Try other possible points one by one
193
-            for ($step = $minValue; $step <= $maxValue; $step+= $stepSize) {
194
-                $threshold = (float)$step;
193
+            for ($step = $minValue; $step <= $maxValue; $step += $stepSize) {
194
+                $threshold = (float) $step;
195 195
                 list($errorRate, $prob) = $this->calculateErrorRate($targets, $threshold, $operator, $values);
196 196
                 if ($errorRate < $split['trainingErrorRate']) {
197 197
                     $split = ['value' => $threshold, 'operator' => $operator,
@@ -215,7 +215,7 @@  discard block
 block discarded – undo
215 215
     {
216 216
         $values = array_column($samples, $col);
217 217
         $valueCounts = array_count_values($values);
218
-        $distinctVals= array_keys($valueCounts);
218
+        $distinctVals = array_keys($valueCounts);
219 219
 
220 220
         $split = null;
221 221
 
@@ -274,7 +274,7 @@  discard block
 block discarded – undo
274 274
         $wrong = 0.0;
275 275
         $prob = [];
276 276
         $leftLabel = $this->binaryLabels[0];
277
-        $rightLabel= $this->binaryLabels[1];
277
+        $rightLabel = $this->binaryLabels[1];
278 278
 
279 279
         foreach ($values as $index => $value) {
280 280
             if ($this->evaluate($value, $operator, $threshold)) {
@@ -288,7 +288,7 @@  discard block
 block discarded – undo
288 288
                 $wrong += $this->weights[$index];
289 289
             }
290 290
 
291
-            if (! isset($prob[$predicted][$target])) {
291
+            if (!isset($prob[$predicted][$target])) {
292 292
                 $prob[$predicted][$target] = 0;
293 293
             }
294 294
             $prob[$predicted][$target]++;
@@ -297,7 +297,7 @@  discard block
 block discarded – undo
297 297
         // Calculate probabilities: Proportion of labels in each leaf
298 298
         $dist = array_combine($this->binaryLabels, array_fill(0, 2, 0.0));
299 299
         foreach ($prob as $leaf => $counts) {
300
-            $leafTotal = (float)array_sum($prob[$leaf]);
300
+            $leafTotal = (float) array_sum($prob[$leaf]);
301 301
             foreach ($counts as $label => $count) {
302 302
                 if (strval($leaf) == strval($label)) {
303 303
                     $dist[$leaf] = $count / $leafTotal;
@@ -348,8 +348,8 @@  discard block
 block discarded – undo
348 348
      */
349 349
     public function __toString()
350 350
     {
351
-        return "IF $this->column $this->operator $this->value " .
352
-            "THEN " . $this->binaryLabels[0] . " ".
353
-            "ELSE " . $this->binaryLabels[1];
351
+        return "IF $this->column $this->operator $this->value ".
352
+            "THEN ".$this->binaryLabels[0]." ".
353
+            "ELSE ".$this->binaryLabels[1];
354 354
     }
355 355
 }
Please login to merge, or discard this patch.
src/Phpml/Classification/Linear/Adaline.php 1 patch
Spacing   +5 added lines, -5 removed lines patch added patch discarded remove patch
@@ -1,6 +1,6 @@  discard block
 block discarded – undo
1 1
 <?php
2 2
 
3
-declare(strict_types=1);
3
+declare(strict_types = 1);
4 4
 
5 5
 namespace Phpml\Classification\Linear;
6 6
 
@@ -12,12 +12,12 @@  discard block
 block discarded – undo
12 12
     /**
13 13
      * Batch training is the default Adaline training algorithm
14 14
      */
15
-    const BATCH_TRAINING    = 1;
15
+    const BATCH_TRAINING = 1;
16 16
 
17 17
     /**
18 18
      * Online training: Stochastic gradient descent learning
19 19
      */
20
-    const ONLINE_TRAINING    = 2;
20
+    const ONLINE_TRAINING = 2;
21 21
 
22 22
     /**
23 23
      * Training type may be either 'Batch' or 'Online' learning
@@ -41,7 +41,7 @@  discard block
 block discarded – undo
41 41
     public function __construct(float $learningRate = 0.001, int $maxIterations = 1000,
42 42
         bool $normalizeInputs = true, int $trainingType = self::BATCH_TRAINING)
43 43
     {
44
-        if (! in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) {
44
+        if (!in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) {
45 45
             throw new \Exception("Adaline can only be trained with batch and online/stochastic gradient descent algorithm");
46 46
         }
47 47
 
@@ -60,7 +60,7 @@  discard block
 block discarded – undo
60 60
     protected function runTraining(array $samples, array $targets)
61 61
     {
62 62
         // The cost function is the sum of squares
63
-        $callback = function ($weights, $sample, $target) {
63
+        $callback = function($weights, $sample, $target) {
64 64
             $this->weights = $weights;
65 65
 
66 66
             $output = $this->output($sample);
Please login to merge, or discard this patch.
src/Phpml/IncrementalEstimator.php 1 patch
Spacing   +1 added lines, -1 removed lines patch added patch discarded remove patch
@@ -1,6 +1,6 @@
 block discarded – undo
1 1
 <?php
2 2
 
3
-declare(strict_types=1);
3
+declare(strict_types = 1);
4 4
 
5 5
 namespace Phpml;
6 6
 
Please login to merge, or discard this patch.