@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Classification\Linear; |
6 | 6 | |
@@ -190,8 +190,8 @@ discard block |
||
190 | 190 | } |
191 | 191 | |
192 | 192 | // Try other possible points one by one |
193 | - for ($step = $minValue; $step <= $maxValue; $step+= $stepSize) { |
|
194 | - $threshold = (float)$step; |
|
193 | + for ($step = $minValue; $step <= $maxValue; $step += $stepSize) { |
|
194 | + $threshold = (float) $step; |
|
195 | 195 | list($errorRate, $prob) = $this->calculateErrorRate($targets, $threshold, $operator, $values); |
196 | 196 | if ($errorRate < $split['trainingErrorRate']) { |
197 | 197 | $split = ['value' => $threshold, 'operator' => $operator, |
@@ -215,7 +215,7 @@ discard block |
||
215 | 215 | { |
216 | 216 | $values = array_column($samples, $col); |
217 | 217 | $valueCounts = array_count_values($values); |
218 | - $distinctVals= array_keys($valueCounts); |
|
218 | + $distinctVals = array_keys($valueCounts); |
|
219 | 219 | |
220 | 220 | $split = null; |
221 | 221 | |
@@ -274,7 +274,7 @@ discard block |
||
274 | 274 | $wrong = 0.0; |
275 | 275 | $prob = []; |
276 | 276 | $leftLabel = $this->binaryLabels[0]; |
277 | - $rightLabel= $this->binaryLabels[1]; |
|
277 | + $rightLabel = $this->binaryLabels[1]; |
|
278 | 278 | |
279 | 279 | foreach ($values as $index => $value) { |
280 | 280 | if ($this->evaluate($value, $operator, $threshold)) { |
@@ -288,7 +288,7 @@ discard block |
||
288 | 288 | $wrong += $this->weights[$index]; |
289 | 289 | } |
290 | 290 | |
291 | - if (! isset($prob[$predicted][$target])) { |
|
291 | + if (!isset($prob[$predicted][$target])) { |
|
292 | 292 | $prob[$predicted][$target] = 0; |
293 | 293 | } |
294 | 294 | $prob[$predicted][$target]++; |
@@ -297,7 +297,7 @@ discard block |
||
297 | 297 | // Calculate probabilities: Proportion of labels in each leaf |
298 | 298 | $dist = array_combine($this->binaryLabels, array_fill(0, 2, 0.0)); |
299 | 299 | foreach ($prob as $leaf => $counts) { |
300 | - $leafTotal = (float)array_sum($prob[$leaf]); |
|
300 | + $leafTotal = (float) array_sum($prob[$leaf]); |
|
301 | 301 | foreach ($counts as $label => $count) { |
302 | 302 | if (strval($leaf) == strval($label)) { |
303 | 303 | $dist[$leaf] = $count / $leafTotal; |
@@ -348,8 +348,8 @@ discard block |
||
348 | 348 | */ |
349 | 349 | public function __toString() |
350 | 350 | { |
351 | - return "IF $this->column $this->operator $this->value " . |
|
352 | - "THEN " . $this->binaryLabels[0] . " ". |
|
353 | - "ELSE " . $this->binaryLabels[1]; |
|
351 | + return "IF $this->column $this->operator $this->value ". |
|
352 | + "THEN ".$this->binaryLabels[0]." ". |
|
353 | + "ELSE ".$this->binaryLabels[1]; |
|
354 | 354 | } |
355 | 355 | } |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Classification\Linear; |
6 | 6 | |
@@ -167,7 +167,7 @@ discard block |
||
167 | 167 | protected function runTraining(array $samples, array $targets) |
168 | 168 | { |
169 | 169 | // The cost function is the sum of squares |
170 | - $callback = function ($weights, $sample, $target) { |
|
170 | + $callback = function($weights, $sample, $target) { |
|
171 | 171 | $this->weights = $weights; |
172 | 172 | |
173 | 173 | $prediction = $this->outputClass($sample); |
@@ -189,7 +189,7 @@ discard block |
||
189 | 189 | */ |
190 | 190 | protected function runGradientDescent(array $samples, array $targets, \Closure $gradientFunc, bool $isBatch = false) |
191 | 191 | { |
192 | - $class = $isBatch ? GD::class : StochasticGD::class; |
|
192 | + $class = $isBatch ? GD::class : StochasticGD::class; |
|
193 | 193 | |
194 | 194 | if (empty($this->optimizer)) { |
195 | 195 | $this->optimizer = (new $class($this->featureCount)) |
@@ -284,6 +284,6 @@ discard block |
||
284 | 284 | |
285 | 285 | $predictedClass = $this->outputClass($sample); |
286 | 286 | |
287 | - return $this->labels[ $predictedClass ]; |
|
287 | + return $this->labels[$predictedClass]; |
|
288 | 288 | } |
289 | 289 | } |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Classification\Linear; |
6 | 6 | |
@@ -12,12 +12,12 @@ discard block |
||
12 | 12 | /** |
13 | 13 | * Batch training is the default Adaline training algorithm |
14 | 14 | */ |
15 | - const BATCH_TRAINING = 1; |
|
15 | + const BATCH_TRAINING = 1; |
|
16 | 16 | |
17 | 17 | /** |
18 | 18 | * Online training: Stochastic gradient descent learning |
19 | 19 | */ |
20 | - const ONLINE_TRAINING = 2; |
|
20 | + const ONLINE_TRAINING = 2; |
|
21 | 21 | |
22 | 22 | /** |
23 | 23 | * Training type may be either 'Batch' or 'Online' learning |
@@ -41,7 +41,7 @@ discard block |
||
41 | 41 | public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, |
42 | 42 | bool $normalizeInputs = true, int $trainingType = self::BATCH_TRAINING) |
43 | 43 | { |
44 | - if (! in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) { |
|
44 | + if (!in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) { |
|
45 | 45 | throw new \Exception("Adaline can only be trained with batch and online/stochastic gradient descent algorithm"); |
46 | 46 | } |
47 | 47 | |
@@ -60,7 +60,7 @@ discard block |
||
60 | 60 | protected function runTraining(array $samples, array $targets) |
61 | 61 | { |
62 | 62 | // The cost function is the sum of squares |
63 | - $callback = function ($weights, $sample, $target) { |
|
63 | + $callback = function($weights, $sample, $target) { |
|
64 | 64 | $this->weights = $weights; |
65 | 65 | |
66 | 66 | $output = $this->output($sample); |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml; |
6 | 6 |